An Interplay between Determinism and One-Parameter Semigroups, and Applications

  • Silvia Romanelli


We present a mathematical approach to motion and determinism in connection to the theory of one-parameter semigroups, according to Engel and Nagel [3]. Examples of generators of (C o ) semigroups which govern topical evolution equations occurring in Physics, Economics and Engineering are given.


Analytic Semigroup Order Differential Operator Abstract Cauchy Problem Fell Semigroup Degenerate Elliptic Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Apushkinskaya D.E., Nazarov A.I., The Venttsel’ problem for nonlinear elliptic equations, J. Math. Sc. 101 (2) (2000), 2861–2880.CrossRefGoogle Scholar
  2. [2]
    Colombo F., Giuli M., Vespri V., Generation of smoothing semigroups by degenerate elliptic operators arising in financial mathematics, Quaderno n. 38 Dipartimento di Matematica “F. Enriques”, Università di Milano 1997.Google Scholar
  3. [3]
    Engel K.J., Nagel R., One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer 2000.Google Scholar
  4. [4]
    Ethier S.N., Kurtz T.G., Markov Processes, J. Wiley & Sons, New York 1986.Google Scholar
  5. [5]
    Favaron A., Lorenzi A., Parabolic integro-differential identification problems related to radial memory kernels I, Quaderno n. 18 Dipartimento di Matematica “F. Enriques”, Università di Milano 2001.Google Scholar
  6. [6]
    Favini A., Goldstein G.R., Goldstein J.A., Romanelli S., Co-semigroups generated by second order differential operators with general Wentzell boundary conditions, Proc. Amer. Math. Soc. 128 (2000), 1981–1989.CrossRefGoogle Scholar
  7. [7]
    Favini A., Goldstein G.R., Goldstein J.A., Romanelli S., The heat equation with generalized Wentzell boundary condition,to appear in J. Evol. Eqns.Google Scholar
  8. [8]
    Favini A., Goldstein J.A., Romanelli S., Analytic semigroups on Lw(0, 1) and on L“(0,1) generated by some classes of second order differential operators, Taiwanese J. Math. 3 (2) (1999), 181–210.Google Scholar
  9. [9]
    Favini A., Romanelli S., Degenerate second order operators as generators of analytic semigroups on C[0, +oo] or on LP, (0, +oo) in: “Approximation and Optimization, Proceedings of International Conference on Approximation and Optimization (Romania) (ICAOR) Cluj-Napoca, July 29-August 1, 1996” (Eds. Stancu D., Coman G., Breckner W.W., Blaga P.) Vol. II, Transilvania Press 1997, 93–100.Google Scholar
  10. [10]
    Kessler M., Sorensen M., Estimating equations based on eigenfunctions for a discretely observed diffusion process, Bernoulli 5 (2) (1999), 299–314.CrossRefGoogle Scholar
  11. [11]
    Mininni R., Romanelli S., in preparation.Google Scholar
  12. [12]
    Totaro S., Explicit solutions of equations arising from economy problems,in: “Atti IV Congresso Nazionale SIMAI, Giardini Naxos (Messina)” Vol. I 1998, 230–233.Google Scholar
  13. [13]
    Wang K., The linear Kompaneets equation,J. Math. Anal. Appl. 198 (1996), 552–570.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Silvia Romanelli
    • 1
  1. 1.Dipartimento Interuniversitario di MatematicaUniversità di BariBariItaly

Personalised recommendations