Skip to main content

Complexity and Emergence of Meaning: The Fundamental Level of Neurophysics

  • Chapter
  • 174 Accesses

Abstract

The central issue of cognitive science is how a large collection of coupled neurons does not limit to automatic responses to environmental inputs, as done by brainless lower animals, but combines external data with internal memories into new coherent patterns of meaning. Based on recent laboratory investigations of homoclinic chaotic systems, and how they mutually synchronize by weak coupling,a novel conjecture on the dynamics of the single neuron is formulated. Homoclinic chaos appears as the easiest way to code information in time by a code consisting of trains of equal spikes occurring at erratic times; synchronization of trains of different individual neurons is the basis od a coherent perception. The percept space P can be given a metric structure by introducing a distance measure. The distance in P space is conjugate to the duration time in the sense that a quantum uncertainy relation in percept space is associated with time limited perceptions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allaria E., Arecchi F.T., Di Garbo A., Meucci R., Synchronization of homoclinic chaos, Phys. R.v. Lett. 86 (2001), 791.

    Article  CAS  Google Scholar 

  2. Anderson J.R., Cognitive Psychology and its Implications, Freeman, San Francisco 1985.

    Google Scholar 

  3. Arecchi F.T., Farini A., Lexicon of Complexity, Studio Editoriale Fiorentino, Firenze 1996.

    Google Scholar 

  4. Arecchi F.T., Complexity and adaptation: a strategy common to scientific modeling and perception,Cognitive Processing 1 (2000), 23.

    Google Scholar 

  5. Arecchi F.T., Complexity versus complex system: a new approach to scientific discovery,Nonlin. Dynamics, Psychology, and Life Sciences 5 (2001), 21.

    Google Scholar 

  6. Arecchi F.T., Meucci R., Allaria E., Di Garbo A., Tsimring L.S., Delayed self-synchronization in homoclinic chaos, submitted for publication (2001).

    Google Scholar 

  7. Calvin W.H., The Cerebral Code: Thinking a Thought in the Mosaics of the Mind, MIT Press, Cambridge Mass 1996.

    Google Scholar 

  8. Churchland P.S., Sejnowski T.J., The computational Brain, MIT Press, Cambridge, Mass 1992.

    Google Scholar 

  9. Edelman G.M., Tononi G., Neural Darwinism: The brain as a selectional system in “Nature’s Imagination: The frontiers of scientific vision”, J. Cornwell ed., Oxford University Press, New York 1995, 78–100.

    Google Scholar 

  10. Grossberg S., The attentive brain,The American Scientist 83 (1995), 439.

    Google Scholar 

  11. Grossberg S., Review of the book by F. Crick: The astonishing hypothesis: The scientific search for a soul 83 (n. 1) (1995).

    Google Scholar 

  12. Hubel D.H., Eye, brain and vision, Scientific American Library 22, W.H. Freeman, New York 1995.

    Google Scholar 

  13. Izhikevich E.M., Neural Excitability, Spiking, and Bursting,Int. J. of Bifurcation and Chaos 10 (2000), 1171.

    Google Scholar 

  14. Julesz B., Early vision and focal attention,Reviews of Modern Physics 63 (1991), 735–772.

    Google Scholar 

  15. Macleod K., Backer A., Laurent G., Who reads temporal information contained across synchronized and oscillatory spike trains?, Nature 395 (1998), 693–698.

    Article  PubMed  CAS  Google Scholar 

  16. Mantegna R.N., Stanley H.E., An Introduction to Econophysics, Cambridge University Press, Cambridge UK 2000.

    Google Scholar 

  17. Meucci R., Di Garbo A., Allaria E., Arecchi F.T., Autonomous Bursting in a Homoclinic System, submitted for pubblication (2001).

    Google Scholar 

  18. Newell A., Simon H.A., Computer science as empirical inquiry, in “Mind Design”, J. Haugeland ed., MIT Press, Cambridge 1976, 35–66.

    Google Scholar 

  19. OmnÈS R., The interpretation of Quantum Mechanics, Princeton University Press, Princeton NJ 1994.

    Google Scholar 

  20. Parpujra V., Haydon P.G., Physiological astrocytic calcium levels stimulate glutainate release to modulate adjacent neurons, Prof. Nat. Aca. Sci. 97 (2000), 8629.

    Google Scholar 

  21. Penrose R., Shadows of the Mind, Oxford University Press, New York 1994.

    Google Scholar 

  22. Rieke F., Warland D., DE Ruyter Van Steveninck R., Bialek W., Spikes: Exploring the neural code, MIT Press, Cambridge Mass 1996.

    Google Scholar 

  23. Rodriguez E., George N., Lachaux J.P., Martinerie J., Renault B., Varela F., Perception’s shadow: Long-distance synchronization in the human brain, Nature 397 (1999), 340–343.

    Google Scholar 

  24. Rossum Van M., A novel spike distance,Neural Computation 13 (2001), 751.

    Google Scholar 

  25. Simon H The architecture of complexity,Proc. Amer. Philos. Soc. 106 (1982), 467–485.

    Google Scholar 

  26. Singer W.E., Gray C.M., Visual feature integration and the temporal correlation hypothesis, Annu. Rev. Neurosci. 18 (1995), 555.

    Article  CAS  Google Scholar 

  27. Softky W., Simple codes versus efficient codes,Current Opinions in Neurobiology 5 (1995), 239.

    Google Scholar 

  28. Turing A., Computing Machinery and Intelligence,Mind 59 (1950), 433.

    Google Scholar 

  29. Victor J.D., Purpura K.P., Metricspace analysis of spike trains: theory, algorithms and application, Network: Comput. Neural Syst. 8 (1997), 127–164.

    Article  Google Scholar 

  30. Von Der Malsburg C., The correlation theory of brain function, reprinted in “Models of neural networks II”, E. Domani, J.L. Van Hemmen and K. Schulten eds., Springer, Berlin 1981.

    Google Scholar 

  31. Weber M., Welling M., Perona P., Unsupervised Learning of Models for Recognition,in “Proc. 6th Europ. Conf. Comp. Vis., ECCV2000”, Dublin, Ireland 2000.

    Google Scholar 

  32. Zurek W.H., Decoherence and the transition from quantum to classical, Phys. Today, October issue (1991), 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Arecchi, F.T. (2003). Complexity and Emergence of Meaning: The Fundamental Level of Neurophysics. In: Benci, V., Cerrai, P., Freguglia, P., Israel, G., Pellegrini, C. (eds) Determinism, Holism, and Complexity. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4947-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4947-2_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3394-2

  • Online ISBN: 978-1-4757-4947-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics