Transductional Mechanisms of Chemoattractant Receptors on Leukocytes

  • Ralph Snyderman
  • Marilyn C. Pike
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)


The ability of phagocytic cells to migrate to chemical signals emanating from sites of intrusion of foreign substances was recognized more than a century ago and formed the basis of Metchnikoff’s phagocytic theory of host defense (Metchnikoff, 1968). While the chemotactic migration of leukocytes was noted during the nineteenth century, it was not until 1962 that quantification of leukocyte Chemotaxis in vitro became possible. The modern era of Chemotaxis was spurred by the development of a method (Boyden, 1962) to quantify the migration of leukocytes across microporous filters. In his initial studies, Boyden demonstrated that the incubation of serum with immune complexes led to the formation of chemotactic activity. The production of this activity was blocked by preheating the serum at 56°C for 30 minutes before the addition of the immune complexes. These observations not only provided the groundwork for future quantitative studies of humoral and cellular mechanisms of leukocyte Chemotaxis, but also suggested that serum complement might be a source of chemoattractants after activation by immune complexes.


U937 Cell Guanine Nucleotide Phatidyl Choline Chemotactic Factor Phosphatidyl Inositol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreoli, T. E., 1973, On the anatomy of amphotericin ß-cholesterol pores in lipid bilayer membranes, Kidney Int. 4:337.PubMedCrossRefGoogle Scholar
  2. Aswanikumar, S., Corcoran, B., Schiffman, E., Day, A. R., Freer, R. J., Showell, H. J., and Pert, C.B., 1977, Demonstration of a receptor on rabbit neutrophils for chemotactic peptides, Biochem. Biophys. Res. Commun. 74:810.PubMedCrossRefGoogle Scholar
  3. Backlund, P., and Cantoni, G. L., 1983, Chemotaxis and methylation reactions in a mouse macrophage cell line, Proceedings of the Fifth Phagocyte Workshop, Washington, D.C. Google Scholar
  4. Benyunes, M. C., and Snyderman, R., 1984, Characterization of an oligopeptide chemoattractant receptor on human blood monocytes using a new radioligand,Blood in press.Google Scholar
  5. Bjorksten, B., Ray, C., and Quie, P. G., 1976, Inhibition of human neutrophil Chemotaxis and chemiluminescence by amphotericin ß, Infect. Immun. 14:315.PubMedGoogle Scholar
  6. Boucek, M. M., and Snyderman, R., 1976, Calcium influx requirement for human neutrophil Chemotaxis:Inhibition by lanthanum chloride, Science 193:905.PubMedCrossRefGoogle Scholar
  7. Boyden, S., 1962, The chemotactic effect of mixtures of antibody and antigen on polymorphonuclear leukocytes, J. Exp. Med. 115:453.PubMedCrossRefGoogle Scholar
  8. Braun, J., Rosen, F. S., and Unanue, E. R., 1980, Capping and adenosine metabolism, J. Exp. Med. 151:174.PubMedCrossRefGoogle Scholar
  9. Burgisser, G., DeLean, A., and Lefkowitz, R. J., 1982, Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptor by guanine nucleotides Proc. Natl Acad. Sci. (USA) 79:1732.CrossRefGoogle Scholar
  10. Castagna, M., Yoshima, T., Kaibachi, S., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium activated phospholipid dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847.PubMedGoogle Scholar
  11. Chaplinski, T. J., and Niedel, J. E., 1982, Cyclic nucleotide induced maturation of human promyelocytic leukemia cells, J. Gin. Invest. 70:953. CrossRefGoogle Scholar
  12. Chenoweth, D. E., and Hugli, T. E., 1978, Demonstration of a specific C5a receptor on intact polymorphonuclear leukocytes,Proc. Natl. Acad. Sci. (USA) 75:3943.CrossRefGoogle Scholar
  13. Chiang, P. K., Richards, H.H., and Cantoni, G. L., 1977, S-adenosyl-L-homocysteine hydrolase: Analogues of S-adenosyl-L-homocysteine as potential inhibitors, Mol. Pharmacol. 13:939.PubMedGoogle Scholar
  14. Cianciolo, G. J., and Snyderman, R., 1981, Monocyte responsiveness to chemotactic stimuli is a property of a subpopulation of cells which can respond to multiple chemoattractants, J. Clin. Invest. 67:60.PubMedCrossRefGoogle Scholar
  15. Cohen, S., Pick, E., and Oppenheim, J. J., 1979, The Biology of the Lymphokines, Academic Press, New York.Google Scholar
  16. DeLean, A., Hancock, A. A., and Lefkowitz, R. J., 1982a, Validation and statistical analysis of computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes, Mol. Pharm. 21:5.Google Scholar
  17. DeLean, A., Kilpatrick, B. F., and Caron, M. G., 1982b, Dopamine receptor of the porcine anterior pituitary gland, Mol. Pharm. 22:290.Google Scholar
  18. Fernandez, H. N., Henson, P. M., Otani, A., and Hugli, T. E., 1978, Chemotactic response to human C3a and C5a anaphylatoxins: I. Evaluation of C3a and C5a leukotaxis in vitro and under simulated in vivo conditions, J. Immunol. 120:109.PubMedGoogle Scholar
  19. Fischer, D. G., Pike, M. C., Koren, H. S., and Snyderman, R., 1980, Chemotactically responsive and non-responsive forms of a continuous human monocyte cell line, J. Immunol. 125:463.PubMedGoogle Scholar
  20. Fletcher, M. P., and Gallin, J. I., 1980, Degranulating stimuli increase the availability of receptors on human neutrophils for the chemoattractant fMet-Leu-Phe, J. Immunol. 124:1585.PubMedGoogle Scholar
  21. Ford-Hutchinson, A.W., Bray, M. A., Doig, M.V., Shipley, M. E., and Smith, M. J. H., 1980, Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes, Nature 286:264.PubMedCrossRefGoogle Scholar
  22. Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis: Evidence for an association between calcium exchanges and microtubule assembly, J. Cell. Biol. 62:594.PubMedCrossRefGoogle Scholar
  23. Goetzl, E. J., and Austen, K. F., 1975, Purification and synthesis of eosinophilic tetrapep-tides of human lung tissue: Identification as eosinophil chemotactic factor of anaphylaxis, Proc. Natl Acad. Sci. (USA) 72:4123.CrossRefGoogle Scholar
  24. Goetzl, E. J., and Pickett, W. C., 1980, The human PMN leukocyte chemotactic activity of complex hydroxy-eicosatetraenoic acids (HETES), J. Immunol. 125:1789.PubMedGoogle Scholar
  25. Goldman, D. W., and Goetzl, E. J., 1982, Specific binding of leukotriene B4 to receptors on human polymorphonuclear leukocyes, J. Immunol. 129:1600.PubMedGoogle Scholar
  26. Goldstein, I., Hoffstein, S., Gallin, J., and Weissmann, G., 1973, Mechanisms of lysosomal enzyme release from human leukocytes: Microtubule assembly and membrane fusion induced by a component of complement, Proc. Natl. Acad. Sci. (USA) 70:2916.CrossRefGoogle Scholar
  27. Hancock, A. A., DeLean, A., and Lefkowitz, R. J., 1979, Quantitative resolution of beta-adrenergic receptor subtypes by selective ligand binding. Application of a computerized model fitting technique, Mol. Pharm. 16:1.Google Scholar
  28. Heron, D. S., Shinitzky, M., Hershkowitz, M., and Samuel, D., 1980, Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes, Proc. Natl. Acad. Sci. (USA) 77:7463.CrossRefGoogle Scholar
  29. Hirata, F., Corcoran, B. A., Venkatasubramanian, K., Schiffmann, E., and Axelrod, J., 1979, Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes, Proc. Natl. Acad. Sci. (USA) 76:2640.CrossRefGoogle Scholar
  30. Hirata, F., Togoshima, S., Axelrod, J., and Waxdal, M. J., 1980, Phospholipid methylation: A biochemical signal modulating lymphocyte mitogenesis, Proc. Natl. Acad. Sci. (USA) 77:862.CrossRefGoogle Scholar
  31. Hugli, T. E., and Müller-Eberhard, H. J., 1978, Anaphylatoxins, Adv. Immunol. 26:1.PubMedCrossRefGoogle Scholar
  32. Ishizaka, T., Hirata, F., Ishizaka, K., and Axelrod, J., 1980, Stimulation of phospholipid methylation, Ca2+ influx, and histamine release by bridging of IgE receptors on rat mast mast cells, Proc. Natl. Acad. Sci. (USA) 77:1903.CrossRefGoogle Scholar
  33. Jensen, J. A., Snyderman, R., and Mergenhagen, S. E., 1969, Chemotactic activity, a property of guinea pig C5 anaphylatoxin, Proceedings of the Third International Symposium on Cellular and Humoral Mechanisms in Anaphylaxis and Allergy, p. 265, Karger, Basel.Google Scholar
  34. Jerisaitis, A. J., Naemura, J. R., Sklar, L.A., Cochrane, C.G., and Painter, R. G., 1983, N-formyl-met-leu-phe is found in transient association with detergent-insoluble, cyto- skeleton-rich structure of stimulated granulocytes, Fed. Proc. (in press).Google Scholar
  35. Kay, G. E., Lane, B. C., and Snyderman, R., 1984, Induction of selective biological responses to chemoattractants in a human monocyte like cell line, Infect. Immun. 41:1166–1147.Google Scholar
  36. Kennerly, D. A., Sullivan, T. J., Sylvester, P., and Parker, C. W., 1979, Diacylglycerol metabolism in mast cells: A potential role in membrane fusion and arachidonic acid release, J. Exp. Med. 150:1039.PubMedCrossRefGoogle Scholar
  37. Klebanoff, S. J., and Clark, R. A., 1978, The Neutrophil: Function and Clinical Disorders, North-Holland, New York.Google Scholar
  38. Koo, C., and Snyderman, R., 1983, The oligopeptide chemoattractant receptor on human neutorphils converts to an irreversible high affinity state subsequent to agonist exposure, Gin. Res. 31(2):491A.Google Scholar
  39. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1982, The oligopeptide chemotactic factor receptor on human polymorphonuclear leukocyte membranes exists in two affinity states, Biochem. Biophys. Res. Commun. 106:442.PubMedCrossRefGoogle Scholar
  40. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1984, Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest 72:748–753.CrossRefGoogle Scholar
  41. Kredich, N. M., and Martin, D. W., Jr., 1977, Role of S-adenosyl-homocysteine in adenosine mediated toxicity in cultured mouse T lymphoma cells, Cell 12:931.PubMedCrossRefGoogle Scholar
  42. Kreisle, R. A., and Parker, C. W., 1983, Specific binding of leukotriene B4 to a receptor on human polymorphonuclear leukocytes, J. Exp. Med. 157:628.PubMedCrossRefGoogle Scholar
  43. Lad, P. M., Welton, A. F., and Rodbell, M., 1977, Evidence for distinct guanine nucleotide sites in the regulation of the glucagon receptor and of adenylate cyclase activity, J. Biol. Chem. 252:5942.PubMedGoogle Scholar
  44. Lampen, J. O., 1969, Amphotericin B and other polyenic antifungal antibiotics, Am. J. Gin. Pathol. 52:138.Google Scholar
  45. Leonard, E. J., Skeel, A., Chiang, P. K., and Cantoni, G. L., 1978, The action of the adeno-sylhomocysteine hydrolase inhibitor, 3-deazaadenosine on phagocytic function of mouse macrophages and human monocytes, Biochem. Biophys. Res. Commun. 84:102.PubMedCrossRefGoogle Scholar
  46. Lohr, K. M., and Snyderman, R., 1982, Amphotericin B alters the affinity and functional activity of the oligopeptide chemotactic factor receptor on human polymorphonuclear leukocytes, J. Immunol. 129:1594.PubMedGoogle Scholar
  47. Maino, V. C., Hayman, M. J., and Crumpton, M. J., 1975, Relationship between enhanced turnover of phosphatidylinositol and lymphocyte activation by mitogens, Biochem. J. 146:247.PubMedGoogle Scholar
  48. Marasco, W.A., Fantone, J. C., Freer, R. J., and Ward, P. A., 1983, Characterization of the rat neutrophil formyl peptide Chemotaxis receptor, Am. J. Pathol. 111:373.Google Scholar
  49. Metchnikoff, E., 1968, Lectures on the Comparative Pathology of Inflammation, Dover, New York.Google Scholar
  50. Naccache, P. H., Showell, H. J., Becker, E. L., and Shaa’fi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes: Effect of chemotactic factor, J. Cell. Biol. 73:428.PubMedCrossRefGoogle Scholar
  51. Niedel, J., Kahane, I., Lachman, L., and Cuatrecasas, P., 1980, A subpopulation of cultured human promyelocyte leukemia cells (HL-60) displays the formyl peptide chemotactic receptor, Proc. Natl. Acad. Sci. (USA) 77:1000.CrossRefGoogle Scholar
  52. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C., Proc. Natl. Acad. Sci. (USA) 80:36.CrossRefGoogle Scholar
  53. O’Dea, R. F., Viveros, O. H., Aswanikumar, S., Schiffmann, E., Chiang, P.K., Cantoni, G. L., and Axelrod, J., 1978, A protein carboxymethylation stimulated by chemotactic peptides in leukocytes, Fed. Proc. 37:1656.Google Scholar
  54. Palmer, R. M. J., Steprey, R. J., Higgs, G. A., and Eakins, K. E., 1980, Chemotactic activity of arachidonic acid lipoxygenase products in leukocytes from different species, Prostaglandins 20:411.PubMedGoogle Scholar
  55. Pike, M. C., and Snyderman, R., 1980, Lipid requirements for leukocyte Chemotaxis and phagocytosis: Effects of inhibitors of phospholipid and cholesterol synthesis, J. Immunol. 124:1963.PubMedGoogle Scholar
  56. Pike, M. C., and Snyderman, R., 1981a, Transmethylation reactions are required for initial morphologic and biochemical responses of human monocytes to chemoattractants, J. Immunol. 127:1444.PubMedGoogle Scholar
  57. Pike, M. C., and Snyderman, R., 1981b, Alterations of new methylated phospholipid synthesis in the plasma membranes of macrophages exposed to chemoattractants, J. Cell. Biol. 91:221.PubMedCrossRefGoogle Scholar
  58. Pike, M. C., and Snyderman, R., 1982, Transmethylation reactions regulate affinity and functional activity of chemotactic factor receptors on macrophages, Cell 28:107.PubMedCrossRefGoogle Scholar
  59. Pike, M. C., Kredich, N. M., and Snyderman, R., 1978, Requirement of S-adenosyl-L-methionine-mediated methylation for human monocyte Chemotaxis, Proc. Natl. Acad. Sci. (USA) 75:3928.CrossRefGoogle Scholar
  60. Pike, M. C., Kredich, N. M., and Snyderman, R., 1979, Phospholipid methylation in macrophages is inhibited by chemotactic factors, Proc. Natl. Acad. Sci. (USA) 76:2922.CrossRefGoogle Scholar
  61. Pike, M. C., Fischer, D. G., Koren, H. S., and Snyderman, R., 1980, Development of specific receptors for N-formylated chemotactic peptides in a human monocyte cell line stimulated with lymphokines, J. Exp. Med. 152:31.PubMedCrossRefGoogle Scholar
  62. Rittenhouse-Simmons, S., 1979, Production of diglyceride from phosphatidylinositol in activated human platelets, J. Clin. Invest. 63:580.PubMedCrossRefGoogle Scholar
  63. Shin, H. S., Snyderman, R., Friedman, E., Mellors, A., and Mayer, M. D., 1968, Chemotactic and anaphylatoxic fragment, cleaved from the fifth component of guinea pig complement, Science 162:361.PubMedCrossRefGoogle Scholar
  64. Showell, H. J., Freer, R. J., Zigmond, S. H., Schiffmann, E., Aswanikumar, S., Corcoran, B. A., and Becker, E. L., 1976, The structure-activity relations of synthetic peptides as chemotactic factors and inducers of lysosomal enzyme secretion for neutrophils, J. Exp. Med. 143:1154.PubMedCrossRefGoogle Scholar
  65. Smith, C. W., Hollers, J. C., Patrick, R. A., and Hassett , 1979, Motility and adhesiveness in human neutrophils. Effects of chemotactic factors, J. Clin. Invest. 63:221.PubMedCrossRefGoogle Scholar
  66. Snyderman, R., and Fudman, E. J., 1980, Demonstration of a chemotactic factor receptor on macrophages, J. Immunol. 124:2754.PubMedGoogle Scholar
  67. Snyderman, R., and Pike, M. C., 1980, N-formylmethionyl peptide receptors on equine leukocytes initiate secretion but not Chemotaxis, Science 209:493.PubMedCrossRefGoogle Scholar
  68. Snyderman, R., Gewurz, H., and Mergenhagen, S. E., 1968a, Interactions of the complement system with endotoxic lipopolysaccharide. Generation of a factor chemotactic for polymorphonuclear leukocytes, J. Exp. Med. 128:259.PubMedCrossRefGoogle Scholar
  69. Snyderman, R., Shin, H. S., Phillips, J. K., Gewurz, H., and Mergenhagen, S. E., 1969, A neutrophil chemotactic factor derived from C5 upon interaction of guinea pig serum with endotoxin, J. Immunol. 103:413.PubMedGoogle Scholar
  70. Snyderman, R., Phillips, J. K., and Mergenhagen, S. E., 1970, Polymorphonuclear leukocyte chemotactic activity in rabbit and guinea pig serum treated with immune complexes: Evidence for C5a as the major chemotactic factor, Infect. Immun. 1:521.PubMedGoogle Scholar
  71. Snyderman, R., Altman, L. C., Hausman, M.S., and Mergenhagen, S.E., 1972, Human mononuclear leukocyte Chemotaxis: A quantitative assay for mediators of humoral and cellular chemotactic factors, J. Immunol. 108:857.PubMedGoogle Scholar
  72. Snyderman, R., Pike, M. C., and Kredich, N. M., 1980, Role of transmethylation reactions in cellular motility and phagocytosis, Mol. Immunol. 17:209.PubMedCrossRefGoogle Scholar
  73. Snyderman, R., Pike, M. C., Edge, S., and Lane, B. C., 1984. A chemoattractant receptor on macrophages exists in two affinity states regulated by guanine nucleotides, J. Cell. Biol. 98: (in press).Google Scholar
  74. Spilberg, I., and Mehta, J., 1979, Demonstration of a specific neutrophil receptor for a cell derived chemotactic factor, J. Clin. Invest. 59:582.CrossRefGoogle Scholar
  75. Spilberg, I., Gallacher, A., Mehta, J., and Mandell, B., 1976, Urate crystal induced chemotactic factor, isolation and partial characterization, J. Gin. Invest. 58:815.CrossRefGoogle Scholar
  76. Stadel, J. M., DeLean, A., and Lefkowitz, R. J., 1982, Molecular mechanisms of coupling in hormone receptor-adenylate cyclase systems, Adv. Enzymol. 53:1.PubMedGoogle Scholar
  77. Verghese, M. W., and Snyderman, R., 1983, Hormonal regulation of adenylate cyclase in macrophage membranes is regulated by guanine nucleotides, J. Immunol. 180:869.Google Scholar
  78. Ward, P. A., and Newman, L. J., 1969, A neutrophil chemotactic factor from human C5, J. Immunol. 102:93.PubMedGoogle Scholar
  79. Ward, P. A., Reinold, H. G., and David, J. R., 1969, Leukotactic factor produced by sensitized lymphocytes, Science 163:1079.PubMedCrossRefGoogle Scholar
  80. Wasserman, S. I., Sater, N. A., Center, D. M., and Austen, K. F., 1977, Cold urticaria: Recognition and characterization of a neutrophil chemotactic factor which appears in serum during experimental cold challenge, J. Clin. Invest. 60:189.PubMedCrossRefGoogle Scholar
  81. Weinberg, J. B., Muscato, J. J., and Niedel, J., 1981, Monocyte chemotactic pep tide receptor, J. Gin. Invest. 68:621.CrossRefGoogle Scholar
  82. Weissmann, G., Serhan, C., Smolen, J. E., Korchak, H. M., Friedman, R., and Kaplan, H. B., 1982, Stimulus-secretion coupling in the human neutrophil: The role of phosphatide acid and oxidized fatty acids in the translocation of calcium, Adv. Prostaglandin Thromboxane Leukotriene Res. 9:259.Google Scholar
  83. Wheeler, G. L., and Bitensky, M. W., 1977, A light-activated GTPase in vertebrate photoreceptors: Regulation of light-activated cyclic GMP phosphodiesterase, Proc. Natl. Acad. Sci. (USA) 74:4238.CrossRefGoogle Scholar
  84. Williams, L. T., and Lefkowitz, R. J., 1978, Receptor Binding Studies in Adrenergic Pharmacology, Raven Press, New York.Google Scholar
  85. Williams, L. T., Snyderman, R., Pike, M. C., and Lefkowitz, R. J., 1977, Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes, Proc. Natl. Acad. Sci. (USA) 74:1204.CrossRefGoogle Scholar
  86. Wright, D., 1983, Cytoplasmic granules of human neutrophils: Differences in the membrane lipids of primary and secondary granules, Proceedings of the Fifth Phagocyte Workshop, Washington, D.C. Google Scholar
  87. Yuli, I., Tomonaga, A., and Snyderman, R., 1982, Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers, Proc. Natl. Acad. Sci. (USA) 79:5906.CrossRefGoogle Scholar
  88. Zigmond, S. H., and Hirsch, J. G., 1973, Leukocyte locomotion and Chemotaxis: New methods for evaluation and demonstration of a cell-derived chemotactic factor, J. Exp. Med. 137:387.PubMedCrossRefGoogle Scholar
  89. Zimmerman, T. P., Schmitges, C. J. , Walberg, G., Deeprose, R. D., Duncan, G. S., Cuatrecasas, P., and Elion, G. B., 1980, Modulation of cyclic AMP metabolism by S-adenosyl-homo-cysteine and S-3-deazaadenosyl-homocysteine in mouse lymphocytes, Proc. Natl. Acad. Sci. (USA) 77:5639.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Ralph Snyderman
    • 1
    • 2
  • Marilyn C. Pike
    • 1
    • 2
  1. 1.Laboratory of Immune Effector FunctionHoward Hughes Medical InstituteDurhamUSA
  2. 2.Division of Rheumatic and Genetic Diseases, Departments of Medicine, and Microbiology and ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations