The Fractal Borderland between the Deterministic Order and the Unpredictable Chaos

  • Giuseppe Damiani


Many complex systems exhibit fractal structures near the intermediate stages of phase transitions. Sometimes, these critical situations define the boundary between the deterministic order and the unpredictable chaos. According to the “Binary Theory of Everything”, this universal behaviour is due to the interaction between the catabolic-entropic decay of electromagnetic energy and the anabolic-negentropic increase of matter configuration.


Binary Theory Microscopic Particle Binary Process Vacuum Fluctuation Vacuum Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arcidiacono G., Relatività e cosmologia, Libreria Veschi, Roma 1979.Google Scholar
  2. [2]
    Bar P., How nature works: the science of self-organized criticality, Springer, New York 1996.Google Scholar
  3. [3]
    Caldirola P., Pavsic M., Recami E., Explaining the large numbers by a hierarchy of “Universes”: a Unified Theory of strong and gravitational interactions, Nuovo Cimento 48B (1978), 205–271.CrossRefGoogle Scholar
  4. [4]
    Damiani G., Il gioco della vita, la teoria binaria dell’Universo fisico, Editrice Italiana Audiovisivi, Roma 1984.Google Scholar
  5. [5]
    Damiani G., Della Franca P., Morphé and evolution, Biology Forum 90 (1997), 227–266.Google Scholar
  6. [6]
    Damiani G., Evolution of life in a fractal Universe in “Fractals in biology and medicine” Vol. 2, Losa G.A., Merlini D., Nonnenmacher T.F. and Weibel E.R. eds., Birkhauser-Verlag, Basel 1998, 169–187.CrossRefGoogle Scholar
  7. [7]
    De Sabbata V., Sivaram C., Torsion, string torsion, and topological origin of charge and mass, Found. Phys. Lett. 8 (1995), 375.Google Scholar
  8. [8]
    Dirac P.A.M., Cosmological models and the Large Number hypothesis,Proc. Roy. Soc. A 333 (1973), 403–418.Google Scholar
  9. [9]
    Eddington A.S., Fundamental Theory, Cambridge Univ. Press, Cambridge 1946.Google Scholar
  10. [10]
    FantappiÉ L., Opere scelte, Ed. Unione Matematica Italiana, Bologna 1973.Google Scholar
  11. [11]
    Harari H., A schematic model of quarks and leptons,Phys. Lett. B 86 (1979), 83–86.Google Scholar
  12. [12]
    Mandelbrot B., The Fractal Geometry of Nature,Freeman, New York 1982.Google Scholar
  13. [13]
    Mac Gregor M.H., Model basis states for photons and “empty waves”,Found. Phys. Lett. 8 (1995), 135–160.Google Scholar
  14. [14]
    Shupe M.A., A composite model of leptons and quarks, Phys. Lett. B 86 (1979), 87–92.CrossRefGoogle Scholar
  15. [15]
    Stanley H.E., Power laws and Universality,Nature 378 (1995), 554.Google Scholar
  16. [16]
    Tryon E.P., Is the Universe a vacuum fluctuation?,Nature 264 (1973), 395397.Google Scholar
  17. [17]
    Weyl H., Eine neue Erweiterung der Relativitatstheorie,Ann. der Phys. 59 (1919), 101–133.Google Scholar
  18. [18]
    Weyl H., Philosophy of Mathematics and Natural Sciences, Princeton University Press, Princeton 1949.Google Scholar
  19. [19]
    Yates F.E., Fractal applications in biology: scaling time in biochemical networks,Methods in Enzymology 210 (1992), 636–675.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Giuseppe Damiani
    • 1
  1. 1.IDVGA-CNRSegrate (MI)Italy

Personalised recommendations