Brain Laterality as a Source of Individual Differences in Behavior: Animal Models of Depression and Substance Abuse

  • Jeffrey N. Carlson
  • Isabelle M. Maisonneuve
  • Stanley D. Glick
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 1)


Functional and anatomical laterality of the human brain has been studied since the early neurologist Broca reported that lesions of the left cerebral hemisphere resulted in language disorders. His findings suggested a specialized role for this hemisphere in controlling speech (Broca, 1861). Since these early reports, numerous differences between the left and right hemispheres of the human brain have been reported. Many hemispheric asymmetries have been shown to involve dominance where one hemisphere plays a greater role in control of a specific behavior (Corballis, 1991; Hellige, 1993). It has been shown, for example, that while the human left hemisphere is specialized for the processing of language, the right hemisphere has a dominant role for the processing of musical, visuospatial and emotional information (Springer and Deutsch, 1981). Lateralization of brain function often indicates that the two hemispheres are differentially proficient in controlling various behavioral activities. Differential degrees of brain lateralization appear to occur within the population. Variation in human functional brain asymmetry is associated with differences in handedness (Annett, 1985; Bryden, 1982), cognitive ability (O’Boyle and Hellige, 1989), emotional function (Davidson, 1992) and psychopathology (Flor Henry, 1986).


Nucleus Accumbens Medial Prefrontal Cortex Inescapable Shock Rotational Behavior Ethanol Drinking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, E.D., Keefe, K.A., DiFrischia, D.S., Zigmond, M.J. (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J.Neurochem. 52: 1655–1658.PubMedCrossRefGoogle Scholar
  2. Agren, H. and Reibring, L. (1994) PET studies of presynaptic monoamine metabolism in depressed patients and healthy volunteers. Pharmacopsychiatry 27: 2–6.PubMedCrossRefGoogle Scholar
  3. Anisman, H., Grimmer, J., Irwin, J., Remington, G., Sklar, L.S. (1979) Escape performance after inescapable shock in selectively bred lines of mice: response maintenance and catecholamine activity. J.Comp.Physiol.Psychol. 93: 229–241.PubMedCrossRefGoogle Scholar
  4. Anisman, H. and Waller, T.G. (1974) Effects of inescapable shock and shock-produced conflict on self selection of alcohol in rats. Pharmacology, Biochemistry and Behavior 2: 27–33.CrossRefGoogle Scholar
  5. Annett, M. (1985) Left, right, hand and brain: The right shift theory. Erlbaum, Hillsdale, NJ.Google Scholar
  6. Backon, J. (1989) Etiology of alcoholism: relevance of prenatal hormonal influences on the brain, anomalous dominance, and neurochemical and pharmacological brain asymmetry. [Review]. Medical Hypotheses 29: 59–63.PubMedCrossRefGoogle Scholar
  7. Beatty, W.W. (1979) Failure to observe learned helplessness in rats exposed to inescapable footshock. B u I l. Psychonom. Soc. 13: 272–273.Google Scholar
  8. Bolla, K.I., Cadet, J.L., London, E.D. (1998) The neuropsychiatry of chronic cocaine abuse. [Review] [82 refs]. Journal of Neuropsychiatry & Clinical Neurosciences 10: 280–289.Google Scholar
  9. Bond, N.W. (1978) Shock induced alcohol consumption in rats: role of initial preference. Pharmacology, Biochemistry & Behavior 9: 39–42.Google Scholar
  10. Bowers, B.J. and Wehner J.M. (1992) Adrenalectomy and stress modulate GABAA receptor function in LS and SS mice. Brain Research 576: 80–88.PubMedCrossRefGoogle Scholar
  11. Brass, C.A. and Glick S.D. (1981) Sex differences in drug-induced rotation in two strains of rats. Brain Res. 223: 229–234.PubMedCrossRefGoogle Scholar
  12. Breese, G.R., Morrow, A.L., Simson, P.E., Criswell, H.E., McCown, T.J., Duncan, G.E., Keir, W.J. (1993) The neuroanatomical specificity of ethanol action on ligand-gated ion channels: a hypothesis. [Review]. Alcohol & Alcoholism Supplement. 2: 309–313.Google Scholar
  13. Breiter, H.C., Gollub, R.L., Weisskoff, R.M., Kennedy, D.N., Makris, N., Berke, J.D., Goodman, J.M., Kantor, H.L., Gastfriend, D.R., Riorden, J.P., Mathew, R.T., Rosen, B.R., Hyman, S.E. (1997) Acute effects of cocaine on human brain activity and emotion. Neuron 19: 591–611.PubMedCrossRefGoogle Scholar
  14. Broca, P. (1861) Remarques sur le siege de la faculte du langage articule. Bull Soc d’Anthropol Paris,2nd series, 6: 398–407.Google Scholar
  15. Bryden, M.H. (1982) Laterality, functional asymmetry in the intact brain. Academic Press, New York.Google Scholar
  16. Caplan, M.A. and Puglisi, K. (1986) Stress and conflict conditions leading to and maintaining voluntary alcohol consumption in rats. Pharmacology, Biochemistry & Behavior 24: 271–280.CrossRefGoogle Scholar
  17. Carboni, E., Imperato, A., Perezzani, L., Di Chiara, G. (1989) Amphetamine, cocaine, phencyclidine and nomifensine increase extracellular dopamine concentrations preferentially in the nucleus accumbens of freely moving rats. Neuroscience 28: 653–661.PubMedCrossRefGoogle Scholar
  18. Carboni, E., Tanda, G.L., Frau, R., Di Chiara, G. (1990) Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex: evidence that dopamine is taken up in vivo by noradrenergic terminals. Journal of Neurochemistry 55: 1067–1070.PubMedCrossRefGoogle Scholar
  19. Carlezon, W.A. Jr., Devine, D.P., Wise, R.A. (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology (Berl) 122: 194–197.CrossRefGoogle Scholar
  20. Carlson, J.N., Fitzgerald, L.W., Keller, R.W. Jr., Glick, S.D. (1991) Side and region dependent changes in dopamine activation with various durations of restraint stress. Brain Res. 550: 313–318.PubMedCrossRefGoogle Scholar
  21. Carlson, J.N., Fitzgerald, L.W., Keller, R.W. Jr., Glick, S.D. (1993) Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res. 630: 178–187.PubMedCrossRefGoogle Scholar
  22. Carlson, J.N. and Glick, S.D. (1989) Cerebral lateralization as a source of interindividual differences in behavior. Experientia 45: 788–798.PubMedCrossRefGoogle Scholar
  23. Carlson, J.N. and Glick, S.D. (1991) Brain laterality as a determinant of susceptibility to depression in an animal model. Brain Res. 550: 324–328.PubMedCrossRefGoogle Scholar
  24. Carlson, J.N. and Glick, S.D. (1992) Behavioral laterality as a determinant of individual differences in behavioral function and dysfunction, in Genetically Defined Animal Models of Neurobehavioral Dysfunctions ( Driscoll P ed) pp 189–216, Birkhauser, Boston.Google Scholar
  25. Carlson, J.N., Glick, S.D., Hinds, P.A. (1987b) Changes in d-amphetamine elicited rotational behavior in rats exposed to uncontrollable footshock stress. Pharmacol.Biochem.Behay. 26: 17–21.CrossRefGoogle Scholar
  26. Carlson, J.N., Glick, S.D., Hinds, P.A., Baird, J.L. (1988) Food deprivation alters dopamine utilization in the rat prefrontal cortex and asymmetrically alters amphetamine-induced rotational behavior. Brain Res. 454: 373–377.PubMedCrossRefGoogle Scholar
  27. Carlson, J.N., Herrick, K.F., Baird, J.L., Glick, S.D. (1987a) Selective enhancement of dopamine utilization in the rat prefrontal cortex by food deprivation. Brain Res. 400: 200–203.PubMedCrossRefGoogle Scholar
  28. Carlson, J.N., Keller, R.W., Glick, S.D. (1990) Individual differences in the behavioral effects of stressors attributable to lateralized differences in mesocortical dopamine systems. Society for Neuroscience abstracts 16. 233Google Scholar
  29. Carlson, J.N., Visker, K.E., Keller, R.W. Jr., Glick, S.D. (1996) Left and right 6-hydroxydopamine lesions of the medial prefrontal cortex differentially alter subcortical dopamine utilization and the behavioral response to stress. Brain Research 711: 1–9.PubMedCrossRefGoogle Scholar
  30. Carter, C.J. and Pycock, C.J. (1980) Behavioral and neurochemical effects of dopamine and noradrenaline depletion within the medial prefrontal cortex of the rat. Brain Res. 192: 163–176.PubMedCrossRefGoogle Scholar
  31. Chisari, A., Carino, M., Perone, M., Gaillard, R.C., Spinedi, E. (1995) Sex and strain variability in the rat hypothalamo-pituitary-adrenal ( HPA) axis function. J of Endocrinological Investigation 18: 25–33.Google Scholar
  32. Claustre, Y., Rivy, J.P., Dennis, T., Scatton, B. (1986) Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J.Pharmacol.Exp.Ther. 238: 693–700.PubMedGoogle Scholar
  33. Corballis, M.C. (1991) The Lopsided Ape. Oxford University Press, Oxford.Google Scholar
  34. Cotzias, G.C., Van Woert, M.H., Schiffer, L.M. (1967) Aromatic amino acids and modification of parkinsonism. New Engl.J.Med. 276: 374–379.PubMedCrossRefGoogle Scholar
  35. Criswell, H.E., Simson, P.E., Duncan, G.E., McCown, T.J., Herbert, J.S., Morrow, A.L., Breese, G.R. (1993) Molecular basis for regionally specific action of ethanol on gamma-aminobutyric acidA receptors: generalization to other ligand-gated ion channels. Journal of Pharmacology & Experimental Therapeutics 267: 522–537.Google Scholar
  36. Cutting, J. (1990) The right cerebral hemisphere and psychiatric disorders. Oxford University Press, Oxford.Google Scholar
  37. D’haenen, H., Bossuyt, A., Mertens, J., Bossuyt-Piron, C., Gijsemans, M., Kaufman, L. (1992) SPECT imaging of serotonin2 receptors in depression. Psychiatry Research: Neuroimaging 45: 227–237.Google Scholar
  38. Davidson, R.J. (1992) Anterior cerebral asymmetry and the nature of emotion. Brain Cogn. 20: 125–151.PubMedCrossRefGoogle Scholar
  39. Davidson, R.J. (1995) Cerebral asymmetry, emotion and affective style, in Brain Asymmetry ( Davidson RJ and Hugdahl K eds) pp 362–387, MIT Press, Cambridge, MA.Google Scholar
  40. Davidson, R.J. and Sutton, S.K. (1995) Affective neuroscience: the emergence of a discipline. [Review]. Curr.Opin.Neurobiol. 5: 217–224.PubMedCrossRefGoogle Scholar
  41. Deakin, J.F., Slater, P., Simpson, M.D., Gilchrist, A.C., Skan, W.J., Royston, M.C., Reynolds, G.P., Cross, A.J. (1989) Frontal cortical and left temporal glutamatergic dysfunction in schizophrenia. J.Neurochem. 52: 1781–1786.PubMedCrossRefGoogle Scholar
  42. Deckel, A.W., Bauer, L., Hesselbrock, V. (1995) Anterior brain dysfunctioning as a risk factor in alcoholic behaviors. Addiction 90: 1323–1334.PubMedCrossRefGoogle Scholar
  43. Deutch, A.Y., Gruen, R.J., Roth, R.H. (1989) The effects of perinatal diazepam exposure on stress-induced activation of the mesotelencephalic dopamine system. Neuropsychopharmacology 2: 105–114.PubMedCrossRefGoogle Scholar
  44. Deckel, A.W., Shoemaker, W.J., Arky, L. (1996) Dorsal lesions of the prefrontal cortex: Effects on alcohol consumption and subcortical monoaminergic systems. Brain Research 723: 70–76.Google Scholar
  45. Deutch, A.Y., Clark, W.A., Roth, R.H. (1990) Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain.Res. 521: 311–315.PubMedCrossRefGoogle Scholar
  46. Dhabhar, F.S., McEwen, B.S., Spencer, R.L. (1997) Adaptation to prolonged or repeated stress-comparison between rat strains showing intrinsic differences in reactivity to acute stress. Neuroendocrinology 65: 360–368.PubMedCrossRefGoogle Scholar
  47. Di Chiara, G. and Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America 85: 5274–5278.PubMedCrossRefGoogle Scholar
  48. Diamond, M.C., Dowling, G.A., Johnson, R.E. (1981) Morphological cerebral cortical asymmetry in male and female rats. Exper.Neurol. 71: 261–268.CrossRefGoogle Scholar
  49. Diamond, M.C., Johnson, R.E., Young, D., Sukhwinder Singh, S. (1983) Age-related morphologic differences in the rat cortex and hippocampus: male-female; right-left. Exper.Neurol. 81: 1–13.CrossRefGoogle Scholar
  50. Doherty, M.D. and Grafton, A. (1999) Effects of medial prefrontal cortical injections of GABA receptor agonists and antagonists on the local and nucleus accumbens dopamine responses to stress. Synapse 32: 288–300.PubMedCrossRefGoogle Scholar
  51. Drevets, W.C., Videen, T.O., Price, J.L., Preskorn, S.H., Carmichael, S.T., Raichle, M.E. (1992) A functional anatomical study of unipolar depression. Journal of Neuroscience 12: 3628–3641.PubMedGoogle Scholar
  52. Drew, K.L., Lyon, R.A., Titeler, M., Glick, S.D. (1986) Asymmetry in D-2 binding in female rat striata. Brain Res. 363: 192–195.PubMedCrossRefGoogle Scholar
  53. Espejo, E.F. and Minano, F.J. (1999) Prefrontocortical dopamine depletion induces antidepressant-like effects in rats and alters the profile of desipramine during Porsolt’s test. Neuroscience 88: 609–615.PubMedCrossRefGoogle Scholar
  54. Fadda, F., Argiolas, A., Melis, M.R., Tissari, A.H., Onali, P.L., Gessa, G.L. (1978) Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life.Sci. 23: 2219–2224.PubMedCrossRefGoogle Scholar
  55. Fadda, F., Mosca, E., Meloni, R., Gessa, G.L. (1985) Ethanol-stress interaction on dopamine metabolism in the medial prefrontal cortex. Alcohol & Drug Research 6: 449–454.Google Scholar
  56. Flor Henry, P. (1986) Observations, reflections and speculations on the cerebral determinants of mood and on the bilaterally asymmetrical distributions of the major neurotransmitter systems. Acta Neurol. Scand. S uppl. 89.: 75–89.Google Scholar
  57. Fromm, D. and Schopflocher, D. (1984) Neuropsychological test performance in depressed patients before and after drug therapy. Biol.Psychiatry 19: 55–72.PubMedCrossRefGoogle Scholar
  58. Glick, S.D. (1973) Enhancement of spatial preferences by (+) -amphetamine. Neuropharmacol. 12: 43–47.CrossRefGoogle Scholar
  59. Glick, S.D. and Badalamenti, J.I. (1986) Sex difference in reward asymmetry and effects of cocaine. Neuropharmacology. 25: 633–637.PubMedCrossRefGoogle Scholar
  60. Glick, S.D., Carlson, J.N., Baird, J.L., Maisonneuve, I.M., Bullock, A.E. (1988a) Basal and amphetamine-induced asymmetries in striatal dopamine release and metabolism: bilateral in vivo microdialysis in normal rats. Brain Res. 473: 161–164.PubMedCrossRefGoogle Scholar
  61. Glick, S.D., Cox, F.D., Jerussi, T.P., Greenstein, S. (1977) Normal and amphetamine-induced rotation of rats on a flat surface. J.Pharm.Pharmacol. 29: 51–52.PubMedCrossRefGoogle Scholar
  62. Glick, S.D. and Cox, R.D. (1978) Nocturnal rotation in normal rats: correlation with amphetamine-induced rotation and effects of nigrostriatal lesions. Brain Res. 150: 149–161.PubMedCrossRefGoogle Scholar
  63. Glick, S.D. and Greenstein, S. (1973) Possible modulating influence of frontal cortex on nigro-striatal function. Br.J.Pharmacol. 49: 316–321.PubMedCrossRefGoogle Scholar
  64. Glick. S.D. and Hinds, P.A. (1984) Sex-differences in sensitization to cocaine-induced rotation. Eur.J.Pharmacol. 99: 119–121.PubMedCrossRefGoogle Scholar
  65. Glick, S.D., Hinds, P.A., Carlson, J.N. (1987) Food deprivation and stimulant self-administration in rats: Differences between cocaine and d-amphetamine. Psychopharmacol. 91: 372–374.Google Scholar
  66. Glick, S.D., Hinds, P.A., Shapiro, R.M. (1983) Cocaine-induced rotation: Sex-dependent differences between left-and right-sided rats. Science 221: 775–777.Google Scholar
  67. Glick, S.D. and Jerussi, T.P. (1974) Spatial and paw preferences in rats: their relationship to rate-dependent effects of d-amphetamine. Joum.Pharmacol.Exper.Theraput. 188: 714–725.Google Scholar
  68. Glick, S.D., Jerussi, T.P., Water, D.H., Green, J.P. (1974) Amphetamine-induced changes in striatal dopamine and acetylcholine levels and relationship to rotation (circling behavior) in rats. B iochem. Pharmacol. 23: 3223–3225.Google Scholar
  69. Glick, S.D., Lyon, R.A., Hinds, P.A., Sowek, C., Titeler, M. (1988b) Correlated asymmetries in striatal D1 and D2 binding: relationship to apomorphine-induced rotation. Brain Res. 455: 43–48.PubMedCrossRefGoogle Scholar
  70. Glick, S.D., Meibach, R.C., Cox, R.D., Maayani, S. (1979) Multiple and interrelated functional asymmetries in rat brain. Life Sci. 25: 395–400.PubMedCrossRefGoogle Scholar
  71. Glick, S.D., Merski, C., Steindorf, S., Wang, S., Keller, R.W., Carlson, J.N. (1992) Neurochemical predisposition to self administer morphine in rats. Brain Res. 578: 215–220.PubMedCrossRefGoogle Scholar
  72. Glick, S.D., Raucci, J., Wang, S., Keller, R,W. Jr., Carlson, J.N. (1994) Neurochemical predisposition to self-administer cocaine in rats: Individual differences in dopamine and its metabolites. Brain Research 653: 148–154.Google Scholar
  73. Glick, S.D. and Ross, D.A. (1981) Right-sided population bias and lateralization of activity in normal rats. Brain Res. 205: 222–225.PubMedCrossRefGoogle Scholar
  74. Glick, S.D., Shapiro, R.M., Drew, K.L., Hinds, P.A., Carlson, J.N. (1986) Differences in spontaneous and amphetamine-induced rotational behavior, and in sensitization to amphetamine, among SpragueDawley derived rats from different sources. Physiol.Behay. 38: 67–70.CrossRefGoogle Scholar
  75. Glick, S.D., Weaver, L.M., Meibach, R.C. (1980) Lateralization of reward in rats: differences in reinforcing thresholds. Science 207: 1093–1095.PubMedCrossRefGoogle Scholar
  76. Glick, S.D., Weaver, L.M., Meibach, R.C. (1981) Amphetamine enhancement of reward asymmetry. Psychopharmacol. 73: 323–327.CrossRefGoogle Scholar
  77. Glick, S.D., Zimmerberg, B., Greenstein, S. (1976) Individual differences among rats in normal and amphetamine-enhanced locomotor activity: Relationship to behavioral indicies of striatal asymmetry. Brain Res. 105: 362–364.Google Scholar
  78. Goeders, N.E. and Smith, J.E. (1983) Cortical dopaminergic involvement in cocaine reinforcement. Science 221: 773–775.PubMedCrossRefGoogle Scholar
  79. Goeders, N.E. and Smith, J.E. (1993) Intracranial cocaine self-administration into the medial prefrontal cortex increases dopamine turnover in the nucleus accumbens. Journal of Pharmacology & Experimental Therapeutics 265: 592–600.Google Scholar
  80. Gomez, F., de Kloet, E.R., Armarlo, A. (1998) Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. American Journal of Physiology 274: R420 - R427.PubMedGoogle Scholar
  81. Guerin, G. F., Goeders, N. E., Dworkin, S. I., Smith, J. E. (1984) Intracranial self-administration of dopamine into the nucleus accumbens. Soc.Neurosci.Abst. 10, 1072. Ref Type: AbstractGoogle Scholar
  82. Gur, R.E. (1978) Left hemisphere dysfunction and left hemisphere overactivation in schizophrenia. Journal of Abnormal Psychology 87: 226–238.PubMedCrossRefGoogle Scholar
  83. Hegarty, A.A. and Vogel, W.H. (1993) Modulation of the stress response by ethanol in the rat frontal cortex. Pharmacology, Biochemistry & Behavior 45: 327–334.CrossRefGoogle Scholar
  84. Hellige, J.B. (1993) Hemispheric asymmetry: What’s right and what’s left. Harvard University Press, Cambridge, MA.Google Scholar
  85. Henn, F.A., Johnson, J., Edwards, E., Anderson, D. (1985) Melancholia in rodents: neurobiology and pharmacology. Psychopharmacol.Bull. 21: 443–446.PubMedGoogle Scholar
  86. Herman, J.P., Guillonneau, D., Dantzer, R., Scatton, B., Semerdjian Rouquier, L., Le Moal, M. (1982) Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 30: 2207–2214.PubMedCrossRefGoogle Scholar
  87. Hernandez, L. and Hoebel, B.G. (1988) Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sciences 42: 1705–1712.PubMedCrossRefGoogle Scholar
  88. Hodge, C.W., Chappelle, A.M., Samson, H.H. (1996) Dopamine receptors in the medial prefrontal cortex influence ethanol and sucrose reinforced responding. Alcohol.Clin.Exp.Res. 20: 1631–1638.PubMedCrossRefGoogle Scholar
  89. Hoebel, B.G., Monaco, A.P., Hernandez, L., Aulisi, E.F., Stanley, B.G., Lenard, L. (1983) Self-injection of amphetamine directly into the brain. Psychopharmacology (Berl) 81: 158–163.CrossRefGoogle Scholar
  90. Insel, T.R. (1992) Toward a neuroanatomy of obsessive-compulsive disorder [see comments]. [Review] [57 refs]. Archives of General Psychiatry 49: 739–744.PubMedCrossRefGoogle Scholar
  91. Jerussi, T.P. and Glick, S.D. (1974) Amphetamine-induced rotation in rats without lesions. Neuropharmacology. 13: 283–286.PubMedCrossRefGoogle Scholar
  92. Jerussi, T.P. and Glick, S.D. (1975) Apomorphine-induced rotation in normal rats and interaction with unilateral caudate lesions. Psychopharmacologia. 40: 329–334.PubMedCrossRefGoogle Scholar
  93. Jerussi, T.P. and Glick, S.D. (1976) Drug-induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function. Psychopharmacology.(Berlin.) 47: 249–260.CrossRefGoogle Scholar
  94. Jerussi, T.P., Glick, S.D., Johnson, C.L. (1977) Reciprocity of pre-and postsynaptic mechanisms involved in rotation as revealed by dopamine metabolism and adenylate cyclase stimulation. Brain Res. 129: 385–388.PubMedCrossRefGoogle Scholar
  95. Jesberger, J.A. and Richardson, J.S. (1985) Animal models of depression: parallels and correlates to severe depression in humans. Biol.Psychiatry 20: 764–785.PubMedCrossRefGoogle Scholar
  96. Karoum, F., Suddath, R.L., Wyatt, R.J. (1990) Chronic cocaine and rat brain catecholamines: long-term reduction in hypothalamic and frontal cortex dopamine metabolism. European Journal of Pharmacology 186: 1–8.PubMedCrossRefGoogle Scholar
  97. Karreman, M. and Moghaddam, B. (1996) The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. Journal of Neurochemistry 66: 589–598.PubMedCrossRefGoogle Scholar
  98. Kelsey, J.E. (1983) The role of norepinephrine and acetylcholine in mediating escape deficits produced by inescapable shocks. Behavioral & Neural Biology 37: 326–331.CrossRefGoogle Scholar
  99. Koob, G.F. (1992) Neural mechanisms of drug reinforcement. [Review] [97 refs]. Annals of the New York Academy of Sciences 654: 171–191.PubMedCrossRefGoogle Scholar
  100. Koob, G.F., Roberts, A.J., Schulteis, G., Parsons, L.H., Heyser, C.J., Hyytia, P., Merlo-Pich, E., Weiss, F. (1998) Neurocircuitry targets in ethanol reward and dependence. [Review] [42 refs]. Alcoholism: Clinical & Experimental Research 22: 3–9.Google Scholar
  101. Koob, G.F., Vaccarino, F.J., Amalric, M., Bloom, F.E. (1987) Positive reinforcment properties of drugs: search for neural substrates, in Brain Reward Systems and Abuse ( Engel J and Oreland L eds) pp 3550, Raven, New York.Google Scholar
  102. Kornetsky, C. and Esposito, R.U. (1979) Euphorigenic drugs: effects on the reward pathways of the brain. Federation Proceedings 38: 2473–2476.PubMedGoogle Scholar
  103. Korpi, E.R. and Luddens, H. (1993) Regional gamma-aminobutyric acid sensitivity of tbutylbicyclophosphoro[35S]thionate binding depends on gamma-aminobutyric acidA receptor alpha subunit. Molecular Pharmacology 44: 87–92.PubMedGoogle Scholar
  104. Kubos, K.L., Brady, J.V., Moran, T.H., Smith, C.H., Robinson, R.G. (1985) Asymmetrical effect of unilateral cortical lesions and amphetamine on DRL-20: a time-loss analysis. Pharmacology, Biochemistry & Behavior 22: 1001–1006.Google Scholar
  105. Kuczenski, R., Segal, D.S., Aizenstein, M.L. (1991) Amphetamine, cocaine, and fencamfamine: relationship between locomotor and stereotypy response profiles and caudate and accumbens dopamine dynamics. Journal of Neuroscience 11: 2703–2712.PubMedGoogle Scholar
  106. LaHoste, G.J., Mormede, P., Rivet, J.M., Le Moal, M. (1988a) Differential sensitization to amphetamine and stress responsivity as a function of inherent laterality. Brain Research 453: 381–384.PubMedCrossRefGoogle Scholar
  107. LaHoste, G.J., Mormede, P., Rivet, J.M., Le Moal, M. (1988b) New evidence for distinct patterns of brain organization in rats differentiated on the basis of inherent laterality. Brain Research 474: 296–308.PubMedCrossRefGoogle Scholar
  108. Lavielle, S., Tassin, J.P., Thierry, A.M., Blanc, G., Herve, D., Barthelemy, C., Glowinski, J. (1979) Blockade by benzodiazepines of the selective high increase in dopamine turnover induced by stress in mesocortical dopaminergic neurons of the rat. Brain Res. 168: 585–594.PubMedCrossRefGoogle Scholar
  109. LeMoal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: functional and regulatory roles. Physio Rev 71: 155–234.Google Scholar
  110. Lyness, W.H., Friedle, N.M., Moore, K.E. (1979) Destruction of dopaminergic nerve terminals in nucleus accumbens: effect on d-amphetamine self-administration. Pharmacology, Biochemistry & Behavior 11: 553–556.CrossRefGoogle Scholar
  111. Maier, S.F. and Seligman, M.E.P. (1976) Learned helplessness: Theory and evidence. Joum.Exper.Psychol.: Gen. 105: 3–46.Google Scholar
  112. Maisonneuve, I.M. and Glick, S.D. (1992) Interactions between ibogaine and cocaine in rats: in vivo microdialysis and motor behavior. European Journal of Pharmacology 212: 263–266.PubMedCrossRefGoogle Scholar
  113. Maisonneuve, I.M., Keller, R.W., Glick, S.D. (1990) Similar effects of D-amphetamine and cocaine on extracellular dopamine levels in medial prefrontal cortex of rats. Brain Research 535: 221–226.PubMedCrossRefGoogle Scholar
  114. Maisonneuve, I.M., Keller, R.W, Jr., Glick, S.D. (1992) Interactions of ibogaine and D-amphetamine: in vivo microdialysis and motor behavior in rats. Brain Research 579: 87–92.PubMedCrossRefGoogle Scholar
  115. Majewska, M.D. (1996) Cocaine addiction as a neurological disorder: implications for treatment. [Review] [124 refs]. NIDA Research Monograph 163: 1–26.PubMedGoogle Scholar
  116. Maldonado-Irizarry, C.S., Stellar, J.R., Kelley, A.E. (1994) Effects of cocaine and GBR-12909 on brain stimulation reward. Pharmacology, Biochemistry & Behavior 48: 915–920.Google Scholar
  117. Markou, A., Weiss, F., Gold, L.H., Caine, S.B., Schulteis, G., Koob, G.F. (1993) Animal models of drug craving. [Review]. Psychopharmacology (Berl) 112: 163–182.CrossRefGoogle Scholar
  118. Martin-Iverson, M.T., Szostak, C., Fibiger, H.C. (1986) 6-Hydroxydopamine lesions of the medial prefrontal cortex fail to influence intravenous self-administration of cocaine. Psychopharmacology (Berl) 88: 310–314.Google Scholar
  119. Matsuguchi, N., Ida, Y., Shirao, I., Tsujimaru, S. (1994) Blocking effects of ethanol on stress-induced activation of rat mesoprefrontal dopamine neurons. Pharmacology, Biochemistry & Behavior 48: 297–299.Google Scholar
  120. McBride, W.J., Murphy, J.M., Gatto, G.J., Levy, A.D., Yoshimoto, K., Lumeng, L., Li, TK. (1993) CNS mechanisms of alcohol self-administration. Alcohol & Alcoholism Supplement. 2: 463–467.Google Scholar
  121. McGregor, A., Baker, G., Roberts, D.C. (1996) Effect of 6-hydroxydopamine lesions of the medial prefrontal cortex on intravenous cocaine self-administration under a progressive ratio schedule of reinforcement. Pharmacology, Biochemistry & Behavior 53: 5–9.Google Scholar
  122. McIntyre, T.D., Trullas, R., Skolnick, P. (1988) Asymmetrical activation of GABA-gated chloride channels in cerebral cortex. Pharmacol.Biochem.Behay. 30: 911–916.CrossRefGoogle Scholar
  123. Meiergerd, S.M., Schenk, J.O., Sorg, B.A. (1997) Repeated cocaine and stress increase dopamine clearance in the rat medial prefrontal cortex. Brain Research 773: 203–207.PubMedCrossRefGoogle Scholar
  124. Murase, S., Grenhoff, J., Chouvet, G., Gonon, F.G., Svensson, T.H. (1993) Prefrontal cortex regulates burst firing and transmitter release in rat mesolimbic dopamine neurons studied in vivo. Neuroscience Letters 157: 53–56.PubMedCrossRefGoogle Scholar
  125. Ng Cheong Ton, M.J., Brown, Z., Michalakeas, A., Amit, Z. (1983) Stress induced suppression of maintenance but not of acquisition of ethanol consumption in rats. Pharmacology, Biochemistry & Behavior 18: 141–144.Google Scholar
  126. Nielsen, D.M., Crosley, K.J., Keller, R.W. Jr., Glick, S.D., Carlson, J.N. (1999c) Left and Right 6Hydroxydopamine Lesions of the Medial Prefrontal Cortex Differentially Affect Voluntary Ethanol Consumption. Brain Research 823: 59–66.PubMedCrossRefGoogle Scholar
  127. Nielsen, D.M., Crosley, K.J., Keller, R.W. Jr., Glick, S.D., Carlson, J.N. (1999a) Rotation, Locomotor Activity and Individual Differences in Voluntary Ethanol Consumption. Brain Research 823: 59–66.Google Scholar
  128. Nielsen, D.M., Crosley, K.J., Keller, R.W. Jr., Glick, S.D., Carlson, J.N. (1999b) Ethanol induced differences in medial prefrontal cortex dopamine asymmetry and in nucleus accumbens dopamine metabolism in left-and right-turning rats. Brain Research 823: 207–212.PubMedCrossRefGoogle Scholar
  129. Nielsen., D.M., Keller, R.W. Jr., Glick, S.D., Carlson, J.N. (1996) Microinjection of the DI antagonist SCH23390 into the left or right medial prefrontal cortex differentially alters the behavioral and neurochemical responses to footshock stress. Soc.Neurosci.Abst. 22: 161.Google Scholar
  130. Nomikos, G.G., Damsma, G., Wenkstern, D., Fibiger, H.C. (1990) In vivo characterization of locally applied dopamine uptake inhibitors by striatal microdialysis. Synapse 6: 106–112.PubMedCrossRefGoogle Scholar
  131. O’Boyle, M.W. and Heilige, J.B. (1989) Cerebral hemisphere asymmetry and individual differences in cognition. Learning and Individual Differences 1: 7–35.CrossRefGoogle Scholar
  132. Olds, M.E. (1982) Reinforcing effects of morphine in the nucleus accumbens. Brain Research 237: 429–440.PubMedCrossRefGoogle Scholar
  133. Orchinik, M., Weiland, N.G., McEwen, B.S. (1994) Adrenalectomy selectively regulates GABAA receptor subunit expression in the hippocampus. Molecular & Cellular Neurosciences 5: 451–458.CrossRefGoogle Scholar
  134. Petty, F., Davis, L.L., Kabel, D., Kramer, G.L. (1996) Serotonin dysfunction disorders: a behavioral neurochemistry perspective. [Review] [24 refs]. Journal of Clinical Psychiatry 57 Suppl 8: 11–16.Google Scholar
  135. Petty, F., Kramer, G., Moeller, M. (1994) Does learned helplessness induction by haloperidol involve serotonin mediation? Pharmacology, Biochemistry & Behavior 48: 671–676.CrossRefGoogle Scholar
  136. Phillips, G.D., Robbins, T.W., Everitt, B.J. (1994) Bilateral intra-accumbens self-administration of d-amphetamine: antagonism with intra-accumbens SCH-23390 and sulpiride. Psychopharmacology (Berl) 114: 477–485.CrossRefGoogle Scholar
  137. Reynolds, G.P. (1983) Increased concentrations and lateral asymmetry of amygdala dopamine in schizophrenia. Nature 305: 527–529.PubMedCrossRefGoogle Scholar
  138. Roberts DC, Corcoran ME, Fibiger HC (1977) On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacology, Biochemistry & Behavior 6: 615–620.Google Scholar
  139. Robinson, R.G. (1985) Lateralized behavioral and neurochemical consequences of unilateral brain injury in rats., in Cerebral Lateralization in Nonhuman Species. ( Glick SD ed) pp 135–156, Academic Press, Orlando, Fl.Google Scholar
  140. Robinson, R.G. and Chait, R.M. (1985) Emotional correlates of structural brain inj2Pharmacology, Biochemistry & Behavior 6: 615–620.Google Scholar
  141. Robinson, R.G. (1985) Lateralized behavioral and neurochemical consequences of unilateral brain injury in rats., in Cerebral Lateralization in Nonhuman Species. ( Glick SD ed) pp 135–156, Academic Press, Orlando, Fi.Google Scholar
  142. Robinson, R.G. and Chait, R.M. (1985) Emotional correlates of structural brain injury with particular emphasis on post-stroke mood disorders. CRC.Crit.Rev.Clin.Neurobiol. 1: 285–318.PubMedGoogle Scholar
  143. Robinson, T.E. and Berridge, K.C. (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. [Review]. Brain Research–Brain Research Reviews 18: 247–291.PubMedCrossRefGoogle Scholar
  144. Rosen, G.D., Finklestein, S., Stoll, A.L., Yutzey, D.A., Denenberg, V.H. (1984) Neurochemical asymmetries in the albino rat’s cortex, striatum and nucleus accumbens. Life Sci. 34: 1143–1148.PubMedCrossRefGoogle Scholar
  145. Rosin, D.L., Clark, W.A., Goldstein, M., Roth, R.H., Deutch, A.Y. (1992) Effects of 6-hydroxydopamine lesions of the prefrontal cortex on tyrosine hydroxylase activity in mesolimbic and nigrostriatal dopamine systems. Neuroscience 48: 831–839.PubMedCrossRefGoogle Scholar
  146. Ross, D.A. and Glick, S.D. (1981) Lateralized effects of bilateral frontal cortex lesions in rats. Brain Res. 210: 379–382.PubMedCrossRefGoogle Scholar
  147. Ross, D.A., Glick, S.D., Meibach, R.C. (1981) Sexually dimorphic brain and behavioral asymmetries in the neonatal rat. Proc.Natl.Acad.Sci.U.S.A. 78: 1958–1961.PubMedCrossRefGoogle Scholar
  148. Schaefer, G.J. and Michael, R.P. (1988) An analysis of the effects of amphetamine on brain self-stimulation behavior. Behavioural Brain Research 29: 93–101.PubMedCrossRefGoogle Scholar
  149. Schenk, S., Horger, B.A., Peltier, R., Shelton, K. (1991) Supersensitivity to the reinforcing effects of cocaine following 6-hydroxydopamine lesions to the medial prefrontal cortex in rats. Brain Research 543: 227–235.PubMedCrossRefGoogle Scholar
  150. Scott, P.A., Cierpial, M.A., Kilts, C.D., Weiss, J.M. (1996) Susceptibility and resistance of rats to stress- induced decreases in swim-test activity: A selective breeding study. Brain Research 725: 217–230.Google Scholar
  151. Shoemaker, W. J., Deckel, A. W., Hebert, D. M. (1996) Effects of a single dose of DMI on voluntary ethanol drinking and lateralized monoamine levels in rats. Soc.Neurosci.Abst. 22 (Part 2), 11–56.Google Scholar
  152. Slopsema, J.S., Van der Gugten, J., De Bruin, J.P.C. (1982) Regional concentrations of noradrenaline and dopamine in the frontal cortex of the rat: dopaminergic innervation of the prefrontal subareas and lateralization of prefrontal dopamine. Brain Res. 250: 197–200.PubMedCrossRefGoogle Scholar
  153. Soldo, B.L., Proctor, W.R., Dunwiddie, T.V. (1994) Ethanol differentially modulates GABAA receptor-mediated chloride currents in hippocampal, cortical, and septal neurons in rat brain slices. Synapse 18: 94–103.PubMedCrossRefGoogle Scholar
  154. Sorg, B.A., Davidson, D.L., Kalivas, P.W., Prasad, B.M. (1997) Repeated daily cocaine alters subsequent cocaine-induced increase of extracellular dopamine in the medial prefrontal cortex. Journal of Pharmacology & Experimental Therapeutics 281: 54–61.Google Scholar
  155. Springer, S. and Deutsch, G. (1981) Left Brain, Right Brain. Freeman, San Francisco.Google Scholar
  156. Starkstein, S.E., Moran, T.H., Bowersox, J.A., Robinson, R.G. (1988) Behavioral abnormalities induced by frontal cortical and nucleus accumbens lesions. Brain Research 473: 74–80.PubMedCrossRefGoogle Scholar
  157. Suddath, R.L., Casanova, M.F., Goldberg, T.E., Daniel, D.G., Kelsoe, J.R Jr., Weinberger, D.R. (1989) Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. American Journal of Psychiatry 146: 464–472.PubMedGoogle Scholar
  158. Sullivan, R.M. and Szechtman, H. (1995) Asymmetrical influence of mesocortical dopamine depletion on stress ulcer development and subcortical dopamine systems in rats: implications for psychopathology. Neuroscience 65: 757–766.PubMedCrossRefGoogle Scholar
  159. Tanda, G., Carboni, E., Frau, R., Di, C.G. (1994) Increase of extracellular dopamine in the prefrontal cortex: a trait of drugs with antidepressant potential?. Psychopharmacology (Berl) 115: 285–288.CrossRefGoogle Scholar
  160. Tarter, R.E., Blackson, T., Brigham, J., Moss, H., Caprara, G.V. (1995) The association between childhood irritability and liability to substance use in early adolescence: a 2-year follow-up study of boys at risk for substance abuse. Drug & Alcohol Dependence 39: 253–261.CrossRefGoogle Scholar
  161. Tarter, R.E. and Hegedus, A.M. (1985) Neurological mechanisms underlying inheritance of alcoholism vulnerability. International Journal of Neuroscience 28: 1–10.PubMedCrossRefGoogle Scholar
  162. Tarter, R.E. and Ryan, C.M. (1983) Neuropsychology of alcoholism. Etiology, phenomenology, process, and outcome. [Review]. Recent Developments in Alcoholism 1: 449–469.Google Scholar
  163. Thierry, A.M., Tassin, J.P., Blanc, G., Glowinski, J. (1976) Selective activation of the mesocortical DA system by stress. Nature 263: 242–244.PubMedCrossRefGoogle Scholar
  164. Ticku, M.K. (1989) Ethanol and the benzodiazepine-GABA receptor-ionophore complex. Experientia 45: 413–418.PubMedCrossRefGoogle Scholar
  165. Tomarken, A.J., Davidson, R.J., Wheeler, R.W., Doss, R. (1992) Individual differences in anterior brain asymmetry and fundamental dimensions of emotion. Journ of Personality and Social Psychology 62: 676–687.CrossRefGoogle Scholar
  166. Toomim, C. S., Greengard, P., Goldman Rakic, P. S. (1992) Hemispheric asymmetry of DARPP-32 in rat cingulate cortex. Soc.Neurosci.Abst. 18, 1419–1419. Ref Type: AbstractGoogle Scholar
  167. Ungerstedt, U. (1971) Striatal dopamine release after amphetamine or nerve degeneration revealed by rotational behavior. Acta Physiol.Scand. 367: 49–68.Google Scholar
  168. van Wolfswinkel, L. and van Ree, J.M. (1985) Effects of morphine and naloxone on thresholds of ventral tegmental electrical self-stimulation. Naunyn Schmiedebergs Arch.Pharmacol. 330: 84–92.PubMedCrossRefGoogle Scholar
  169. Varlinskaya, E.I., Petrov, E.S., Robinson, S.R., Smotherman, W.P. (1995) Asymmetrical development of the dopamine system in the fetal rat as indicated by lateralized administration of SKF-28393 and SCH-23390. Pharmacology, Biochemistry & Behavior 50: 359–367.Google Scholar
  170. Volkow, N.D., Wang, G.J., Fowler, J.S., Hitzemann, R., Angrist, B., Gatley, S.J., Logan, J., Ding, Y.S., Pappas, N. (1999) Association of methylphenidate-induced craving with changes in right striatoorbitofrontal metabolism in cocaine abusers: implications in addiction. American Journal of Psychiatry 156: 19–26.PubMedGoogle Scholar
  171. Westerink, B.H., Enrico, P., Feimann, J., De Vries, J.B. (1998) The pharmacology of mesocortical dopamine neurons: a dual-probe microdialysis study in the ventral tegmental area and prefrontal cortex of the rat brain. Journal of Pharmacology & Experimental Therapeutics 285: 143–154.Google Scholar
  172. Wieland, S., Boren, J.L., Consroe, P.F., Martin, A. (1986) Stock differences in the susceptibility of rats to learned helplessness training. Life Sci. 39: 937–944.PubMedCrossRefGoogle Scholar
  173. Williams-Hemby, L. and Porrino, L.J. (1994) Low and moderate doses of ethanol produce distinct patterns of cerebral metabolic changes in rats. Alcoholism, Clinical & Experimental Research 18: 982–988.CrossRefGoogle Scholar
  174. Willner, P. (1983c) Dopamine and depression: a review of recent evidence. Brain.Res. 287: 211–224.PubMedGoogle Scholar
  175. Willner, P. (1983b) Dopamine and depression: a review of recent evidence. II Theoretical approaches. Brain.Res. 287: 225–236.Google Scholar
  176. Willner, P. (1983a) Dopamine and depression: a review of recent evidence. III. The effects of antidepressant treatments. Brain.Res. 287: 237–246.Google Scholar
  177. Wise, R.A. (1978) Catecholamine theories of reward: a critical review. [Review]. Brain Research 152: 215–247.PubMedCrossRefGoogle Scholar
  178. Yokel, R.A. and Wise, R.A. (1975) Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187: 547–549.PubMedCrossRefGoogle Scholar
  179. Zimmerberg, B., Glick, S.D., Jerussi, T.P. (1974) Neurochemical correlate of a spatial preference in rats. Science 185: 623–625.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Jeffrey N. Carlson
  • Isabelle M. Maisonneuve
  • Stanley D. Glick

There are no affiliations available

Personalised recommendations