A Geometric Optics Experiment to Simulate the Betatronic Motion

  • Armando Bazzani
  • Paolo Freguglia
  • Leone Fronzoni
  • Giorgio Turchetti


We consider the analogy between geometric optics and mechanics to simulate the betatronic motion in a particle accelerator by using an optic experiment. Some experimental results are discussed and the main difficulties to improve the actual performances are briefly presented. We also introduce a representation of a ray trajectory by means of the quaternion numbers that can be used to study the geometrical properties.


Refraction Index Geometric Optic Particle Accelerator Eikonal Equation Quaternion Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hamilton W.R., Theory of systems of rays,Trans. Of the Royal Irish Academy 15 (1828), 69–174.Google Scholar
  2. [2]
    Arnold V.I., Méthod mathématiques de la mécanique classique, MIR, Moscow 1976.Google Scholar
  3. [3]
    Bazzani A., Todesco E., Turchetti G., A normal form approach to the theory of the nonlinear betatronic motion, CERN 94–02 (1994).Google Scholar
  4. [4]
    Courant E., Snyder H., Theory of the alternating-gradient synchrotron, Ann. Phys. (N.Y.) 3 (1958), 1–48.CrossRefGoogle Scholar
  5. [5]
    Freguglia P., Turchetti G. EDS., Mechanics and Geometry, some topics, Quattroventi, Urbino 2002.Google Scholar
  6. [6]
    Bazzani A., Freguglia P., Fronzoni L., Turchetti G., An optical experiment towards the analogic simulation of the betatronic motion, AIP Conference Proceedings 581 (2001), 211–220.CrossRefGoogle Scholar
  7. [7]
    Hamilton W.R., On quaternions,Trans. Of the Royal Irish Academy 3 (1847), 1–16.Google Scholar
  8. [8]
    Hamilton W.R.,On the application of the method of quaternions to some dynamical questionsTrans. Of the Royal Irish Academy 3 (1847) Appendix, XXXXVI—L. Google Scholar
  9. [9]
    Kuipers J.B., Quaternions and Rotation Sequences, Princeton University Press, Princeton 1999.Google Scholar
  10. [10]
    Landau L.D., Lifsits E.M., Teoria dei campi, Editori Riuniti, Roma 1981.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Armando Bazzani
    • 1
  • Paolo Freguglia
    • 2
  • Leone Fronzoni
    • 3
  • Giorgio Turchetti
    • 4
  1. 1.Dipartimento di FisicaINFN e CIG dell’Università di BolognaBolognaItaly
  2. 2.Dipartimento di Matematica Pura ed ApplicataUniversità degli Studi dell’Aquila and Domus GalilaeianaPisaItaly
  3. 3.Dipartimento di FisicaUniversità di Pisa, INFM e CISSC dell’Università di PisaPisaItaly
  4. 4.Dipartimento di FisicaINFN e CIG dell’Università di BolognaBolognaItaly

Personalised recommendations