Advertisement

Telemetry System

  • Joseph H. Yuen
  • Dariush Divsalar
  • Peter W. Kinman
  • Marvin K. Simon
Part of the Applications of Communications Theory book series (ACTH)

Abstract

A telemetry system conveys data collected by scientific instruments, as well as engineering information on the status of spacecraft, to the Deep Space Network (DSN). These days, telemetry systems are entirely digital. Not since the Rangers and the Lunar Orbiters of the 1960s has an analog telemetry system been designed into a deep-space mission. Of course, an analog information source can be made compatible with a digital telemetry system through the processes of sampling and quantization. Accordingly, this chapter addresses the means of telemetering digital data from a spacecraft to the DSN.

Keywords

Error Probability Phase Error Convolutional Code Telemetry System Viterbi Decoder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 51.
    Viterbi, A. J., Principles of Coherent Communication, McGraw-Hill, N.Y., 1966.Google Scholar
  2. 52.
    Wozencraft, J. M., and Jacobs, I. M., Principles of Communication Engineering, Wiley, N.Y., 1965.Google Scholar
  3. 53.
    Lindsey, W. C., and Simon, M. K., Telecommunication Systems Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1973.Google Scholar
  4. 54.
    Weber, W. J., “Description of the SDA,” unpublished notes.Google Scholar
  5. 55.
    Brockman, M. H., “MMTS: Performance of Subcarrier Demodulation,” Space Programs Summary 37–52, Vol. II, pp. 127–141, Jet Propulsion Laboratory, Pasadena, Calif., July 31, 1968.Google Scholar
  6. 56.
    Weber, W. J., “Description of SSA,” unpublished notes.Google Scholar
  7. 57.
    Layland, J. W., “Telemetry Bit Synchronization Loop,” Space Programs Summary 37–46, Vol. III, pp. 204–215, Jet Propulsion Laboratory, Pasadena, Calif., July 31, 1967.Google Scholar
  8. 58.
    Schwartz, M., Bennett, W. R., and Stein, S., Communication Systems and Techniques, pp. 63–68, 310–313, McGraw-Hill, N.Y., 1966.Google Scholar
  9. 59.
    Turin, G. L., “An Introduction to Matched Filters,” IRE Transactions on Information Theory, June 1960.Google Scholar
  10. 510.
    Lindsey, W. C., Synchronization Systems in Communication and Control, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.Google Scholar
  11. 511.
    Peterson, W. W., and Weldon, E. J., Error-Correcting Codes, 2nd edition, MIT Press, Cambridge, Mass., 1972.zbMATHGoogle Scholar
  12. 512.
    Lin, S., and Costello, D., An Introduction to Error-Correcting Codes, Prentice-Hall, Englewood Cliffs, N.J., 1982.Google Scholar
  13. 513.
    Forney, G. D., “Coding and Its Application in Space Communications,” IEEE Spectrum, pp. 47–58, June 1970.Google Scholar
  14. 514.
    Viterbi, A. J., and Omura, J. K., Principles of Digital Communication and Coding, McGraw-Hill, N.Y., 1979.Google Scholar
  15. 515.
    Clark, G. C., and Cain, J. B., Error-Correction Coding for Digital Communication, Plenum Press, N.Y., 1981.Google Scholar
  16. 516.
    McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, Reading, Mass., 1977.zbMATHGoogle Scholar
  17. 517.
    Hamming, R. W., Coding and Information Theory, Prentice-Hall, Englewood Cliffs, N.J., 1980.zbMATHGoogle Scholar
  18. 518.
    Abramson, N., Information Theory and Coding, McGraw-Hill, N.Y., 1963.Google Scholar
  19. 519.
    Pless, V., Introduction to the Theory of Error-Correcting Codes, Wiley, N.Y., 1981.Google Scholar
  20. 520.
    Shannon, C. E., and Weaver, W., The Mathematical Theory of Communication, University of Illinois Press, Urbana, Ill., 1963.zbMATHGoogle Scholar
  21. 521.
    Berlekamp, E. R., Algebraic Coding Theory, McGraw-Hill, N.Y., 1968.Google Scholar
  22. 522.
    Berlekamp, E. R., editor, Key Papers in the Development of Coding Theory, IEEE Press, N.Y., 1974.zbMATHGoogle Scholar
  23. 523.
    Berlekamp, E. R., “The Technology of Error-Correcting Codes,” Proceedings of the IEEE, Vol. 68, No. 5, pp. 564–593, May 1980.CrossRefGoogle Scholar
  24. 524.
    MacWilliams, F. J., and Sloane, N. J. A., The Theory of Error-Correcting Codes, Elsevier/North Holland, N.Y., 1977.Google Scholar
  25. 525.
    Reed, I. S., and Solomon, G., “Polynomial Codes over Certain Finite Fields,” J. Soc. Industrial and Applied Mathematics, 8, pp. 300–304, 1960.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 526.
    Blake, I. F., and Mullin, R. C., The Mathematical Theory of Coding, Academic Press, N.Y., 1975.Google Scholar
  27. 527.
    Blake, I. F., and Mullin, R. C., Introduction to Algebraic and Combinatorial Coding Theory, Academic Press, N.Y., 1976.Google Scholar
  28. 528.
    Hartnett, W. E., Foundations of Coding Theory, Kluwer, Boston, Mass., 1975.Google Scholar
  29. 529.
    Van Lint, J. H., Coding Theory, Springer-Verlag, Berlin, 1971.zbMATHCrossRefGoogle Scholar
  30. 530.
    Massey, J. L., Error Bounds for Tree Codes, Trellis Codes, and Convolutional Codes with Encoding and Decoding Procedures, Springer-Verlag, Berlin, 1977.Google Scholar
  31. 531.
    Viterbi, A. J., “Convolutional Codes and Their Performance in Communication Systems,” IEEE Transactions on Communications Technology, Vol. COM-19, No. 5, Pt. 2, pp. 751–772, Oct. 1971.CrossRefMathSciNetGoogle Scholar
  32. 532.
    Simon, M. K., and Smith, J. G., “Alternate Symbol Inversion for Improved Symbol Synchronization in Convolutionally Coded Systems,” IEEE Transactions on Communications, Vol. COM-28, No. 2, pp. 228–237, Feb. 1980.CrossRefGoogle Scholar
  33. 533.
    Forney, G. D., “The Viterbi Algorithm,” Proceedings of the IEEE, Vol. 61, pp. 268–278, 1973.CrossRefMathSciNetGoogle Scholar
  34. 534.
    Heller, J. A., and Jacobs, I. M., “Viterbi Decoding for Satellite and Space Communication,” IEEE Transactions on Communications Technology, Vol. COM-19, No. 5, Pt. 2, pp. 835–848, Oct. 1971.CrossRefGoogle Scholar
  35. 535.
    Layland, J. W., Sequential Decoding with a Noisy Carrier Reference, Technical Report 32–1526, Vol. XII, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 15, 1972.Google Scholar
  36. 536.
    Layland, J. W., A Sequential Decoding Medium Rate Performance Model, Technical Report 32–1526, Vol. XVIII, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 15, 1973.Google Scholar
  37. 537.
    Layland, J. W., A Note on Noisy Reference Detection, Technical Report 32–1526, Vol. XVII, Jet Propulsion Laboratory, Pasadena, Calif., Oct. 15, 1973.Google Scholar
  38. 538.
    Lindsey, W. C., and Blake, I. F., “Effect of Phase Locked Loop Dynamics on Phase Coherent Communication,” Space Programs Summary 37–54, Vol. III, Jet Propulsion Laboratory, Pasadena, Calif., pp. 192–195, 1968.Google Scholar
  39. 539.
    Jacobs, I. M., “Sequential Decoding for Efficient Communication from Deep Space,” IEEE Transactions on Communications Technology, Vol. COM-15, No. 4, pp. 492–501, Aug. 1967.CrossRefGoogle Scholar
  40. 540.
    Forney, G. D., Concatenated Codes, MIT Press, Cambridge, Mass., 1967.Google Scholar
  41. 541.
    Rice, R. F., Channel Coding and Data Compression System Considerations for Efficient Communication of Planetary Imaging Data, Technical Memorandum 33–695, Jet Propulsion Laboratory, Pasadena, Calif., June 15, 1974.Google Scholar
  42. 542.
    Odenwalder, J. P., “Concatenated Reed-Solomon/Viterbi Channel Coding for Advanced Planetary Missions: Analysis, Simulations, and Tests,” submitted to JPL by Linkabit Corp., San Diego, Calif., Contract No. 953866, 1974.Google Scholar
  43. 543.
    Odenwalder, J. P., et al., “Hybrid Coding Systems Study Final Report,” prepared for NASA Ames Research Center, Moffett Field Calif., by Linkabit Corp., San Diego, Calif., Contract No. NAS2–6722.Google Scholar
  44. 544.
    Miller, R. L., Deutsch, L. J., and Butman, S. A., On the Error Statistics of Viterbi Decoding and the Performance of Concatenated Codes, Publication 81–9, Jet Propulsion Laboratory, Pasadena, Calif., Sept. 1, 1981.Google Scholar
  45. 545.
    Liu, K. Y., and Lee, J. J., An Experimental Study of the Concatenated Reed-Solomon/Viterbi Channel Coding System Performance and Its Impact on Space Communications, Publication 81–58, J.t Propulsion Laboratory, Pasadenâ, Calif., Aug. 15, 1981.Google Scholar
  46. 546.
    Liu, K. Y., The Effects of Receiver Tracking Phase Error on the Performance of the Concatenated Reed-Solomon/Viterbi Channel Coding System, Publication 81–62, Jet Propulsion Laboratory, Pasadena, Calif., Sept. 1, 1981.Google Scholar
  47. 547.
    Divsalar, D., and Yuen, J. H., “Performance of Concatenated Reed-Solomon Viterbi Channel Coding,” TDA Progress Report 42–71, pp. 81–94, Jet Propulsion Laboratory, Pasadena, Calif., Nov. 15, 1982.Google Scholar
  48. 548.
    Edelson, R. E., (editor), Telecommunications Systems Design Techniques Handbook, Technical Memorandum 33–571, Jet Propulsion Laboratory, Pasadena, Calif., July 15, 1972.Google Scholar
  49. 549.
    Simon, M. K., “Nonlinear Analysis of an Absolute Value Type of an Early-Late Gate Bit Synchronizer,” IEEE Transactions on Communications Technology, Vol. COM-18, No. 5, pp. 589–596, Oct. 1970.CrossRefGoogle Scholar
  50. 550.
    Divsalar, D., and Yuen, J. H., “Performance of Unbalanced QPSK in the Presence of Noisy Reference and Crosstalk,” National Telecommunication Conference Proceedings, Washington, D.C., 1979.Google Scholar
  51. 551.
    Simon, M. K., and Alem, W. K., “Tracking Performance of Unbalanced QPSK Demodulators, Part I,” IEEE Transactions on Communications, Vol. COM-26, No. 8, pp. 1147–1156, Aug. 1978.CrossRefGoogle Scholar
  52. 552.
    Brown, D. S., “A High Rate One–Way Radio Loss Model for Maximum Likelihood Convolutional Decoding,” JPL IOM 3396–76–021, Feb. 16, 1976 (an internal document).Google Scholar
  53. 553.
    Koerner, M. A., “A Modified Model for the Performance of a Convolutionally Encoded (K = 7, R = 1/2) X–band Telemetry Link Using Maximum–Likelihood Viterbi Decoding (Q = 3) During Two–Way Operation with an S–band Uplink,” JPL IOM 3392–80–031, Feb. 29, 1980 (an internal document).Google Scholar
  54. 554.
    Divsalar, D., and Yuen, J. H., “Performance of Convolutionally Coded Unbalanced QPSK Systems,” National Telecommunication Conference Proceedings, Houston, Texas, 1980.Google Scholar
  55. 555.
    Divsalar, D., and Simon, M. K., “Spectral Characteristics of Convolutionally Coded Digital Signals,” IEEE Transactions on Communications, Vol. COM-28, No. 2, pp. 173–186, Feb. 1980.Google Scholar
  56. 556.
    Burow, N. A., and Koerner, M. A., “Effect of RF Receiver Phase-Locked Loop Static Phase Error on Telemetry Performance,” JPL IOM 3392–82024, March 29, 1982 (an internal document).Google Scholar
  57. 557.
    Divsalar, D., et al., “The Effect of Noisy Carrier Reference On Telemetry with Baseband Arraying,” TDA Progress Report 42–63, pp. 128135, Jet Propulsion Laboratory, Pasadena, Calif., June 15, 1981.Google Scholar
  58. 558.
    Divsalar, D., and Yuen, J. H., “Improved Carrier Tracking Performance with Coupled Phase-Locked Loops,” TDA Progress Report 42–66, pp. 148–171, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 15, 1981.Google Scholar
  59. 559.
    Zigangirov, K. Sh., “Some Sequential Decoding Procedures,” Problemy Peredachi Informatsii, Vol. 2, pp. 13–25, 1966.Google Scholar
  60. 560.
    Jelinek, F., “A Fast Sequential Decoding Algorithm Using a Stack,” IBM J. Research and Development, Vol. 13, pp. 675–685, 1969.zbMATHCrossRefMathSciNetGoogle Scholar
  61. 561.
    Fano, R. M., “A Heuristic Discussion on Probabilistic Decoding,” IEEE Transactions on Information Theory, Vol. IT-9, pp. 69–74, 1963.Google Scholar
  62. 562.
    Gallager, R. G., Information Theory and Reliable Communication, Wiley, N.Y., 1968.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Joseph H. Yuen
  • Dariush Divsalar
  • Peter W. Kinman
  • Marvin K. Simon

There are no affiliations available

Personalised recommendations