Skip to main content

The Verneuil Process

  • Chapter
Book cover Crystal Growth

Abstract

The idea and basic embodiment of the flame-fusion process were announced by Verneuil in 1902; initially the only purpose of the process was to make gem rubies.(1,2) The chief virtues of this method as far as today’s technology and research are concerned are that it can be applied to a variety of oxides, and that no crucible is required to hold the melt. Problems connected with the use of a crucible, such as contamination by or reaction with the crucible material, are thereby avoided, an advantage that is more important the higher the melting point of the crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Verneuil, Ann. Chim. Phys. 3, 20 (1904); Compt. Rend. 135, 791 (1902).

    Google Scholar 

  2. K. Nassau, J. Crystal Growth 13/14, 12 (1972).

    Article  ADS  Google Scholar 

  3. T. B. Reed, J. Appl. Phys. 32, 2534 (1961)

    Article  ADS  Google Scholar 

  4. M. v. Ardenne, E. D. Knebel, H. Wachtel, and P. Wiese, Krist. Techn. 1, 437 (1966)

    Article  Google Scholar 

  5. W. J. Alford and W. H. Bauer, J. Phys. Chem. Solids Suppl. No. 1, 71 (1967)

    Google Scholar 

  6. D. T. Williams and W. A. Smith, J. Am. Ceram. Soc. 51, 32 (1968)

    Article  Google Scholar 

  7. D. R. Kinloch and C. E. Birchenall, J. Crystal Growth 19, 105 (1973).

    Article  ADS  Google Scholar 

  8. R. E. De La Rue and F. A. Halden, Rev. Sei. Instrum. 31, 35 (1960)

    Article  ADS  Google Scholar 

  9. F. A. Halden and R. Sedlacek, Rev. Sci. Instrum. 34, 622 (1963)

    Article  ADS  Google Scholar 

  10. R. W. Bartlett, F. A. Halden, and J. W. Fowler, Rev. Sei. Instrum. 38, 1313 (1967).

    Article  ADS  Google Scholar 

  11. M. J. Musatov, Sov. J. Opt. Technol. 42, 461 (1975).

    Google Scholar 

  12. J. Ricard, IEEE SOS Workshop, Lake Tahoe, Calfornia, September 1975 (unpublished).

    Google Scholar 

  13. R. Falckenberg, J. Crystal Growth 29, 195 (1975).

    Article  ADS  Google Scholar 

  14. F. B. Khambatta, P. J. Gielisse, M. P. Wilson, J. A. Adamski, and C. Sahagian, J. Crystal Growth 13/14, 710 (1972).

    Article  ADS  Google Scholar 

  15. V. A. Shchelkotunov and V. N. Danilov, Inorg. Materials 5, 517 (1969).

    Google Scholar 

  16. E. E. Shpilrain, K. A. Yakimovich, and A. F. Tsitarkin, High Temp.-High Press. 5, 191 (1973).

    Google Scholar 

  17. L. S. Barkhatov, D. N. Kagan, A. F. Tsitsarkin, E. E. Shpilrain, and K. A. Yakimovich, High Temp.-High Press. 11, 1063 (1973).

    Google Scholar 

  18. J. J. Rasmussen and R. P. Nelson, J. Am. Ceram. Soc. 54, 398 (1971).

    Article  Google Scholar 

  19. D. D. Eley, ed., Adhesion, Oxford University Press, London (1961).

    Google Scholar 

  20. F. Ordway and P. R. Miller, Am. Ceram. Soc. Bull. 43, 253 (1964).

    Google Scholar 

  21. K. Shiroki, Japan J. Appl. Phys. 8, 1082 (1969).

    Article  ADS  Google Scholar 

  22. J. Kvapil, B. Perner, and J. Kvapil, Krist. Techn. 9, 503 (1974).

    Article  Google Scholar 

  23. J. G. Grabmaier, J. Crystal Growth 5, 105 (1969).

    Article  ADS  Google Scholar 

  24. J. A. Adamski, R. C. Powell, and J. L. Sampson, J. Crystal Growth 3/4, 246 (1968).

    Article  ADS  Google Scholar 

  25. R. Falckenberg and H. Wörl, Materials Res. Bull. 9, 519 (1974).

    Article  Google Scholar 

  26. A. Neuhaus and K. Brenner, Chem.-Ing. Technol. 27, 320 (1955).

    Google Scholar 

  27. A. Neuhaus, Fortschr. Min. 34, 35 (1956).

    Google Scholar 

  28. J. N. Akimovich, Ukrain. Fiz. Zh. 14, 1197 (1969).

    Google Scholar 

  29. J. Zemlicka, Ber. Geol. Ges. DDR, 7, 492 (1962).

    Google Scholar 

  30. H. S. Bagdasarov, G. V. Berezhkova, V. G. Gorovkov, and A. E. Smirnov, J. Crystal Growth 22, 61 (1974).

    Article  ADS  Google Scholar 

  31. A. Müller and M. Wilhelm, Z. Naturforsch. 19a, 254 (1964).

    Google Scholar 

  32. D. T. J. Hurle, J. Crystal Growth 13/14, 39 (1972).

    Article  ADS  Google Scholar 

  33. H. Pink, Phys. Status Solidi 21, Kill (1967).

    Google Scholar 

  34. H. Wörl and R. Falckenberg, Materials Res. Bull. 11, 807 (1976).

    Article  Google Scholar 

  35. M. I. Musatov, Sov. J. Opt. Technol. 41, 217 (1974).

    Google Scholar 

  36. T. H. Shankland, Am. Ceram. Soc. Bull. 46, 1160 (1967).

    Google Scholar 

  37. R. Falckenberg, J. Crystal Growth 13/14, 723 (1972).

    Article  ADS  Google Scholar 

  38. J. Kvapil, Krist. Techn. 4, 117 (1969).

    Article  Google Scholar 

  39. V. L. Indenbom and G. E. Tomilovskii, Kristallografiya 3, 593 (1958).

    Google Scholar 

  40. B. Lewis, R. N. Pease, and H. S. Taylor, High-Speed Aerodynamics and Jet Propulsion Combustion Processes, University Press, Princeton, New Jersey (1956).

    Google Scholar 

  41. W. Heywang and G. Ziegler, Z. Naturforsch. 9a, 561 (1954).

    ADS  Google Scholar 

  42. W. Heywang, Z. Naturforsch. 11a, 238 (1956).

    ADS  Google Scholar 

  43. R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, Englewood Cliffs, New Jersey (1970).

    Google Scholar 

  44. S. V. Tsivinsky, Krist. Techn. 10, 5 (1975).

    Article  Google Scholar 

  45. H. Stroppe, Wiss. Z. TH Magdeburg 15, 473 (1971).

    Google Scholar 

  46. S. Hähle, D. Pötzschke, H. Beyrich, and H. Markas, Krist. Techn. 11, 91 (1976).

    Article  Google Scholar 

  47. R. A. Keeley and M. T. Sprackling, J. Phys. D: Appl. Phys. 9, 615 (1976).

    Article  ADS  Google Scholar 

  48. B. H. Kear and P. L. Pratt, Acta Met. 6, 457 (1958).

    Article  Google Scholar 

  49. Ch. Zaminer, Ber. Dtsch. Keram. Ges. 42, 73 (1965).

    Google Scholar 

  50. L. M. Davies, Proc. Br. Ceram. Soc. 6, 1 (1966).

    Google Scholar 

  51. See, e.g., L. Föppl and E. Mönch, Praktische Spannungsoptik, Springer-Verlag, Berlin and New York (1972).

    Book  Google Scholar 

  52. J. Kvapil, Krist. Techn. 4, 123 (1969).

    Article  Google Scholar 

  53. J. Kvapil, J. Sulovsky, and J. Kvapil, Krist. Techn. 7, 1169 (1972).

    Article  Google Scholar 

  54. K. H. Brauer, J. Feuerstake, F. Fröhlich, and U. Mohr, Krist. Techn. 8, 253 (1973).

    Article  Google Scholar 

  55. Y. J. Sirotin, Sov. Phys.-Crystallogr. 1, 556 (1956).

    Google Scholar 

  56. K. A. Parsons, J. Appl. Phys. 24, 469 (1953).

    Article  ADS  Google Scholar 

  57. R. C. O’Rourke and A. W. Saenz, Qt. Appl. Math. 8, 303 (1950).

    MathSciNet  MATH  Google Scholar 

  58. C. N. Reid, Deformation Geometry for Materials Scientists, Pergamon, Oxford (1973).

    MATH  Google Scholar 

  59. J. B. Wachtman and L. H. Maxwell, J. Am. Ceram. Soc. 37, 291 (1954).

    Article  Google Scholar 

  60. R. Scheuplein and P. Gibbs, J. Am. Ceram. Soc. 45, 439 (1962).

    Article  Google Scholar 

  61. H. Palmour III, Proc. Br. Ceram. Soc. 6, 209 (1966).

    Google Scholar 

  62. K. C. Radford and C. W. A. Newey, Proc. Br. Ceram. Soc. 9, 131 (1967).

    Google Scholar 

  63. J. Grabmaier and C. Watson, Phys. Status Solidi 23, K7 (1968).

    Article  ADS  Google Scholar 

  64. L. Merker, J. Am. Ceram. Soc. 45, 366 (1962).

    Article  Google Scholar 

  65. A. H. Heuer and J. P. Roberts, Proc. Br. Ceram. Soc. 6, 17 (1966).

    Google Scholar 

  66. R. Falckenberg, J. Electrochem. Soc. 12363 (1976).

    Article  Google Scholar 

  67. D. A. Curtis and J. S. Thorp, Br. J. Appl. Phys. 16, 734 (1965).

    Article  ADS  Google Scholar 

  68. J. S. Thorp, D. A. Curtis, and D. R. Mason, Br. J. Appl. Phys. 15, 775 (1964).

    Article  ADS  Google Scholar 

  69. K. Shiroki, Jap. J. Appl. Phys. 6, 121 (1967).

    Article  ADS  Google Scholar 

  70. W. Seifert, Thesis, University of Munich (1969).

    Google Scholar 

  71. S. M. Wiederhorn, B. J. Hockey, and D. E. Roberts, Phil. Mag. 64, 783 (1973).

    Article  ADS  Google Scholar 

  72. J. B. Wachtman and L. H. Maxwell, J. Am. Ceram. Soc. 42, 432 (1959).

    Article  Google Scholar 

  73. H. S. Bagdasarov, G. V. Berezhkova, V. G. Govorkov, E. P. Kozlovskaya, E. A. Fedorov, and M. A. Chernysheva, Krist. Techn. 8, 507 (1973).

    Article  Google Scholar 

  74. W. Seifert, J. Crystal Growth 12, 17 (1972).

    Article  ADS  Google Scholar 

  75. K. Shiroki, Rev. Sci. Instrum. 38, 1541 (1967).

    Article  ADS  Google Scholar 

  76. R. S. Mitchell, Rev. Sci. Instrum. 36, 1667 (1965).

    Article  ADS  Google Scholar 

  77. R. H. Arlett and M. Robbins, J. Am. Ceram. Soc. 50, 273 (1967).

    Article  Google Scholar 

  78. L. M. Belyaev, C. Barta, A. A. Popova, A. F. Zakatov, and J. Zemlicka, IVth Conference on Single Crystals, Turnov, CSSR (1961).

    Google Scholar 

  79. Fabricated by Metals Research, Melbourne, England.

    Google Scholar 

  80. Unpublished work at Institute of Crystallography, Moscow; see Chapter 4 by C. H. L. Goodman following this chapter.

    Google Scholar 

  81. R. C. Pastor and A. C. Pastor, Materials Res. Bull. 1, 275 (1966).

    Article  Google Scholar 

  82. A. C. Pastor and R. C. Pastor, Materials Res. Bull. 2, 555 (1967).

    Article  Google Scholar 

  83. A. Goldsmith, T. E. Waterman, and H. Y. Hirschhorn, Handbook of Thermophysical Properties of Solids, Vol. 3, Macmillan, New York (1961).

    Google Scholar 

  84. J. F. Lynch, C. G. Ruderer, and W. H. Duckworth, Engineering Properties of Ceramics, Defense Documentation Center, Alexandria, Virginia.

    Google Scholar 

  85. E. Ryshkewitch, Oxide Ceramics, Academic Press, New York (1960).

    Google Scholar 

  86. C. Barta, J. Zemlicka, and V. Kment, IVth Conference on Single Crystals, Turnov, CSSR (1961).

    Google Scholar 

  87. A. G. Jones, Analytical Chemistry, Butterworth, London (1959).

    Google Scholar 

  88. D’ Ans-Lax, Taschenbuch für Chemiker und Physiker, Springer-Verlag, Berlin (1970).

    Google Scholar 

  89. W. H. Bauer and W. G. Field, in The Art and Science of Growing Crystals, J. J. Gilman (ed.), Wiley, London (1963).

    Google Scholar 

  90. D. Haberland, Mber. Dtsch. Akad. Wiss. Berlin 4, 376 (1962).

    Google Scholar 

  91. M. Yamamoto, S. Arino, and T. Sato, Sci. Rep. Res. Inst. Tohoku Univ. 22, 156 (1971).

    Google Scholar 

  92. N. Peters, Int. J. Heat Mass Transfer 19, 385 (1976).

    Article  ADS  MATH  Google Scholar 

  93. P. A. Libby and C. Economos, Int. J. Heat Mass Transfer 6, 113 (1963).

    Article  Google Scholar 

  94. B. Lewis and G. von Elbe, Combustion Flames and Explosions of Gases, Academic Press, New York (1971).

    Google Scholar 

  95. K. Annamalai and P. Durbetaki, Combustion and Flame 25, 137 (1975).

    Article  Google Scholar 

  96. H. Rörtgen, Thesis, Aachen Univ. (1971).

    Google Scholar 

  97. N. I. Ikornikova and A. A. Popova, Dokl. Akad. Nauk SSSR 106, 460 (1956).

    Google Scholar 

  98. J. A. Adamski, J. Appl. Phys. 36, 1784 (1965).

    Article  ADS  Google Scholar 

  99. R. A. Lefever and G. W. Clark, Rev. Sci. Instrum. 33, 769 (1962).

    Article  ADS  Google Scholar 

  100. Ch. H. Moore, Trans. Am. Inst. Mining Met. Eng. 184, 194 (1949).

    Google Scholar 

  101. J. Ricard, Produits Chimiques Usine Kuhlmann—D’partement Rubis Synthètique des Alpes, Jarrie/Isère, France.

    Google Scholar 

  102. N. A. Velikhova, Kristallografiya 8, 804 (1963).

    Google Scholar 

  103. K.-Th. Wilke, Kristallzüchtung, VEB Deutscher Verlag der Wissenschaften, Berlin (1973).

    Google Scholar 

  104. O. Lauer, Feinheitsmessungen an technischem Stäuben, Alpine AG, Augsburg (1963).

    Google Scholar 

  105. See, e.g., Physik der Adhäsion, Int. Colloq. Chem. Ing. Technol. 41, 1276 (1969).

    Article  Google Scholar 

  106. H. Rumpf, Pharm. Ind. 34, 270 (1972).

    Google Scholar 

  107. R. Müller, H. Quart, and R. Warm, Krist. Techn. 5, 589 (1970).

    Article  Google Scholar 

  108. R. K. Verma, G. N. Sirkar, and S. Chatterjee, Sci. Ind. Res. 13A, 516 (1954).

    Google Scholar 

  109. M. Kestigian, Rev. Sci. Instrum. 33, 1293 (1962).

    Article  ADS  Google Scholar 

  110. R. E. Carter, Rev. Sci. Instrum. 34, 588 (1963).

    Article  ADS  Google Scholar 

  111. J. A. Adamski, Rev. Sci. Instrum. 40, 1634 (1969).

    Article  ADS  Google Scholar 

  112. J. L. Sampson, Rev. Sci. Instrum. 42, 278 (1971).

    Article  ADS  Google Scholar 

  113. R. Falckenberg, Krist. Techn., to be published.

    Google Scholar 

  114. J. L. Bazhenova, E. B. Zeligman, and S. N. Shorin, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 869 (1972).

    Google Scholar 

  115. A. A. Popova, Rost. Kristallov. 4168 (1965).

    Google Scholar 

  116. O. N. Boksa, S. V. Grum-Grzymailo, A. A. Popova, and E. F. Smirnova, Kristallografiya 13, 725 (1968).

    Google Scholar 

  117. A. A. Popova and W. B. Sotkina, Dokl. Akad. Nauk SSSR 169, 92 (1966).

    Google Scholar 

  118. A. A. Popova, Sov. Phys.—Crystallogr. 2, 111 (1958).

    Google Scholar 

  119. R. C. Pastor, H. Kimura, L. Podoksik, and M. A. Pearson, J. Chem. Phys. 43, 3948 (1965).

    Article  ADS  Google Scholar 

  120. R. C. Pastor, A. C. Pastor, H. Kimura, and K. Avita, J. Chem. Phys. 44, 4486 (1966).

    Article  ADS  Google Scholar 

  121. F. K. Volynec and N. A. Cvetkova, Neorg. Mater. 6, 271 (1970).

    Google Scholar 

  122. V. G. Sil’nichenko and M. M. Gritsenko, Sov. Phys.—Crystallogr. 9647 (1965).

    Google Scholar 

  123. R. H. Hoskins and B. H. Soffer, Phys. Rev. 133A, 490 (1964).

    Article  ADS  Google Scholar 

  124. A. Kelley and R. B. Nicholson, eds., Strengthening Methods in Crystals, Wiley, New York (1971).

    Google Scholar 

  125. R. Müller, Krist. Techn. 5, K29 (1970).

    Article  Google Scholar 

  126. J. Kvapil, J. Sulocky, and J. Kvapil, Krist. Techn. 7, 1169 (1972).

    Article  Google Scholar 

  127. D. V. Sandreyev, P. A. Arsenyev, Z. G. Mareyeva, A. A. Mayer, R. M. Tolchinsky, and V. L. Farschtendiker, Krist. Techn. 8, 957 (1973).

    Article  Google Scholar 

  128. M. L. Kronberg, Science 122, 599 (1955).

    Article  ADS  Google Scholar 

  129. M. L. Kronberg, Acta Met. 5, 507 (1957).

    Article  Google Scholar 

  130. J. G. Grabmaier and R. Falckenberg, J. Am. Ceram. Soc. 52, 648 (1969).

    Article  Google Scholar 

  131. G. K. Bansal and A. H. Heuer, Fracture Mechanics of Ceramics, Vol. 2, R. C. Bradt, D. P. Hasselman, and F. F. Lange (eds.), Plenum Press, New York (1974).

    Google Scholar 

  132. R. Falckenberg, Materials Res. Bull. 8, 171 (1973).

    Article  Google Scholar 

  133. R. W. Cahn, Physical Metallurgy, North-Holland Publ., Amsterdam (1965).

    Google Scholar 

  134. A. Smakula, Einkristalle, Springer-Verlag, Berlin-Göttingen-Heidelberg-München (1962).

    Book  Google Scholar 

  135. F. W. Harrison, Res. Appl. Ind. 12, 395 (1959).

    Google Scholar 

  136. J. C. Brice, The Growth of Crystals from Liquids, North-Holland Publ., Amsterdam (1973).

    Google Scholar 

  137. A. Neuhaus and W. Richartz, Ber. DKG 35, 108 (1958).

    Google Scholar 

  138. W. H. Bauer, J. Gordon, and C. H. Moore, J. Am. Ceram. Soc. 33, 140 (1950).

    Article  Google Scholar 

  139. W. H. Bauer, I. Gordon, and C. H. Moore, Am. Mineralogist 35, 128 (1950).

    Google Scholar 

  140. C. Barta and R. Barta, Zh. Prikl. Khim. Leningrad 29, 341 (1956).

    Google Scholar 

  141. A. M. Lejus and J.-P. Connan, Rev. Int. Htes Temp. Refract. 11215 (1974).

    Google Scholar 

  142. A. M. Lejus, J.-C. Bernier, and R. Collongues, Rev. Int. Htes Temp. Refract. 11183 (1974).

    Google Scholar 

  143. W. H. Bauer and J. Gordon, J. Am. Ceram. Soc. 34, 250 (1951).

    Article  Google Scholar 

  144. I. A. Bondar’, A. A. Popova, M. M. Piriotko, and N. A. Toropov, Dokl. Akad. Nauk SSSR 175, 1051 (1967).

    Google Scholar 

  145. H. Saalfeld, Z. Kristallogr. 133396 (1971).

    Article  Google Scholar 

  146. H. Saalfeld, Am. Mineralogist 60, 824 (1975).

    Google Scholar 

  147. A. A. Popova, Growth of Crystals, Vol. 4, A. V. Shubnikov and N. N. Sheftal (eds.), Consultants Bureau, New York (1966), p. 120.

    Google Scholar 

  148. W. S. Brower and E. N. Farabaugh, J. Appl. Phys. 36, 1489 (1965).

    Article  ADS  Google Scholar 

  149. R. A. Lefever and J. Matsko, Materials Res. Bull. 10, 281 (1975).

    Article  Google Scholar 

  150. R. A. Lefever and G. W. Clark, Rev. Sci. Instrum. 33, 769 (1962).

    Article  ADS  Google Scholar 

  151. R. Dittman and D. Petzelt, J. Crystal Growth 23, 77 (1974).

    Article  ADS  Google Scholar 

  152. R. A. Lefever, Rev. Sci. Instrum. 33, 1470 (1962).

    Article  ADS  Google Scholar 

  153. A. A. Popova, Sov. Phys.—Crystallogr. 151060 (1971).

    Google Scholar 

  154. M. Kestigian, Nature 197, 1006 (1963).

    Article  ADS  Google Scholar 

  155. K. A. Wickersheim and R. A. Lefever, J. Opt. Soc. Am. 50, 831 (1960).

    Article  Google Scholar 

  156. R. H. Arlett, J. Am. Ceram. Soc. 45, 523 (1962).

    Article  Google Scholar 

  157. W. Fr. Eppler, Z. Angew. Mineral. 4, 345 (1943).

    Google Scholar 

  158. K. Nakano, H. Tabata, H. Okuda, and N. Kogyo, Gijutsu Shikensho Hokoku 17, 197 (1968).

    Google Scholar 

  159. C. C. Wang, J. Appl. Phys. 40, 3433 (1969).

    Article  ADS  Google Scholar 

  160. M. Yamamoto, S. Avino, and T. Sato, Sci. Rep. Res. Inst. Tohoku Univ. 22, 156 (1971).

    Google Scholar 

  161. D. Haberland, Mber. Dtsch. Akad. Wiss. Berlin 4, 376 (1962).

    Google Scholar 

  162. F. A. Reiss, Appl Optics 5, 1902 (1966).

    Article  ADS  Google Scholar 

  163. J. Kvapil, Krist. Techn. 5, 551 (1970)

    Article  Google Scholar 

  164. J. Grabmaier and C. Zaminer, Z Angew. Phys. 17, 26 (1964).

    Google Scholar 

  165. J. Ricard and A. Cioccolani, J. Crystal Growth 13/14, 718 (1972).

    Article  ADS  Google Scholar 

  166. C. Barta, Rost Kristallov 6, 181 (1965).

    Google Scholar 

  167. G. W. Dueker, C. M. Kellington, M. Katsmann, and J. G. Atwood, Appl. Optics 4, 110 (1965).

    Article  ADS  Google Scholar 

  168. S. Sh. Gendelev, Sov. Phys.—Crystallogr. 8731 (1964).

    Google Scholar 

  169. J. Kvapil and J. Sulovsky, Krist. Techn. 6, 769 (1971).

    Article  Google Scholar 

  170. J. Kvapil, B. Pernev, J. Kvapil, and J. Sulovsky, Czech. J. Phys. B 24, 389 (1974).

    Article  ADS  Google Scholar 

  171. E. R. Dobrovinskaya and L. A. Litvinov, Krist. Techn. 6, K33 (1971).

    Article  Google Scholar 

  172. M. O. Kliya, J. Crystal Growth 3/4, 719 (1968).

    Article  ADS  Google Scholar 

  173. D. L. Stephens and W. J. Alford, J. Am. Ceram. Soc. 47, 81 (1964).

    Article  Google Scholar 

  174. H. Palmour III, J. J. DuPlessis, and K. Wurth Kriegel, J. Am. Ceram. Soc. 44, 400 (1961).

    Article  Google Scholar 

  175. J. Grabmaier and Chr. Watson, Z. Angew. Phys. 24, 108 (1968).

    Google Scholar 

  176. C. Barta, F. Petru, and B. Hajek, Naturwiss. 4536 (1958).

    Article  ADS  Google Scholar 

  177. R. H. Gilette, Rev. Sci. Instrum. 21, 294 (1950).

    Article  ADS  Google Scholar 

  178. E. J. Scott, J. Chem. Phys. 23, 2459 (1955).

    Article  ADS  Google Scholar 

  179. A. A. Popova, Sov. Phys.—Crystallogr. 2711 (1958).

    Google Scholar 

  180. T. Nakamichi, T. Sato, and Y. Nagayama, J. Japan. Inst. Met. 40, 366 (1976).

    Google Scholar 

  181. J. G. Bednorz and H. J. Scheel, J. Crystal Growth, 415 (1977).

    Article  ADS  Google Scholar 

  182. P. Y. Kikin, Kristallografiya 20, 673 (1975).

    Google Scholar 

  183. K. Dräger and H.-J. Studt, J. Crystal Growth 37, 151 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Falckenberg, R. (1978). The Verneuil Process. In: Goodman, C.H.L. (eds) Crystal Growth. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4896-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4896-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4898-7

  • Online ISBN: 978-1-4757-4896-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics