The Neutrophil N-Formyl Peptide Receptor: Dynamics of Ligand-Receptor Interactions and Their Relationship to Cellular Responses

  • Larry A. Sklar
  • Algirdas J. Jesaitis
  • Richard G. Painter
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)


The N-formyl peptides, as a class, evoke in neutrophils in vitro an array of responses that mimic the biological functions of these cells in the inflammatory process. Because these peptides can be prepared synthetically, it has been possible to correlate extensively the structure-function relationships of a variety of amino acid sequences in both stimulatory and inhibitory peptides. Moreover,.this diversity in available sequences has permitted the development not only of numerous radiolabeled ligands, but of photoaffinity and fluorescent molecules as well. During the short period since N-formyl-methionyl peptides were first identified as chemoattractants derived from bacteria, the N-formyl peptides receptor has been catapulted into a position of prominence as a model, not only for studies of neutrophil stimulation but for receptor-mediated cell stimulation in general.


Human Neutrophil Receptor Occupancy Peptide Receptor Formyl Peptide Receptor Human Polymorphonuclear Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., Heaysman, J. E. M., and Pegrum, S. M., 1970, The locomotion of fibroblasts in culture. III. Movements of particles on the dorsal surface of the leading lamella, Exp. Cell Res. 62:389.PubMedCrossRefGoogle Scholar
  2. Adelstein, R. S., and Eisenberg, E, 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49:921.PubMedCrossRefGoogle Scholar
  3. Ainscough, E. W., Brodie, A. M., Plowman, J. E., Bloor, S. J., Loehr, J. S., and Loehr, T. M., 1980, Studies in human lactoferrin by electron paramagnetic resonance, fluorescence, and resonance raman spectroscopy, Biochemistry 19:4072.PubMedCrossRefGoogle Scholar
  4. Allan, R. B., and Wilkinson, P. C., 1978, A visual analysis of chemotactic and chemokinetic locomotion of human neutrophilic leucocytes. Use of a new Chemotaxis assay with Candida albicans as a gradient source, Exp. Cell Res. 111:191.PubMedCrossRefGoogle Scholar
  5. Anderson, D. C., Wible, L. J., Hughes, B. J., Smith, C. W., and Brinkley, B. R., 1982, Cytoplasmic microtubles in polymorphonuclear leukocytes: Effect of chemotactic stimulation and colchicine, Cell 31:719.PubMedCrossRefGoogle Scholar
  6. Ariens, E. J., 1979, Receptors: From fiction to fact, TIPS 1:11.Google Scholar
  7. Aswanikumar, S., Corcoran, B., Schiffmann, E., Day, A. R., Freer, R. J., Showell, H. J., Becker, E. L., and Pert, C. B., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochim. Biophys. Res. Commun. 74:810.CrossRefGoogle Scholar
  8. Autrum, H., 1981, Light and dark adaptation in invertebrates, in: Handbook of Sensory Physiology (H. Autrum, ed.), Vol. VIIC., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  9. Badwey, J. A., and Karnovsky, M. L., 1979, Production of superoxide and hydrogen peroxide by an NADH oxidase in guinea pig polymorphonuclear leukocytes, Biochemistry 254:11530.Google Scholar
  10. Baehner, R. L., Boxer, L. A., Allen, J. M., and Davis, J., 1977, Autooxidation as a basis for altered function by polymorphonuclear leukocytes, Blood 50:327.PubMedGoogle Scholar
  11. Bandmann, U., Rydgren, L., and Norberg, B., 1974, The difference between random movement and Chemotaxis, Exp. Cell Res. 88:63.PubMedCrossRefGoogle Scholar
  12. Becker, E. L., 1979, A multifunctional receptor on the neutrophil for synthetic chemotactic oligopeptides, J. Reticuloendothel. Soc. 26:701.PubMedGoogle Scholar
  13. Becker, E. L., Naccache, P. H. Showell, H. J., and Walenga, R. W., 1981, Early events in neutrophil activation: Receptor stimulation, ionic fluxes, and arachidonic acid metabolism, in: Lymphokines, Vol. 4, pp. 297–334, Academic Press, New York.Google Scholar
  14. Bergman, K., Burke, P. V., Cerda-Olmedo, E., David, C. N., Delbrück, M., Foster, K. W., Goodell, E. W., Heisenberg, M., Meissner, G., Zalokar, M., Dennison, D. S., and Shropshire, V., Jr., 1969, Phycomyces, Bacteriol. Rev. 33:99.PubMedGoogle Scholar
  15. Bergmann, J. E., Kupfer, A., and Singer, S. J., 1983, Membrane insertion at the leading edge of motile fibroblasts, Proc. Natl Acad. Sci. (USA) 80:1367.CrossRefGoogle Scholar
  16. Birnbaumer, L., Pohl, S. L., and Kaumann, A. J., 1974, Receptors and acceptors: A necessary distinction in hormone binding studies, Adv. Cyclic Nucleotide Res. 4:239.PubMedGoogle Scholar
  17. Bourguignon, L. Y. W., and Singer, S. J., 1977, Transmembrane interactions and mechanism of capping of surface receptors by their specific ligands, Proc. Natl. Acad. Sci. (USA) 74:5031.CrossRefGoogle Scholar
  18. Brenner, S. L., and Korn, E. D., 1979, Substoichiometric concentrations of cytochalasin D inhibit actin polymerization, J. Biol. Chem. 254:9982.PubMedGoogle Scholar
  19. Brentwood, B. J., and Henson, P. M., 1980, The sequential release of granule constituents from human neutrophils, J. Immunol. 124:855.Google Scholar
  20. Brown, S. S., and Spudich, J. A., 1981, Mechanism of action of cytochalasin: Evidence that it binds to actin filament ends, J. Cell Biol. 88:487.PubMedCrossRefGoogle Scholar
  21. Burridge, K., and Feramisco, J. R., 1981, α-Actinin and vinculin from non-muscle cells: Calcium sensitive interactions with actin, Cold Spring Harb. Symp. Quant. Biol. 46:587.CrossRefGoogle Scholar
  22. Caner, J. E. Z., 1965, Colchicine inhibition of Chemotaxis, Arthritis Rheum. 8:757.PubMedCrossRefGoogle Scholar
  23. Carp, H., 1982, Mitochondrial N-formyl methionyl proteins as chemoattractants for neutrophils, J. Exp. Med. 155:264.PubMedCrossRefGoogle Scholar
  24. Carroll, R. C., and Gerrard, J. M., 1982, Phosphorylation of platelet actin binding protein during platelet activation, Blood 59:466.PubMedGoogle Scholar
  25. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of specific C5a receptor on intact human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. (USA) 75:3943.CrossRefGoogle Scholar
  26. Clark, R. A., and Szot, S., 1982, Chemotactic factor inactivation by stimulated human neutrophils mediated by a myeloperoxidase-catalyzed methionine oxidation, J. Immunol. 128:1507.PubMedGoogle Scholar
  27. Cochrane, C. G., 1977, Role of granulocytes in immune complex-induced tissue injuries, Inflammation 2:319.PubMedCrossRefGoogle Scholar
  28. Cohen, S., Carpenter, G., and King, L., 1980, Epidermal growth factor-receptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity, J. Biol. Chem. 255:4834.PubMedGoogle Scholar
  29. Corin, R. E., and Donner, D. B., 1982, Insulin receptors convert to a higher affinity state subsequent to hormone binding, J. Biol. Chem. 257:104.PubMedGoogle Scholar
  30. Courtoy, P. J., Quinart, J., and Baudhuin, P., 1982, Shift in the equilibrium density of subcellular organelles containing peroxidase using the diaminobenzidine procedure, J. Cell. Biol. 95:423a.Google Scholar
  31. Craddock, P. R., Hammerschmidt, D. E., Moldow, C. F., Yamada, O., and Jacob, H. S., 1979, Granulocyte aggregates as a manifestation of membrane interaction of complement: Possible roles in leukocyte margination, microvascular occlusion and endothelial damage, Semin. Hematol. 16:140.PubMedGoogle Scholar
  32. Cramer, E. B., and Gallin, J. I., 1979, Localization of submembraneous cations to the leading end of human neutrophils during Chemotaxis, J. Cell Biol. 82:369.PubMedCrossRefGoogle Scholar
  33. Cramer, E. B., and Milks, L. C., 1982, Transepithelial migration of human neutrophils. II. Permeability studies, Fed. Proc. 41:372.Google Scholar
  34. Davis, B. H., Walter, R. J., Pearson, C. B., Becker, E. L., and Oliver, J. M., 1982, Membrane activity and topography of F-Met-Leu-Phe-treated polymorphonuclear leukocytes, Am. J.Pathol. 108:206.PubMedGoogle Scholar
  35. De Chatelet, L. R., 1978, Initiation of the respiratory burst in human neutrophils. A critical review, J. Reticuloendothel. Soc. 24:73.Google Scholar
  36. Delbrück, M., and Reichardt, W., 1956, System analysis for the light growth reactions of phycomyces, Cell. Mechanisms Differentiation Growth 14:3.Google Scholar
  37. DeLisi, C., and Siraganian, R. P., 1979b, Receptor crosslinking and histamine release. I. The quantitative dependence of basophil degranulation on the number of receptor doublets, J. Immunol. 122:2286.PubMedGoogle Scholar
  38. DeLisi, C., and Siraganian, R. P., 1979a, Receptor crosslinking and histamine release. II. Interpretation and analysis of anomalous dose response patterns, J. Immunol. 122:2293.PubMedGoogle Scholar
  39. Dougherty, R. W., Carchman, R. A., and Freer, R. J., 1983, Comparison of formyl peptide receptors in human neutrophils and HL-60 cells. Binding and secretion, Fed. Proc. 42: 1357.Google Scholar
  40. Fehr, J., and Dahinden, C., 1979, Modulating influence of chemotactic factor-induced cell adhesiveness on granulocyte function, J. Clin. Invest. 64:8.PubMedCrossRefGoogle Scholar
  41. Finney, D. A., and Sklar, L. A., 1983, Ligand/receptor internalization: A kinetic, flow cytometric analysis of the internalization of N-formyl peptides by human neutrophils, Cytometry 4:54.PubMedCrossRefGoogle Scholar
  42. Flanagan, J., and Koch, C. L. E., 1978, Cross-linked surface Ig attached to actin, Nature 273:278.PubMedCrossRefGoogle Scholar
  43. Fletcher, M. P., and Gallin, J. I., 1982, Human neutrophils contain an intracellular pool of putative receptors for the chemoattractant N-formyl methionylleucylphenylaline with a density of specific granules, J. Cell Biol. 95:444a.Google Scholar
  44. Fletcher, M. P., Seligmann, B. E., and Gallin, J. I., 1982, Correlation of human neutrophil secretion, chemoattractant receptor mobilization and enhanced functional capacity, J. Immunol. 128:941.PubMedGoogle Scholar
  45. Freer, R. J., Day, A. R., Radding, J. A., Schiffman, E., Aswanikumar, S., Showell, H. J., and Becker, E. L., 1980, Further studies on the structural requirements for synthetic peptide chemoattractants, Biochemistry 19:2404.PubMedCrossRefGoogle Scholar
  46. Freer, R. J., Day, A. R., Muthukumaraswamy, N., Pinon, D., Wu, A., Showell, H. J., and Becker, E. L., 1982, Formyl peptide chemoattractants: A model of the receptor on rabbit neutrophils, Biochemistry 21:257.PubMedCrossRefGoogle Scholar
  47. Gallin, J. I., Wright, D. G., and Schiffmann, E., 1978, Role of secretory events in modulating human neutrophil Chemotaxis, J. Gin. Invest. 62:1364.CrossRefGoogle Scholar
  48. Gallin, J. I., Gallin, E. K., and Schiffmann, E., 1979, Mechanism of leukocyte Chemotaxis, in: Advances in Inflammation Research (G. Weissman, ed.), pp. 123–138, Raven Press, New York.Google Scholar
  49. Geisow, M. J., 1982, Intracellular membrane traffic, Nature 295:649.CrossRefGoogle Scholar
  50. Gerish, G., and Keller, H. U., 1981, Chemotactic reorientation of granulocytes stimulated with micropipettes containing F-Met-Leu-Phe, J. Cell Sci. 52:1.Google Scholar
  51. Ghebrehiwet, B., and Müller-Eberhard, 1979, C3e: An acidic fragment of human C3 with leukocytosis inducing activity, J. Immunol. 123:616.PubMedGoogle Scholar
  52. Goetzl, E. J., Foster, D. W., and Goldman, D. W., 1981, Isolation and partial characterization of membrane protein constituents of human neutrophil receptors for chemotactic formyl methioyl peptides, Biochemistry 20:5717.PubMedCrossRefGoogle Scholar
  53. Goldstein, I., Hoffstein, S., Gallin, J., and Weissmann, G., 1973, Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement, Proc. Natl Acad. Sci. (USA) 70:2916.CrossRefGoogle Scholar
  54. Harris, A., and Dunn, G., 1972, Centripetal transport of attached particles on both surfaces of moving fibroblasts, Exp. Cell. Res. 73:519.PubMedCrossRefGoogle Scholar
  55. Hazelbauer, G. L. (ed.), 1978, Taxis and behavior, in: Receptors and Recognition, Ser. B, Vol. 5, Chapman and Hall, London.Google Scholar
  56. Henson, P. M., Schwartzmann, N. A., and Zanolari, B., 1981, Intracellular control of human neutrophil secretion. II. Stimulus specificity of desensitization induced by six different soluble and particulate stimuli, J. Immunol. 127:754.PubMedGoogle Scholar
  57. Hoffstein, S., Godstein, I. M., and Weissmann, G., 1977, Role of microtubule assembly in lysosomal enzyme secretion from human polymorphonuclear leukocytes. A réévaluation, J. Cell Biol. 73:242.PubMedCrossRefGoogle Scholar
  58. Huxley, H. E., 1973, Muscular contraction and cell motility, Nature 243:445.PubMedCrossRefGoogle Scholar
  59. Ishizaka, T., 1982, Biochemical analysis of triggering signals induced by bridging of IgE re-cep tors, Fed. Proc. 41:17.PubMedGoogle Scholar
  60. Jesaitis, A. J., and Cochrane, C. G., 1983, Receptor mediated endocytosis, host defense and inflammation, Lab Invest. 48:117.PubMedGoogle Scholar
  61. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1982a, Intracellular localization of N-formyl chemotactic receptor and Mg dependent ATPase in human granulocytes, Biophys. Biochim. Acta 719:556.CrossRefGoogle Scholar
  62. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Schmitt, M., Sklar, L. A., and Cochrane, C. G., 1982b, The fate of the N-formylated chemotactic peptide receptor in stimulated human granulocytes: Subcellular fractionation studies, J. Cell. Biochem. 20:143.CrossRefGoogle Scholar
  63. Jesaitis, A. J., Naemura, J. R., Painter, R. G., Sklar, L. A., and Cochrane, C. G., 1983, TheGoogle Scholar
  64. fate of the N-formylated chemo tactic peptide in stimulated human granulocytes: Subcellular fractionation studies, J. Biol. Chem. 258:1968.Google Scholar
  65. Jesaitis, A. J., Naemura, J. R., Sklar, L. A., Cochrane, C. G., and Painter, R. G., 1984, Rapid modulation of N-formyl chemotactic peptide receptors on the surface of human granulocytes: Formation of high affinity ligand-receptor complexes in transient association with cell cytoskeleton, J. Cell. Biol, (in press).Google Scholar
  66. Johnson, K. J., and Ward, P. A., 1982, Newer concepts in the pathogenesis of immune complex induced tissue injury, Lab. Invest. 47:218.PubMedGoogle Scholar
  67. Jones, H. P., Ghai, G., Petrone, W. F., and McCord, J. M. 1982, Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils, Biochim. Biophys. Acta 714: 152.PubMedCrossRefGoogle Scholar
  68. Keller, H. U., and Bessis, M., 1975, Migration and Chemotaxis of anucleate cytoplasmic leukocyte fragments, Nature 258:73.CrossRefGoogle Scholar
  69. Keller, H. U., Wissler, J. H., Hess, M. W., and Cottier, H., 1977, Relation between stimulus intensity and neutrophil chemotactic response, Experientia 33:534.PubMedCrossRefGoogle Scholar
  70. Keller, H. U., Wissler, J. H., Hess, M. W., and Cottier, H., 1978, Distant chemokinetic and chemotactic responses in neutrophil granulocytes, Experientia 8:1.Google Scholar
  71. King, A. C., and Cuatrecasas, P., 1981, Peptide hormone induced receptor mobility, aggregation and internalization, N. Engl. J. Med. 305:77.PubMedCrossRefGoogle Scholar
  72. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1982, The oligopeptide chemotactic factors on human PMN membranes exists in two affinity states, Fed. Proc. 41:272.Google Scholar
  73. Korchak, H. M., and Weissmann, G., 1980, Stimulus response coupling in the human neutrophil: Transmembrane potential and the role of extracellular Na+, Biochim. Biophys. Acta 601:180.PubMedCrossRefGoogle Scholar
  74. Koshland, D. E., Jr., 1981, Biochemistry of sensing and adaptation in a simple bacterial system, Annu. Rev. Biochem. 50:765.CrossRefGoogle Scholar
  75. Kupfer, A., Louvard, D., and Singer, S. J., 1982, Polarization of the Golgi apparatus and the micotubule-organizaing center in cultured fibroblasts at the edge of an experimental wound, Proc. Natl. Acad. Sci. (USA) 79:2603.CrossRefGoogle Scholar
  76. Lane, T. A., and Lamkin, G. E., 1982, Phagocytosis induced Chemotaxis receptor cycling in neutrophils as mediated by thiol oxidation, Blood 59:1337.PubMedGoogle Scholar
  77. Lauffenberger, D. A., and Zigmond, S. H., 1981, Chemotactic factor concentration gradients in Chemotaxis assay systems, J. Immunol. Methods 40:45.CrossRefGoogle Scholar
  78. Limbird, L. E., 1981, Activation and attenuation of adenylate cyclase, Biochem. J. 195:1.PubMedGoogle Scholar
  79. Lin, D. C., Tobin, K. D., Grumet, M., and Lin, S., 1980, Cytochalasins inhibit nuclei-induced actin polymerization by blocking filament elongation, J. Cell Biol. 84:455.PubMedCrossRefGoogle Scholar
  80. Lipson, E. D., 1975, White noise analysis of Phycomyces light growth response system, Biophys. J. 15:989.PubMedCrossRefGoogle Scholar
  81. Lohr, K. M., and Snyderman, R., 1982, Amphotericin B alters the affinity and functional activity of the oligopeptide chemotactic receptor on human polymorphonuclear leukocytes, J. Immunol. 129:1594.PubMedGoogle Scholar
  82. Lowenstein, W. R. 1971, Principles of receptor physiology, in: Handbook of Sensory Physiology , Vol. 1 (W. R. Lowenstein, ed.), Springer-Verlag, Berlin.Google Scholar
  83. Luna, E. J., Fowler, V. M., Swanson, J., Branton, D., and Taylor, D. L., 1981, A membrane cytoskeleton from Dictyostelium discoideum. I. Identification and partial purification of an actin binding activity, J. Cell Biol. 88:396.CrossRefGoogle Scholar
  84. Mackin, W. M., Huang, C-K., and Becker, E. L., 1982, The formylpeptide chemotactic receptor and rabbit peritoneal neutrophils. I. Evidence for two binding sites with different affinities, J. Immunol. 129:1608.PubMedGoogle Scholar
  85. Malawista, S. E., and Chevance, A. de B., 1982, The cytokineplast: Purified, stable and functional motile machinery from human blood polymorphonuclear leukocytes, J. Cell. Biol. 95:960.PubMedCrossRefGoogle Scholar
  86. Malech, H. C., Root, R. K., and Gallin, J. I., 1976, Centriole, microtubule and microfilament orientation during human polymorphonuclear leukocyte Chemotaxis, Gin. Res. 24:314A.Google Scholar
  87. Marmerelius, P. Z., and Naka, K. I., 1973, Nonlinear analysis and synthesis of receptor field responses in the cat fish retina, J. Neurophys. 36:605.Google Scholar
  88. Mescher, M. F., Jose, M. J. L., and Balk, S. P., 1981, Actin-containing matrix associated with the plasma membrane of murine tumor and lymphoid cells, Nature 289:139.PubMedCrossRefGoogle Scholar
  89. Müller-Eberhard, H. J., 1981, The human complement protein C3: Its unusual function and structural versatility in host defense and inflammation, in: Advances in Immunopathol-ogy (W. O. Weigle, ed.), pp. 141–160, Elsevier-North Holland, New York.Google Scholar
  90. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977a, Changes in ionic movements across rabbit leukocyte membranes during lysosomal enzyme release, J. Cell Biol. 76:635.CrossRefGoogle Scholar
  91. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1911b, Sodium, potassium, and calcium transport across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor, J. Cell Biol 73:428.CrossRefGoogle Scholar
  92. Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203:461.PubMedCrossRefGoogle Scholar
  93. Nelson, R. D., McCormack, R. T., Fiegel, V. D., Herron, M., Simmons, P. L., and Quie, P. G., 1979, Chemotactic deactivation of human neutrophils: Possible relationship to stimulation of oxidative metabolism, Infect. Immun. 23:282.PubMedGoogle Scholar
  94. Nelson, R. D., Fiegel, V. D., Herron, M. J., Gracyk, J. M., Bauman, M. P., McCormack, R. T., and Simmons, R. L., 1980, Chemotactic deactivation of human neutrophils: Role of stimulation of hexose monophosphate shunt activity in nonspecific deactivation, Acta Physiol. Scand. (Suppl.) 492:31.Google Scholar
  95. Nelson, R. D., Gracyk, J. M., Fiegel, V. D., Herron, M. J., and Chenoweth, D.E., 1981, Chemotactic deactivation of human neutrophils: Protective influence of phenylbutazone, Blood 58:752.PubMedGoogle Scholar
  96. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Antispectrin-induced transmembrane aggregation of the binding sites for positively charged colloidal particles, J. Cell Biol 59:395.PubMedCrossRefGoogle Scholar
  97. Niedel, J. E., 1981, Detergent solubilization of the formyl peptide chemotactic receptor, J.Biol Chem. 256:9295.PubMedGoogle Scholar
  98. Niedel, J. E., and Cuatrecasas, P., 1980, Formyl peptide chemotactic reception of leukocytes and macrophages, Curr. Top. Cell Res. 17:137.Google Scholar
  99. Niedel, J., Wilkinson, S., and Cuatrecasas, P., 1919a, Receptor-mediated uptake and degradation of 125I-chemotactic peptide by human neutrophils, J. Biol Chem. 254:10700.Google Scholar
  100. Niedel, J. E., Kahane, I., and Cuatrecasas, P., 1919b, Receptor mediated internalization of fluorescent chemotactic peptide by human neutrophils, Science 205:1412.CrossRefGoogle Scholar
  101. Niedel, J. E., Davis, J., and Cuatrecasas, P., 1980, Covalent affinity labelling of the formyl peptide chemotactic receptor, J. Biol. Chem. 255:7063.PubMedGoogle Scholar
  102. O’Flaherty, J. T., and Ward, P. A., 1978, Leukocyte aggregation induced by chemotactic factors. A review, Inflammation 3:177.PubMedCrossRefGoogle Scholar
  103. O’Flaherty, J. T., Showell, H. J., and Ward, P. A., 1977, Influence of extracellular Ca2+ and Mg2+ on chemotactic factor-induced neutrophil aggregation, Inflammation 2:265.PubMedCrossRefGoogle Scholar
  104. Ohno, Y-I, Hirai, K-I, Kanoh, T., Uchino, H., and Ogawa, K., 1982a, Subcellular localization of H202 production in human neutrophils stimulated with particles and an effect of cytochalasin B on the cells, Blood 60:253.PubMedGoogle Scholar
  105. Ohno, Y-I, Hirai, K-I, Kanoh, T., Haruto, U., and Ogawa, K, 1982b, Subcellular localization of hydrogen peroxide production in human polymorphonuclear leukocytes stimulated with lectins, phorbol myristate acetate, and digitonin: An electron microscopic study using CeCl3, Blood 60:1195.PubMedGoogle Scholar
  106. Oliver, J. M., Krawiec, J. A., and Becker, E. L., 1978, The distribution of actin during Chemotaxis in rabbit neutrophils, J. Reticuloendothel. Soc. 24:697.PubMedGoogle Scholar
  107. Olsson, L, and Venge, P., 1980, The role of the human neutrophil in the inflammatory reaction, Allergy 35:1.PubMedCrossRefGoogle Scholar
  108. Oseas, R., Yang, H-H, Baehner, R. L., and Boxer, L. A., 1981, Lactoferrin: A promoter of polymorphonuclear leukocyte adhesiveness, Blood 57:939.PubMedGoogle Scholar
  109. Painter, R. G., Schmitt, M., Jesaitis, A. J., Sklar, L. A., Preissner, K., and Cochrane, C. G., 1982, Photoaffinity labeling of the N-formyl peptide receptor of human polymorphonuclear leukocytes, J. Cell. Biochem. 20:193.PubMedCrossRefGoogle Scholar
  110. Painter, R. G., Allen, R. A., Sklar, L. A., Schmitt, M., Cochrane, C. G., and Jesaitis, A. J., 1984a, Intracellular processing of A-formulated chemotactic peptide receptors by human neutrophil (submitted).Google Scholar
  111. Painter, R. G., Jesaitis, A. J., and Sklar, L. A., 1984&, Mobilization of the motile apparatus by TV-formyl chemotactic peptides. Neutrophil Chemotaxis: Mobilization of the motile apparatus by 7V-formyl chemotactic peptides, in: Cell Membranes: Methods and Reviews, Vol. 1 (E. L. Elson, W. A. Frazier, and L. Glaser, eds.), Plenum Press, New York (in press).Google Scholar
  112. Painter, R. G., Jesaitis, A. J., and Sklar, L. A., 1983Z?, Mobilization of the motile apparatus by Af-formyl chemotactic peptides (submitted).Google Scholar
  113. Pétrone, W. F., English, D. K., Wong, K., and McCord, J. M., 1980, Free radicals and inflammation: Superoxide dependent activation of neutrophil chemotactic factor in plasma, Proc. Natl. Acad. Sci. (USA) 77:1159.CrossRefGoogle Scholar
  114. Pike, M. C., and Snyderman, R., 1982a, Chemoattractant-receptor interaction in leukocytes, in: Advances in Inflammation Research (M. Ziff, P. Giampaolo, and S. Gorini, eds.), pp. 109–130, Raven Press, New York.Google Scholar
  115. Pike, M. C., and Snyderman, R., 1982b, Transmethylation reactions regulate affinity and functional activity of chemotactic factor receptors on macrophages, Cell 28:107.PubMedCrossRefGoogle Scholar
  116. Radin, R. A., Korchak, H. M., Wilkenfeld, C., Rutherford, L. E., and Weissmann, G., 1982, Differential requirements for receptor occupancy in neutrophil responses to chemo-attractant, Clin. Res. 30:520A.Google Scholar
  117. Ramsey, W. S., 1972, Analysis of individual leukocyte behavior during Chemotaxis, Exp. Cell. Res. 70:129.PubMedCrossRefGoogle Scholar
  118. Rao, K. M. K., and Varani, J., 1982, Actin polymerization induced by chemotactic peptide and concanavalin A in rat neutrophils, J. Immunol. 129:1605.PubMedGoogle Scholar
  119. Rasmussen, H., 1981, Calcium and cAMP as Synarchic Messengers, Wiley Inter science, New York.Google Scholar
  120. Robinson, D. R., Curran, D. P., and Hamer, P. J., 1982, Prostaglandins and related compounds in inflammatory rheumatic diseases, in: Advances in Inflammation Research, Vol. 3, (M. Ziff, P. Giampaolo, S. Gorini, eds.), pp. 17–27, Raven Press, New York.Google Scholar
  121. Rosenberg, S., Stracher, A., and Burridge, K., 1981, Isolation and characterization of a calcium-sensitive a-actinin-like protein from human platelet cytoskeletons, J. Biol. Chem. 256:12986.PubMedGoogle Scholar
  122. Schiffmann, E., 1982, Leukocytes Chemotaxis, Annu. Rev. Physiol. 44:553.PubMedCrossRefGoogle Scholar
  123. Schiffmann, E., Corcoran, B. A., and Wahl, S. M., 1975, N-formyl methionyl peptides as chemoattractants for leukocytes, Proc. Natl. Acad. Sci. (USA) 72:1059.CrossRefGoogle Scholar
  124. Schmitt, M., Painter, R. G., Jesaitis, A. J., Preissner, K., Sklar, L. A., and Cochrane, C. G., 1983, Photoaffinity labeling of the N-formyl peptide receptor binding site of intact human polymorphonuclear leukocytes. Evaluation of a label as suitable to follow the fate of the receptor-ligand complex, J. Biol. Chem. 258:649.PubMedGoogle Scholar
  125. Schneider, Y. J., Tulkens, P., de Duve, C., and Touet, A., 1979, Fate of plasma membrane during endocytosis, J. Cell. Biol. 82:466.PubMedCrossRefGoogle Scholar
  126. Schreiber, A. B., Liberman, T. A., Lax, I., Yarden, Y., and Schlessinger, J., 1983, Biological role of experimental growth factor-receptor clustering, J. Biol. Chem. 258:846.PubMedGoogle Scholar
  127. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24:165.PubMedCrossRefGoogle Scholar
  128. Seligmann, B. E., and Gallin, J. I., 1980, Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease, J. Clin. Invest. 66:493.PubMedCrossRefGoogle Scholar
  129. Seligmann, B., Chused, T., and Gallin, J. I., 1982a, Binding of fluoresceinated chemotactic peptide to human neutrophil is heterogeneous and correlates with the heterogeneous stimulation of membrane potential changes, J. Cell. Biol. 95:444a.Google Scholar
  130. Seligmann, B. E., Fletcher, M. P., and Gallin, J. I., 1982b, Adaptation of human neutrophil responsiveness to the chem oat tractant Ar-formylmethionylleucylphenylalanine, J. Biol. Chem. 257:6280.PubMedGoogle Scholar
  131. Shaw, J. O., Pinckard, R. N., McManus, L. M., and Hanahan, D. J., 1981, Activation of human neutrophils with 1-O-hexadecyl/octadecyl-2-acetyl-Sn-glycerol-3-phosphate (platelet activating factor), J. Immunol. 127:1250.PubMedGoogle Scholar
  132. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B., and Becker, E. L., 1976, The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysozomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154.PubMedCrossRefGoogle Scholar
  133. Simchowitz, L., Fishbein, L. C., Spilberg, I., and Atkinson, J. P., 1980a, Induction of a transient elevation in intracellular levels of adenosine-3′,5′-cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation, J. Immunol. 124:1482.Google Scholar
  134. Simchowitz, L., Atkinson, J. P., and Spilberg, I., 1980b, Stimulus-specific deactivation of chemotactic factor-induced cyclic AMP response and superoxide generation by human neutrophils, J. Clin. Invest. 66:736.PubMedCrossRefGoogle Scholar
  135. Sklar, L. A., and Finney, D. A., 1982, Analysis of ligand-receptor interactions with the fluorescence activated cell sorter, Cytometry 3:161.PubMedCrossRefGoogle Scholar
  136. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981a, The kinetics of neutrophil activation: The response to chemotactic peptides depends upon whether ligand-receptor interaction is rate-limiting, J. Biol. Chem. 256:9909.PubMedGoogle Scholar
  137. Sklar, L. A., Oades, Z. G., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981b, Fluoresceinated chemotactic peptide and high affinity antibody to fluorescein as a probe of the temporal characteristics of neutrophil stimulation, Proc. Natl. Acad. Sci. (USA) 78:7540.CrossRefGoogle Scholar
  138. Sklar, L. A., McNeil, V. M., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1982a, A continuous, spectroscopic analysis of the kinetics of elastase secretion by neutrophils. The dependence of secretion upon receptor occupancy, J. Biol. Chem. 257:5471.PubMedGoogle Scholar
  139. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1982b, Ligand/receptor internalization: A spectroscopic analysis and a comparison of ligand binding, cellular response, and internalization by human neutrophils, J. Cell. Biochem. 20:193.PubMedCrossRefGoogle Scholar
  140. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1983a, Quantitative analysis of the relationship between receptor occupancy and cellular response in the human neutrophil, Biophys. J. 41:132a.Google Scholar
  141. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1983b, The dynamics of ligand-receptor interactions. Real time fluorimetric analyses of association, dissociation, and internalization of an N-formyl peptide and its receptors on human neutrophils, J. Biol. Chem. (in press).Google Scholar
  142. Sklar, L. A., McNeil, V. M., and Finney, D. A., 1983c, Competitive binding kinetics in ligand-receptor-inhibitor systems: Theoretical and experimental approaches, Circulation 66, Supplement III, page F.Google Scholar
  143. Smith, C. W., Hollers, J. C., Patrick, R. A., and Harrett, C., 1979, Motility and adhesiveness in human neutrophils, J. Clin. Invest. 63:221.PubMedCrossRefGoogle Scholar
  144. Smolen, J.E., and Weissmann, G., 1981, Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3’-5’-monophosphate, Biochim. Biophys. Acta 672:197.PubMedCrossRefGoogle Scholar
  145. Smolen, J.E., Korchak, H. M., and Weissmann, G., 1980, Initial kinetics of lysozomal enzyme secretion and superoxide anion generation by human polymorphonuclear leukocytes, Inflammation 4:145.PubMedCrossRefGoogle Scholar
  146. Smolen, J.E., Korchak, H. M., and Weissmann, G., 1981, The roles of extracellular and intracellular calcium in lysozomal enzyme release and superoxide generation by human neutrophils, Biochim. Biophys. Acta 677:512.PubMedCrossRefGoogle Scholar
  147. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1982, The kinetics of lysosomal degranu-lation of human neutrophils as measured by 9-amino acridine self-quenching, J. Cell. Biol 95:397a.Google Scholar
  148. Snyderman, R., and Goetzl, E. J., 1981, Molecular and cellular mechanisms of leukocyte Chemotaxis, Science 213:830.PubMedCrossRefGoogle Scholar
  149. Snyderman, R., Edge, S., and Pike, M. C., 1982, Macrophage chemotactic factor receptor exists in two interconvertible affinities modulated by guanine nucleotides, Clin. Res. 30:521A.Google Scholar
  150. Stephens, C.G., and Snyderman, R., 1982, Cyclic nucleotides regulate the morphologic alterations required for Chemotaxis in monocytes, J. Immunol. 126:1192.Google Scholar
  151. Stevens, S. S., 1971, Sensory power functions and neutral events, in: Handbook of Sensory Physiology, Vol. 1 (W. E. Lowenstein, ed.), p. 226, Springer-Verlag, Berlin.Google Scholar
  152. Stossel, T. P., 1978, The mechanism of leukocyte locomotion, in: Leukocyte Chemotaxis: Methods, Physiology and Clinical Implications (J. I. Gallin and P. G. Quie, eds.), p. 143, Raven Press, New York.Google Scholar
  153. Stossel, T. P., Hartwig, J. H., Yin, H-L, and Zaner, K. S., 1981, Structure of the cortical cytoplasm, Cold Spring Harb. Symp. Quant. Biol. 46:569.CrossRefGoogle Scholar
  154. Stryer, L., Hurley, J. B., and Fung, B. K-K., 1981, Transducin: An amplifier protein in vision, Trends Biol. Sci. 6:245.CrossRefGoogle Scholar
  155. Sullivan, S.J., and Zigmond, S. H., 1980, Chemotactic peptide receptor modulation in polymorphonuclear leukocytes, J. Cell. Biol. 85:703.PubMedCrossRefGoogle Scholar
  156. Sullivan, S. J., and Zigmond, S. H., 1982, Asymmetric receptor distribution on PMNs, J. Cell Biol. 95:418a.Google Scholar
  157. Taylor, D. L., Hellewell, S. B., Virgin, H. W., and Heiple, J. M., 1979, The solation-contrac-tion coupling hypothesis of cell movements, in: Cell Motility: Molecules and Organization (S. Hatano, H. Ishikawa, and H. Sato, eds.), p. 363, University of Tokyo Press, Tokyo.Google Scholar
  158. Taylor, D. L., Wang, Y. L., and Heiple, J., 1980a, The contractile basis of ameboid movement. VII. The distribution of fluorescently labeled actin in living amoebas, J. Cell. Biol 86:590.PubMedCrossRefGoogle Scholar
  159. Taylor, D. L, Blinks, J. R., and Reynolds, G., 1980b, Contractile basis of ameboid movement. VIII. Aequorin luminescence during ameboid movement, endocytosis and capping, J. Cell. Biol 86:599.PubMedCrossRefGoogle Scholar
  160. Taylor, D. L, Heiple, J., Wang, Y-L, Luna, E. J., Tanasugarn, L., Brier, J., Swanson, J., Fecheimer, M., Amato, P., Rockwell, M., and Daley, G., 1981, Cellular and molecular aspects of amoeboid movement, Cold Spring Harb. Symp. Quant. Biol. XLVI:101.Google Scholar
  161. Tsan, M-F, and Chen, J. W., 1980, Oxidation of methionine by human PMNs, J. Clin. Invest. 65:1041.PubMedCrossRefGoogle Scholar
  162. Tsien, R. Y., Pozzan, T., and Rink, T. J., 1982, Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell. Biol 94:325.PubMedCrossRefGoogle Scholar
  163. Vane, J. R., 1976, Prostaglandins as mediators of inflammation, in: Advances in Prostaglandin and Thromboxane Research (B. Samuelsson and R. Paoletti, eds.), pp. 791–801, Raven Press, New York.Google Scholar
  164. Vitkauskas, G., Showell, H. J., and Becker, E. L., 1980, Specific binding of synthetic chemotactic peptides to rabbit peritoneal neutrophils: Effects on dissociability of bound peptide, receptor activity and subsequent biologic responsiveness (deactivation), Mol Immunol 17:171.PubMedCrossRefGoogle Scholar
  165. Wallach, D., Davies, P. J. A., and Pastan, I., 1978, Cyclic AMP dependent phosphorylation of fîlamin in smooth muscle, J. Biol Chem. 253:4739.PubMedGoogle Scholar
  166. Walter, R. J., Berlin, R. D., and Oliver, J. M., 1980, Asymmetric Fc receptor distribution of human PMN oriented in a chemotactic gradient, Nature 286:724.PubMedCrossRefGoogle Scholar
  167. Weissmann, G., Smolen, J., Korchak, H., and Hoffstein, S., 1981, The secretory code of the neutrophil in cellular interactions, in: Research Monographs in Cell and Tissue Physiology (J. T. Dingle and J. L. Gordon, eds.), pp. 15–31, Elsevier North-Holland Biomedical Press, New York.Google Scholar
  168. White, J. R., Naccache, P. H., and Sha’a, R. I., 1982, The synthetic chemotactic peptide formyl-methionyl-leucyl-phenylalanine causes an increase in actin associated with the cytoskeleton in rabbit neutrophils, Biochem. Biophys. Res. Commun. 108:1144.PubMedCrossRefGoogle Scholar
  169. Wilkinson, P. C., Michl, J., and Silverstein, S. C., 1980, Receptor distribution in locomoting neutrophils, Cell Biol Int. Rep. 4:736.CrossRefGoogle Scholar
  170. Williams, L. T., Snyderman, R., Pike, M. C., and Lefkowitz, R. J., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. (USA) 74:1204.CrossRefGoogle Scholar
  171. Willingham, M. C., and Pastan, I., 1980, The receptosome: An intermediate organelle of receptor mediated endocytosis in cultured fibroblasts, Cell 21:67.PubMedCrossRefGoogle Scholar
  172. Wright, D. G., and Gallin, J. I., 1979, Secretory responses of human neutrophils: Exocytosis of specific (secondary) granules by human neutrophils during adherence in vitro and during exudation in vivo, J. Immunol. 123:285.Google Scholar
  173. Yin, H. L, Albrecht, J. H., and Faltoum, A., 1981, Identification of gel-solin, a Ca2+ dependent regulatory protein of actin gel-sol transformation and its intracellular distribution in a variety of cells and tissues, J. Cell Biol 91:901.PubMedCrossRefGoogle Scholar
  174. Young, J. D-E., Young, T. M., Kaback, H. R., Cohn, Z. A., and Unkeless, J. C., 1982, The IgG Fc receptor is a ligand activated ion channel, J. Cell Biol 95:443a.Google Scholar
  175. Yuli, I., Tomonago, A., and Snyderman, R., 1982, Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers, Proc. Natl Acad. Sci. (USA) 79:5906.CrossRefGoogle Scholar
  176. Zigmond, S. H., 1977, Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors, J. Cell Biol 75:606.PubMedCrossRefGoogle Scholar
  177. Zigmond, S. H., 1978, Chemotaxis by polymorphonuclear leukocytes, J. Cell Biol 77:269.PubMedCrossRefGoogle Scholar
  178. Zigmond, S. H., 1981, Consequences of chemotactic peptide receptor modulation for leukocyte orientation, J. Cell Biol. 88:644.PubMedCrossRefGoogle Scholar
  179. Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell. Biol 82:517.PubMedCrossRefGoogle Scholar
  180. Zigmond, S. H., Levitsky, H. J., and Kreel, B. J., 1981, Cell polarity: An examination of its behavioral expression and its consequences for polymorphonuclear leukocyte Chemotaxis, J. Cell Biol 89:585.PubMedCrossRefGoogle Scholar
  181. Zigmond, S. H., Sullivan, S. J., and Lauffenburger, D. A., 1982, Kinetic analysis of chemotactic receptor modulation, J. Cell. Biol 92:34.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Larry A. Sklar
    • 1
  • Algirdas J. Jesaitis
    • 1
  • Richard G. Painter
    • 1
  1. 1.Department of ImmunologyScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations