Growth Effects in the Heteroepitaxy of III–V Compounds

  • G. H. Olsen
  • M. Ettenberg

Abstract

The use of thin-film epitaxial deposition has considerably advanced the preparation of III–V compound electronic structures, both in the research laboratory and in the commercial market. The devices may be either homoepitaxial, where the substrate and epitaxial layers are of the same material, e.g., GaP on GaP for visible light-emitting diodes (LEDs), or comprised of heteroepitaxial layers where the substrate and epitaxial layers are of differing III–V materials, e.g., Al x Ga1−x As on GaAs for cw injection lasers. It should be noted that, in actuality, almost all epitaxial layers are heteroepitaxial in that there is a lattice-parameter mismatch between the substrate and epitaxial layer even when they are nominally the same material. This mismatch may arise due to a doping density difference between the substrate and epitaxial layer or even a point defect density difference between the two.

Keywords

Epitaxial Layer GaAs Substrate Growth Effect Misfit Dislocation Misfit Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. van der Merwe, J. Appl. Phys. 41, 4725 (1970).ADSCrossRefGoogle Scholar
  2. 2.
    J. H. van der Merwe and C. A. B. Ball, in Epitaxial Growth, J. W. Matthews (ed.), Academic Press, New York (1975).Google Scholar
  3. 3.
    G. H. Olsen and H. C. Snyman, Acta Met. 21, 769 (1973).CrossRefGoogle Scholar
  4. 4.
    W. A. Jesser and D. Kuhlmann-Wilsdorf, Phys. Status Solidi 19, 95 (1967).CrossRefGoogle Scholar
  5. 5.
    J. W. Matthews (ed.), Epitaxial Growth, Academic Press, New York (1975).Google Scholar
  6. 6.
    A. Y. Cho, J. Vac. Sci. Technol. 8, 531 (1971).CrossRefGoogle Scholar
  7. 7.
    M. J. Stowell, in Epitaxial Growth, J. W. Matthews (ed.), Academic Press, New York (1975).Google Scholar
  8. 8.
    E. Peissker, P. Mossen, and H. Alexander, Phil. Mag. 7, 1279 (1962).ADSCrossRefGoogle Scholar
  9. 9.
    Y. Tauri, Y. Komiya, and Y. Harada, J. Electrochem. Soc. 118, 118 (1971).CrossRefGoogle Scholar
  10. 10.
    G. H. Olsen, M. S. Abrahams, and T. J. Zamerowski, J. Electrochem. Soc. 121, 1650 (1974).CrossRefGoogle Scholar
  11. 11.
    J. J. Tietjen and J. A. Amick, J. Electrochem. Soc. 113, 724 (1966).CrossRefGoogle Scholar
  12. 12.
    V. S. Ban, J. Crystal Growth 17, 19 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    C. T. Foxon, J. A. Harvey, and B. A. Joyce, J. Phys. Chem. Solids 34, 1693 (1973)ADSCrossRefGoogle Scholar
  14. R. F. C. Farrow, J. Phys. D7, 2436 (1974).Google Scholar
  15. 14.
    C. J. Nuese, M. Ettenberg, and G. H. Olsen, Appl. Phys. Lett. 25, 612 (1974).ADSCrossRefGoogle Scholar
  16. 15.
    O. Madelung, Physics of III–V Compounds, Wiley, New York (1964)Google Scholar
  17. D. L. Kendall, Appl. Phys. Lett. 4, 67 (1964).ADSCrossRefGoogle Scholar
  18. 16.
    H. Nelson, RCA Rev. 24, 603 (1963).Google Scholar
  19. 17.
    J. M. Woodall, H. Rupprecht, and W. Reuter, J. Electrochem. Soc. 116, 899 (1969).CrossRefGoogle Scholar
  20. 18.
    H. Nelson, U.S. Patent No. 3,565,709, filed February 14, 1969; M. B. Panish, S. Sumski, and I. Hayashi, Met. Trans. 2, 795 (1971).CrossRefGoogle Scholar
  21. 19.
    H. F. Lockwood and M. Ettenberg, J. Crystal Growth 15, 81 (1972).ADSCrossRefGoogle Scholar
  22. 20.
    M. B. Panish and M. Illegems, Proceedings Third International Symposium on GaAs, The Institute of Physics, London (1970), p. 67.Google Scholar
  23. 21.
    G. H. B. Thompson and P. A. Kirkby, J. Crystal Growth 27, 70 (1974).ADSGoogle Scholar
  24. 22.
    N. Nagai and Y. Noguchi, Appl. Phys. Lett. 26, 108 (1975).ADSCrossRefGoogle Scholar
  25. 23.
    R. W. Hoffman, The Mechanical Properties of Nonmetallic Thin Films, U.S. AEC Contract No. AT11-1-623, Technical Report No. 82 (1975).Google Scholar
  26. 24.
    R. H. Saul, J. Appl. Phys. 40, 3273 (1969).ADSCrossRefGoogle Scholar
  27. 25.
    S. Timoshenko, J. Opt. Soc. Am. 11, 23 (1925).CrossRefGoogle Scholar
  28. 26.
    G. H. Olsen and M. Ettenberg, J. Appl. Phys. 48, 2543 (1977).ADSCrossRefGoogle Scholar
  29. 27.
    W. A. Brantley, J. Appl. Phys. 44, 534 (1973).ADSCrossRefGoogle Scholar
  30. 28.
    M. S. Abrahams, L. R. Weisberg, and J. J. Tietjen, J. Appl. Phys. 40, 3754 (1969).ADSCrossRefGoogle Scholar
  31. 29.
    H. Kressel, J. Electronic Materials 4, 1081 (1975).ADSCrossRefGoogle Scholar
  32. 30.
    M. Ettenberg and R. J. Paff, J. Appl. Phys. 41, 3926 (1970).ADSCrossRefGoogle Scholar
  33. 31.
    V. Swaminathan and S. M. Copley, J. Am. Ceram. Soc. 58, 482 (1975).CrossRefGoogle Scholar
  34. 32.
    A. G. Guy, Introduction to Materials Science, McGraw-Hill, New York (1972), p. 176.Google Scholar
  35. 33.
    I. Hayashi, M. B. Panish, P. W. Foy, and S. Sumski, Appl. Phys. Lett. 17, 109 (1970).ADSCrossRefGoogle Scholar
  36. 34.
    W. A. Brantley, J. Appl. Phys. 44, 535 (1973).ADSCrossRefGoogle Scholar
  37. 35.
    C. J. Nuese and G. H. Olsen, Appl. Phys. Lett. 26, 528 (1975).ADSCrossRefGoogle Scholar
  38. 36.
    G. E. Fenner, J. Appl. Phys. 34, 2955 (1963).ADSCrossRefGoogle Scholar
  39. 37.
    J. R. Biard, G. E. Pittman, and J. F. Leezer, Proceedings 1966 International Symposium on GaAs (unpublished), pp. 113-117.Google Scholar
  40. 38.
    R. L. Hartman and A. R. Hartman, Appl. Phys. Lett. 23, 147 (1973)ADSCrossRefGoogle Scholar
  41. 39.
    M. Ettenberg and H. Kressel, J. Appl. Phys. 47, 1538 (1976).ADSCrossRefGoogle Scholar
  42. 40.
    C. J. Nuese and J. J. Gannon, private communication.Google Scholar
  43. 41.
    J. Feinleib, S. Groves, W. Paul, and R. Zallen, Phys. Rev. 131, 2070 (1963).ADSCrossRefGoogle Scholar
  44. 42.
    W. D. Johnston, Jr., and R. A. Logan, Appl Phys. Lett. 28, 140 (1976).ADSCrossRefGoogle Scholar
  45. 43.
    N. Nagai, J. Appl. Phys. 45, 3789 (1974).ADSCrossRefGoogle Scholar
  46. 44.
    G. H. Olsen and R. T. Smith, Phys. Status Solidi (a) 31, 739 (1975).ADSCrossRefGoogle Scholar
  47. 45.
    G. A. Rozgonyi, P. M. Petroff, and M. B. Panish, J. Crystal Growth 27, 106 (1974).ADSGoogle Scholar
  48. 46.
    P. Petroff, Lattice Defects in Semiconductors, Institute of Physics, London (1974), p. 73.Google Scholar
  49. 47.
    G. A. Rozgonyi and M. A. Afromowitz, Appl. Phys. Lett. 19, 153 (1971).ADSCrossRefGoogle Scholar
  50. 48.
    H. R. Pettit and G. R. Booker, Proceedings 25th Annual Meeting, Electron Microscope and Analysis Group, Institute of Physics, London, Conference Series No. 10, Cambridge Univ. Press, London (1971), p. 290.Google Scholar
  51. 49.
    M. S. Abrahams and C. J. Buiocchi, J. Appl Phys. 45, 3315 (1974).ADSCrossRefGoogle Scholar
  52. 50.
    M. S. Abrahams, C. J. Buiocchi, and G. H. Olsen, J. Appl Phys. 40, 4259 (1975).ADSCrossRefGoogle Scholar
  53. 51.
    J. W. Matthews and A. E. Blakeslee, J. Crystal Growth 27, 118 (1974).ADSGoogle Scholar
  54. 52.
    D. Laister and G. M. Jenkins, J. Materials Sci. 8, 1218 (1973).ADSCrossRefGoogle Scholar
  55. 53.
    M. S. Abrahams, Defect Characterization in III–V Compounds, Final Report on Contract No. N00019-72-0145, Naval Air Systems Command (1972).Google Scholar
  56. 54.
    D. W. Pashley, Thin Films, American Society of Metals, Metals Park, Ohio (1964).Google Scholar
  57. 55.
    F. C. Frank and W. T. Read, Phys. Rev. 79, 722 (1950).ADSCrossRefGoogle Scholar
  58. 56.
    M. S. Abrahams, J. Blanc, and C. J. Buiocchi, J. Appl. Phys. 45, 3277 (1974).ADSCrossRefGoogle Scholar
  59. 57.
    M. S. Abrahams, J. Blanc, and C. J. Buiocchi, Appl. Phys. Lett. 21, 185 (1972).ADSCrossRefGoogle Scholar
  60. 58.
    D. Kuhlmann-Wilsdorf, Physical Metallurgy, R. W. Cahn (ed.), North-Holland Publ., Amsterdam (1970), p. 794.Google Scholar
  61. 59.
    J. Blanc, Phil. Mag. 32, 1023 (1975).ADSCrossRefGoogle Scholar
  62. 60.
    G. H. Olsen, M. S. Abrahams, C. J. Buiocchi, and T. J. Zamerowski, J. Appl. Phys. 46, 1643 (1975).ADSCrossRefGoogle Scholar
  63. 61.
    M. S. Abrahams, L. R. Weisberg, C. J. Buiocchi, and J. Blanc, J. Materials Sci. 4, 223 (1969).ADSCrossRefGoogle Scholar
  64. 62.
    V. S. Ban, private communication.Google Scholar
  65. 63.
    M. Ettenberg, J. Appl. Phys. 45, 910 (1974).ADSCrossRefGoogle Scholar
  66. 64.
    G. H. Olsen, J. Crystal Growth 31, 223 (1975).ADSCrossRefGoogle Scholar
  67. 65.
    J. W. Matthews and A. E. Blakeslee, J. Crystal Growth 29, 273 (1975).ADSCrossRefGoogle Scholar
  68. 66.
    F. C. Frank, Proc. Phys. Soc. (London) A62, 202 (1949).Google Scholar
  69. 67.
    W. A. Jesser, Phys. Status Solidi (a) 20, 63 (1973).ADSCrossRefGoogle Scholar
  70. 68.
    J. Weertman and J. R. Weertman, Elementary Dislocation Theory, Macmillan, New York (1964), p. 189.Google Scholar
  71. 69.
    H. F. Lockwood, private communication.Google Scholar
  72. 70.
    S. Kishino, M. Oguima, T. Kajimura, and K. Kurata, J. Crystal Growth 24, 266 (1974).ADSCrossRefGoogle Scholar
  73. 71.
    M. Ettenberg, C. J. Nuese, J. R. Appert, J. J. Gannon, and R. E. Enstrom, J. Electronic Materials 4, 37 (1975).ADSCrossRefGoogle Scholar
  74. 72.
    M. S. Abrahams and C. J. Buiocchi, J. Appl. Phys. 36, 2855 (1965).ADSCrossRefGoogle Scholar
  75. 73.
    P. Petroff and R. L. Hartman, Appl. Phys. Lett. 23, 469 (1973).ADSCrossRefGoogle Scholar
  76. 74.
    R. E. Nahory, M. A. Pollack, and J. C. Dewinter, Appl. Phys. Lett. 25, 146 (1974).ADSCrossRefGoogle Scholar
  77. 75.
    R. H. Saul, J. Electrochem. Soc. 118, 793 (1971).CrossRefGoogle Scholar
  78. 76.
    M. Ettenberg, S. H. McFarlane, and S. L. Gilbert, Proceedings Fourth International Symposium on GaAs, Institute of Physics, London (1972), p. 29.Google Scholar
  79. 77.
    P. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley, and M. J. Whelan, Electron Microscopy of Thin Crystals, Butterworth, London (1971), p. 119.Google Scholar
  80. 78.
    T. G. J. van Oirschot, G. A. Acket, and W. J. Bartels, J. Appl. Phys. 46, 1893 (1975).ADSCrossRefGoogle Scholar
  81. 79.
    M. B. Allenson, P. G. R. King, M. C. Rowland, G. J. Steward, and C. H. A. Syms, J. Phys. D5, L89 (1972).ADSGoogle Scholar
  82. 80.
    G. A. Antypas, L. W. James, and J. J. Uebbing, J. Appl Phys. 41, 2888 (1970).ADSCrossRefGoogle Scholar
  83. 81.
    R. E. Enstrom and D. G. Fisher, J. Appl. Phys. 46, 1976 (1975).ADSCrossRefGoogle Scholar
  84. 82.
    D. G. Fisher and G. H. Olsen, unpublished.Google Scholar
  85. 83.
    A. A. Turnbull and G. B. Evans, J. Phys. D1, 155 (1968).Google Scholar
  86. 84.
    G. A. Allen, J. Phys. D4, 308 (1971).Google Scholar
  87. 85.
    C. J. Nuese, G. H. Olsen, and M. Ettenberg, Appl. Phys. Lett. 29, 54 (1976).ADSCrossRefGoogle Scholar
  88. 86.
    C. J. Nuese, G. H. Olsen, M. Ettenberg, J. J. Gannon, and T. J. Zamerowski, Appl. Phys. Lett. 29, 807 (1976).ADSCrossRefGoogle Scholar
  89. 87.
    J. J. Hsieh, Appl. Phys. Lett. 28, 283 (1976).ADSCrossRefGoogle Scholar
  90. 88.
    R. E. Nahory, M. A. Pollack, E. D. Beeke, J. C. DeWinter, and R. W. Dixon, Appl. Phys. Lett. 28, 19 (1976).ADSCrossRefGoogle Scholar
  91. 89.
    W. A. Nash, Strength of Materials, Schaums Outline Series, McGraw-Hill, New York (1972), p. 122.Google Scholar
  92. 90.
    F. K. Reinhart and R. A. Logan, J. Appl. Phys. 44, 3171 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • G. H. Olsen
    • 1
  • M. Ettenberg
    • 1
  1. 1.RCA LaboratoriesPrincetonUSA

Personalised recommendations