Aspects of Silicon Epitaxy

  • J. Nishizawa


The vapor epitaxy of silicon is a process of considerable technological importance and as such has been the subject of much research (some of this was reviewed in the contribution to Volume 1 of this series by D. W. Shaw of Texas Instruments). However, several basic problems have still not been fully investigated and the present text outlines work carried out on some of these at Sendai in the groups at the Research Institute of Electrical Communication and at the Semiconductor Research Institute. Some of this has appeared in a variety of separate papers; the aim here has been to draw the varied threads together in the hope of presenting a more coherent interpretation of the way in which silicon epitaxy can be controlled. Most of our work has been concerned with processes based on chlorosilanes, and we have particularly investigated factors controlling growth rate, crystal perfection, and purity. The techniques developed in the course of this work could have important implications for device technology, a point illustrated by a description of their application in the development of a new solid state device, the static induction transistor, which is the solid state equivalent of the vacuum triode. The latter, while already of importance for power devices, also shows promise for integrated circuits, in which it already has shown operation powers of less than 0.1 nW and with an energy of 0.002 pJ per gate. The highest speed for operation obtained with the simplest processing, consisting of two diffusion times after one epitaxy and followed by making contact holes, is 3.7 nsec. There is obviously the promise of subnanosecond operation with improved structure, but with more complicated processing.


Epitaxial Layer Electrochemical Society Neutral Plane Solid State Device Grown Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. U. M. S. Murthy, N. Miyamoto, M. Shimbo, and J. Nishizawa, J. Crystal Growth 33, 1 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    Y. Yasuda, K. Hirabayashi, and T. Morita, Proceedings 5th International Conference on Solid State Devices, Tokyo, 1973; published as a supplement in J. Japan. Soc. Appl. Phys. 43, 400 (1973).Google Scholar
  3. 3.
    For example, on SiCl4: H. C. Theuerer, J. Electrochem. Soc. 108, 649 (1961)CrossRefGoogle Scholar
  4. W. Steinmaier, Philips Res. Rep. 18, 75 (1963). On SiHCl3 Google Scholar
  5. J. H. Charig and B. A. Joyce, J. Electrochem. Soc. 109, 857 (1962)CrossRefGoogle Scholar
  6. A. M. Stein, J. Electrochem. Soc. 111, 483 (1964).CrossRefGoogle Scholar
  7. 4.
    M. Kumagawa, H. Sunami, T. Terasaki, and J. Nishizawa, Japan. J. Appl. Phys. 7, 1332 (1968).ADSCrossRefGoogle Scholar
  8. 5.
    T. O. Sedgwick, J. E. Smith, Jr., R. Ghez, and M. E. Cowher, J. Crystal Growth 31, 264 (1975).ADSCrossRefGoogle Scholar
  9. 6.
    J. Nishizawa, H. Nihira, T. U. M. S. Murthy, and M. Shimbo, to be published.Google Scholar
  10. 7.
    A. Masson, J. J. Metais, and R. Kern, J. Crystal Growth 3/4, 196 (1968).ADSCrossRefGoogle Scholar
  11. 8.
    G. R. Booker and B. A. Joyce, Phil. Mag. 14, 301 (1966).ADSCrossRefGoogle Scholar
  12. 9.
    M. Shimbo, J. Nishizawa, and T. Terasaki, J. Crystal Growth 23, 267 (1974).ADSCrossRefGoogle Scholar
  13. 10.(a)
    J. Nishizawa, T. Terasaki, and M. Shimbo, J. Crystal Growth 13/14, 297 (1972).Google Scholar
  14. (b).
    T. Shichiri, H. Kinoshita, and N. Kato, Proceedings International Conference on Crystal Growth, 1966, Pergamon, Oxford (1967) p. 385.Google Scholar
  15. 11.(a)
    J. Nishizawa and M. Shimbo, J. Crystal Growth 24/25, 215 (1974)Google Scholar
  16. (b).
    J. Nishizawa, Y. Kato, and M. Shimbo, J. Crystal Growth 31, 290 (1975).ADSCrossRefGoogle Scholar
  17. 12.
    J. Nishizawa and T. Terasaki, Proceedings of International Conference on the Physics of Chemistry of Semiconductor Heterojunctions and Layer Structures (1970), Division of Technical Sciences of the Hungarian Academy of Sciences.Google Scholar
  18. 13.
    H. Sunami, T. Terasaki, N. Miyamoto, and J. Nishizawa, J. Appl. Phys. 40, 4670 (1969).ADSCrossRefGoogle Scholar
  19. 14.
    J. Nishizawa, T. Terasaki, and M. Shimbo, J. Crystal Growth 17, 241 (1972).ADSCrossRefGoogle Scholar
  20. 15.
    M. Shimbo, J. Nishizawa, and T. Terasaki, J. Crystal Growth 23, 267 (1974).ADSCrossRefGoogle Scholar
  21. 16.
    H. Nihira, T. Shirasu, T. Terasaki, and J. Nishizawa, J. Electrochem. Soc. 122, 781 (1975).CrossRefGoogle Scholar
  22. 17.
    J. Roschen and C. G. Thornton, J. Appl. Phys. 29, 923 (1958).ADSCrossRefGoogle Scholar
  23. 18.
    P. A. Totta and R. P. Sopher, IBM J. Res. Dev. 13, 226 (1969)CrossRefGoogle Scholar
  24. G. Ottaviani, S. Sigurd, V. Marrello, J. W. Mayer, and J. O. McCaldin, J. Appl. Phys. 45, 1730 (1974).ADSCrossRefGoogle Scholar
  25. 19.
    Yao Ting Lee, N. Miyamoto, and J. Nishizawa, J. Electrochem. Soc. 122, 530 (1975).CrossRefGoogle Scholar
  26. 20.
    T. Abe, Y. Abe, and J. Chikawa, Semiconductor Silicon, H. R. Huff and R. R. Burgess (eds.), Electrochem Soc., Princeton, New Jersey (1973).Google Scholar
  27. 21.
    J. Nishizawa et al., to be published.Google Scholar
  28. 22.
    Y. Watanabe, J. Nishizawa, H. Kon, T. Ikegami, and T. Matsushima, Rec. Electr. Commun. Eng. Conv., Tohoku Univ. 21, 101 (1953).Google Scholar
  29. 23.
    T. H. Yeh, private communication (1961).Google Scholar
  30. 24.
    G. H. Schwuttke and H. J. Queisser, J. Appl. Phys. 33, 1540 (1962)ADSCrossRefGoogle Scholar
  31. J. E. Lawrence, J. Appl. Phys. 32, 1876 (1961).CrossRefGoogle Scholar
  32. 25.
    J. Nishizawa and N. Miyamoto, to be published.Google Scholar
  33. 26.
    K. Yagi, N. Miyamoto, and J. Nishizawa, Japan. J. Appl Phys. 9, 246 (1970).ADSCrossRefGoogle Scholar
  34. 27.
    K. Gamo, A. Doi, K. Masuda, and S. Namba, Proceedings 1st Conference on Solid State Devices, Tokyo (1969), p. 78; published as a supplement to the J. Japan. Soc. Appl. Phys. 39, 78-81 (1970). (Implanted nitrogen behaves as a donor at a substitutional site in silicon.)Google Scholar
  35. 28.
    F. Fujimoto, K. Komaki, K. Histake, and H. Nakayama, Phys. Status Solidi (a) 5, 737 (1971)ADSCrossRefGoogle Scholar
  36. J. Haskell, E. Rimini, and J. Mayer, J. Appl. Phys. 43, 3425 (1972).ADSCrossRefGoogle Scholar
  37. 29.
    R. O. Schwenker, E. S. Pan, and R. F. Lever, J. Appl. Phys. 42, 3195 (1971).ADSCrossRefGoogle Scholar
  38. 30.
    L. Pauling, Nature of the Chemical Bond, 3rd ed., Cornell Univ., Ithaca, New York (1960).Google Scholar
  39. 31.
    J. Nishizawa, T. Terasaki, K. Yagi, and N. Miyamoto, Proceedings Seoul International Conference of IEEE Korean Branch of IEEE, Seoul (1970). See also Ref. 19.Google Scholar
  40. 32.
    N. Miyamoto, National conference on crystal growth, Sendai 1976, in J. Japan. Assoc. Crystal Growth 4, 86–94 (1977). See also Ref. 19.Google Scholar
  41. 33.
    M. Watanabe, T. Yonezawa, M. Nakamura, T. Kato, M. Akatsuka, and T. Sakai, Dislocation-Free Diffusion, Technical Report in the Technical Group on Semiconductor and Transistor JIEEC (in Japanese) (1970).Google Scholar
  42. 34.
    F. Fujimoto, K. Komaki, M. Watanabe, and T. Yonezawa, Appl. Phys. Lett. 20, 248 (1972).ADSCrossRefGoogle Scholar
  43. 35.
    G. Samsonov and V. Sleptsov, Zhur. Neorg. Khim. 8, 2009 (1963).Google Scholar
  44. 36.
    Y. Watanabe and J. Nishizawa, Japanese Patent Issued No. 205068, No. of Publication 28-6055, applied for in November 1950; Y. Watanabe, J. Nishizawa, and Z. Yoshida, Conventional record of joint meeting of JIEE, JIEC, and JIEI No. 3.33 (1951), in: Theory of Matter (in Japanese) No. 41, 96 (1951).Google Scholar
  45. 37.
    W. Shockley, Proc. IRE 40, 1289 (1952)CrossRefGoogle Scholar
  46. W. Shockley and R. C. Prime, Phys. Rev. 90, 753 (1953)ADSzbMATHCrossRefGoogle Scholar
  47. G. C. Dacey, Phys. Rev. 90, 759 (1953); W. Shockley, U.S. Patent Issued No. 279-0037, applied for in March 1952.ADSzbMATHCrossRefGoogle Scholar
  48. 38.
    R. Zuleeg, Solid State Electronics, 10, 449 (1967)ADSCrossRefGoogle Scholar
  49. R. Zuleeg and K. Lehovec, Solid State Electronics 13, 1415 (1970).ADSCrossRefGoogle Scholar
  50. 39.
    S. Teszner and R. Gicquel, Proc. IEEE 52, 1502 (1964).CrossRefGoogle Scholar
  51. 40.
    S. Teszner, IEEE Trans. Electron Devices ED-19, 355 (1972).CrossRefGoogle Scholar
  52. 41.
    J. Nishizawa, T. Terasaki, and J. Shibata, IEEE Trans. Electron Devices ED-22, 185 (1975).CrossRefGoogle Scholar
  53. 42.
    J. Nishizawa and Y. Kato, Proceedings of 6th European Microwave Conference, Italy (1976); IEEE Trans. on Electronic Devices (March 1978).Google Scholar
  54. 43.
    J. Nishizawa and B. Wilamowski, 1976 International Conference on Solid State Devices, A-2-6 in Tokyo.Google Scholar
  55. 44.
    J. Nishizawa and K. Nakamura, Proceedings of 8th International Conference on Solid State Devices (1976), C-2-3 in Tokyo, in Japan. J. Appl. Phys. 16, 541–544 (1977).Google Scholar
  56. 45.
    T. Kodaka and J. Nishizawa, Report of the Research Institute of Electrical Communication, Tohoku University, Science Report RITU, B Electrochem. Commun. 22, 63 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • J. Nishizawa
    • 1
    • 2
  1. 1.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan
  2. 2.Semiconductor Research InstituteSendaiJapan

Personalised recommendations