Viral Mechanisms of Schizophrenia

  • Bradley D. Pearce
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 1)

Abstract

The purpose of this review is to highlight the potential of a rodent model in providing clues to possible viral mechanisms in neuropsychiatric disorders. As evident from the various essays in this volume, the term “model” can be defined differently depending on its intended purpose. In my opinion, animal models aimed at elucidating the fundamental pathophysiology of psychiatric disorders are most informative when experimental results are used in a manner analogous to a mathematical result in a computer iteration. That is, the data from the animal model are used to construct a preliminary explanatory mechanism that is likely to be imprecise, but points nonetheless to a new set of experiments involving the actual human disease. The results from the human experiments in turn yield data which direct refinement of the model. As this process is repeated, successively better approximations of the human disease entity are attained. In contrast to models used expressly for the screening or evaluation of therapeutic drugs, all models directed at uncovering fundamental mechanisms of a given human disease will become obsolete as that disease becomes better understood. For many models “obsolescence” occurs relatively early in the process as the model no longer serves to suggest experiments related to the human disease.

Keywords

Dentate Gyrus Temporal Lobe Epilepsy GABAergic Neuron Perforant Path Dentate Granule Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, L. and Dessein, A. J. (1997). The impact of host genetics on susceptibility to human infectious diseases. Curr. Opinion Immun. 9, 509–16.CrossRefGoogle Scholar
  2. Akbarian, S., Kim, J. J., Potkin, S. G., Hagman, J. O., Tafazzoli, A., Bunney, W. E., Jr., Jones, E. G. (1995). Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch. of Gen. Psych. 52, 258–66; discussion 267–78.Google Scholar
  3. Altman, A. and Bayer, S. A. (1990). Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. of Comp Neurol. 301, 365–381.CrossRefGoogle Scholar
  4. Arnold, S. E. (1997). The medial temporal lobe in schizophrenia. J. of Neuropsych. & Clin. Neurosci. 9, 460–70.Google Scholar
  5. Bachus, S. E., Hyde, T. M., Herman, M. M., Egan, M. F., Kleinman, J. E. (1997). Abnormal cholecystokinin mRNA levels in entorhinal cortex of schizophrenics. J. of Psychiat. Res. 31, 233–56.CrossRefGoogle Scholar
  6. Bachus, S. E. and Kleinman, J. E. (1996). The neuropathology of schizophrenia. J. Clin. Psych. 57, 72–83.Google Scholar
  7. Baldridge, J. R., Pearce, B. D., Parekh, B. S., Buchmeier, M. J. (1993). Teratogenic effects of neonatal arenavirus infection on the developing rat cerebellum are abrogated by passive immunotherapy. Virology 197, 669–677.PubMedCrossRefGoogle Scholar
  8. Bauman, M. (1991). Microscopic neuroanatomic abnormalities in autism. Pediatrics suppt, 791–796.Google Scholar
  9. Benes, F. M. (1995). Is there a neuroanatomic basis for schizophrenia? an old question revisited. The Neuroscientist 1(2), 104–115.Google Scholar
  10. Benes, F. M., McSparren, J., Bird, E. D., SanGiovanni, J. P., Vincent, S. L. (1991). Deficits in small interneurons in prefrontal and cingulate cortices of schizophrenic and schizoaffective patients. Arch. Gen. Psychiatry 48, 996–1001.PubMedCrossRefGoogle Scholar
  11. Benes, F. M., Turtle, M., Khan, Y., Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch.Gen. Psychiatry 51, 477–484.Google Scholar
  12. Benes, F. M., Vincent, S. L., Alsterberg, G., Bird, E. D., SanGiovanni, J. P. (1992). Increased GABA receptor binding in superficial layers of cingulate cortex in schizophrenics. J. of Neuroscience 12, 924–929.Google Scholar
  13. Bilzer, T. and Stitz, L. (1996). Immunopathogenesis of virus diseases affecting the central nervous system. Critical Rev. Immunol. 16, 145–222.Google Scholar
  14. Bogerts, B. (1993). Recent advances in the neuropathology of schizophrenia. Schizophrenia Bull. 19, 431–445.CrossRefGoogle Scholar
  15. Burns, T. M., Clough, J. A., Klein, R. M., Wood, G. W., Berman, N. E. J. (1993). Developmental regulation of cytokine expression in the mouse brain. Growth Factors 9, 253–258.PubMedCrossRefGoogle Scholar
  16. Celio, M. R. (1990). Calbindin D-28 and parvalbumin in the rat nervous system. Neuroscience 35, 375–474.PubMedCrossRefGoogle Scholar
  17. Crnic, L. S. and Pizer, L. I. (1988). Behavioral effects of neonatal herpes simplex type 1 infection of mice. Neurotoxicology & Teratology 10, 381–6.CrossRefGoogle Scholar
  18. DeLisi, L. E. and Crow, T. J. (1986). Is schizophrenia a viral or immunologic disorder ? Psych. Clin. N. America 9, 115–32.Google Scholar
  19. de la Torre, J. C. and Oldstone, M. B. A. (1996). Anatomy of viral persistence: mechanisms of persistence and associated disease. Adv. Virus Res. 46, 311–471.PubMedCrossRefGoogle Scholar
  20. de la Torre, J. C., Rall, G., Oldstone, C., Sanna, P. P., Borrow, P., Oldstone, M. B. A. (1993). Replication of lymphocytic choriomeningitis virus is restricted in terminally differentiated neurons. J. of Virology 67, 7350–7359.Google Scholar
  21. de Lecea, L., del Rio, J. A., Soriano, E. (1995). Developmental expression of parvalbumin mRNA in the cerebral cortex and hippocampus of the rat. Mol. Brain Res. 32, 1–13.PubMedCrossRefGoogle Scholar
  22. Deykin, E. Y. and MacMahon, B. (1979). Viral exposure and autism. Amer. J. Epidem. 109, 628–638.Google Scholar
  23. Dupuy-Davies, S. and Houser, C. R. (1999). Evidence for changing positions of GABA neurons in the developing rat dentate gyrus. Hippocampus 9, 186–99.PubMedCrossRefGoogle Scholar
  24. Farber, N. B., Newcomer, J. W., Olney, J. W. (1998). The glutamate synapse in neuropsychiatric disorders. Focus on schizophrenia and Alzheimer’s disease. Prog. Brain Res. 116, 421–37.PubMedCrossRefGoogle Scholar
  25. Gabriel, S. M., Davidson, M., Haroutunian, V., Powchik, P., Bierer, L. M., Purohit, D. P., Perl, D. P., Davis, K. L. (1996). Neuropeptide deficits in schizophrenia vs. Alzheimer’s disease cerebral cortex. Biol. Psychiatry 39, 82–91.PubMedCrossRefGoogle Scholar
  26. Ganguli, R., Brar, J. S., Chengappa, K. N. R., Yang, Z. W., Nimgaonkar, V. L., Rabin, B. S. (1993). Autoimmunity in schizophrenia: a review of recent findings. Ann. Med. 25, 489–496.PubMedCrossRefGoogle Scholar
  27. Gilmore, J. H. and Jarskog, L. F. (1997). Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr. Res. 24, 365–7.PubMedCrossRefGoogle Scholar
  28. Gould, E., Cameron, H. A., McEwen, B. S. (1994). Blockade of NMDA receptors increases cell death and birth in the developing rat dentate gyms. J. Comp. Neurol 340, 551–565.PubMedCrossRefGoogle Scholar
  29. Gray, F., Lescs, M., Keohane, C., Paraire, F., Marc, B., Durigon, M., Gherardi, R. (1992). Early brain changes in HIV infection: neuropathological study of 11 HIV seropositive, non-AIDS cases. J. of Neuropath. and Exp. Neurol. 51, 177–185.CrossRefGoogle Scholar
  30. Griffith, B. P. and Booss, J. (1994). Neurologic infections of the fetus and newborn. Neurologic Clinics 12, 541–564.PubMedGoogle Scholar
  31. Harrison, P. J. (1999). The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122, 593–624.PubMedCrossRefGoogle Scholar
  32. Humphrey, T. (1967). The development of the human hippocampal fissure. J. of Anatomy 101, 655–676.Google Scholar
  33. Jacobson, M. (1991). Histogenesis and morphogenesis of cortical structures. In Developmental Neurobiology, N.Y.: Plenum, pp. 401–451.Google Scholar
  34. Jahrling, P. B. and Peters, C. J. (1992). Lymphocytic choriomeningitis virus, a neglected pathogen of man. Arch. Pathol. Lab. Med. 116, 486–488.PubMedGoogle Scholar
  35. Jeffery, K. J., Usuku, K., Hall, S. E., Matsumoto, W., Taylor, G. P., Procter, J., Bunce, M., Ogg, G. S., Welsh, K. I., Weber, J. N., Lloyd, A. L., Nowak, M. A., Nagai, M., Kodama, D., Izumo, S., Osame, M., Bangham, C. R. (1999). HLA alleles determine human T-lymphotropic virus-I (HTLV-I) proviral load and the risk of HTLV-I-associated myelopathy. PNAS (USA) 96, 3848–53.CrossRefGoogle Scholar
  36. Johnson, R. T. (1996). Emerging Viral Infections. Arch. Neurol. 53, 18–22.Google Scholar
  37. Jones, K. R., Farinas, 1., Backus, C., Reichardt, L. F. (1994). Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76, 989–999.PubMedGoogle Scholar
  38. Jonsson, S. A., Luts, A., Guldberg-Kjaer, N., Brun, A. (1997). Hippocampal pyramidal cell disarray correlates negatively to cell number: implications for the pathogenesis of schizophrenia. Eur. Arch. of Psych. & Clin. Neurosci. 247, 120–7.CrossRefGoogle Scholar
  39. Kaplan, C. (1993). The placenta and viral infections. Sem. Diag. Path. 10, 232–50.Google Scholar
  40. Katsetos, C. D., Hyde, T. M., Herman, M. M. (1997). Neuropathology of the cerebellum in schizophrenia-an update: 1996 and future directions. Biol. Psychiatry 42, 213–24.PubMedCrossRefGoogle Scholar
  41. Kim, J. S., Kornhuber, H. H., Schmid-Burgk, W., Holzmuller, B. (1980). Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci. Lett. 20, 37–982.CrossRefGoogle Scholar
  42. Kirch, D. G. (1993). Infection and autoimmunity as etiologic factors in schizophrenia: a review and reappraisal. Schizophrenia Bull. 19, 355–370.CrossRefGoogle Scholar
  43. Kiuchi, Y., Kobayashi, T., Takeuchi, J., Shimizu, H., Ogata, H., Toru, M. (1989). Benzodiazepine receptors increase in post-mortem brain of chronic schizophrenics. European Arch. Psych. Neurol. Sci. 239, 71–8.CrossRefGoogle Scholar
  44. Knoll, J. L. t., Garver, D. L., Ramberg, J. E., Kingsbury, S. J., Croissant, D., McDermott, B. (1998). Heterogeneity of the psychoses: is there a neurodegenerative psychosis? Schizophrenia Bull. 24, 365–79.CrossRefGoogle Scholar
  45. Kristensson, K. (1992). Potential role of viruses in neurodegeneration. Mol. Chem. Neuropathol. 16, 45–58.PubMedCrossRefGoogle Scholar
  46. Kristensson, K. and Norrby, E. (1986). Persistence of RNA viruses in the central nervous system. Ann. Rev. Microbiol. 40, 159–184.CrossRefGoogle Scholar
  47. Lapchak, P., Araujo, D. M., Hefti, F. (1993). Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53, 297–301.PubMedCrossRefGoogle Scholar
  48. Lauterborn, J. C., Rivera, S., Stinis, C. T., Hayes, V. Y., Isackson, P. J., Gall, C. M. (1996). Differential effects of protein synthesis inhibition on the activity-dependent expression of BDNF transcripts: evidence for immediate-early gene responses from specific promoters. J. Neurosci. 16, 7428–7436.PubMedGoogle Scholar
  49. Lipkin, W. I., Battenberg, E. L. F., Bloom, F. E., Oldstone, M. B. A. (1988). Viral infection of neurons can depress neurotransmitter mRNA levels without histologic injury. Brain Res. 451, 333–339.PubMedCrossRefGoogle Scholar
  50. Lipska, B. K. and Weinberger, D. R. (1993). Delayed effects of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphine-induced stereotypic behaviors in the rat. Brain Res. Dev. Brain Res. 75, 213–22.CrossRefGoogle Scholar
  51. Lipton, S. A. (1994). HIV-related neuronal injury: potential therapeutic intervention with calcium channel antagonists and NMDA antagonists. Mol. Neurobiol. 8, 181–196.PubMedCrossRefGoogle Scholar
  52. Lustig, S., Danenberg, H. D., Kafri, Y., Kobiler, D., Ben-Nathan, D. (1992). Viral neuroinvasion and encephalitis induced by lipopolysaccharide and its mediators. J. Exp. Med. 176, 707–12.PubMedCrossRefGoogle Scholar
  53. Lynn, W. S. and Wong, P. K. Y. (1995). Neuroimmunodegeneration: do neurons and T cells use common pathways for cell death? FASEB J. 9, 1147–1156.PubMedGoogle Scholar
  54. Maisonpierre, P. C., Belluscio, L., Friedman, B., Alderson, R. F., Wiegand, S. J., Furth, M. E., Lindsay, R. M., Yancopoulos, G. D. (1990). NT-3, BDNF, and NGF in the developing rat nervous system: parallel as well as reciprocal patterns of expression. Neuron 5, 501–509PubMedCrossRefGoogle Scholar
  55. Marty, S., Berninger, B., Carroll, P., Thoenen, H. (1996). GABAergic stimulation regulates the phenotype of hippocampal interneurons through the regulation of brain-derived neurotrophic factor. Neuron 16, 565–570.PubMedCrossRefGoogle Scholar
  56. Martyn, C. N. (1997). Infection in childhood and neurological diseases in adult life. Brit. Med. Bull. 53, 24–39.PubMedCrossRefGoogle Scholar
  57. McLardy, T. (1973). Deficit and paucity of dentate granule cells in some schizophrenic brains. International Res. Communications System March (73–3) 16, 1–1Google Scholar
  58. Mehler, M. F. and Kessler, J. A. (1995). Cytokines and neuronal differentiation. Crit. Rev. Neurobiol. 9, 419–446.PubMedGoogle Scholar
  59. Moghaddam, B. (1994). Recent basic findings in support of excitatory amino acid hypothesis of schizophrenia. Prog. Neuro-Psychopharmacol. & Biol. Psychiat. 18, 859–870.Google Scholar
  60. Mohammed, A. H., Norrby, E., Kristensson, K. (1993). Viruses and behavioural changes: a review of clinical and experimental findings. Rev. Neurosciences 4, 267–86.Google Scholar
  61. Monjan, A. A., Bohl, L. S., Hudgens, G. A. (1975). Neurobiology of LCM virus infection in rodents. Bull.World Health Organiz. 52, 487–491.Google Scholar
  62. Monjan, A. A., Cole, G. A., Gilden, D. H., Nathanson, N. (1973a). Pathogenesis of cerebellar hypoplasia produced by lymphocytic choriomeningitis virus infection of neonatal rats 1. Evolution of disease following infection at 4 days of age. J. Neuropath. Exp. Neurol. 32, 110–124.PubMedCrossRefGoogle Scholar
  63. Monjan, A. A., Cole, G. A., Nathanson, N. (19736). Pathogenesis of LCMV disease in the rat. In: F. Lehmann-Grube ed. Lymphocytic choriomeningitis virus and other arenaviruses. Berlin, Heidelberg, & New York: Springer, pp. 195–206.Google Scholar
  64. Montero-Menei, C. N., Sindji, L., Pouplard-Barthelaix, A., Jehan, F., Denechaud, L., Darcy, F. (1994). Lipopolysaccharide intracerebral administration induces minimal inflammatory reaction in rat brain. Brain Res. 653, 101–111.PubMedCrossRefGoogle Scholar
  65. Muglia, P., Macciardi, F., Kennedy, J. L. (1999). The neurodevelopmnetal hypotheisis of schizophrenia: Genetic investgations. CNS Spectrums 4, 78–90.Google Scholar
  66. Nahmias, A. J. and Kourtis, A. P. (1997). The great balancing acts. The pregnant woman, placenta, fetus, and infectious agents. Clinics Perinat. 24, 497–521.Google Scholar
  67. Nawa, H., Bessho, Y., Carnahan, J., Nakanishi, S., Mizuno, K. (1993). Regulation of neuropeptide expression in cultured cerebral cortical neurons by brain-derived neurotrophic factor. J. Neurochem. 60, 772–775.PubMedCrossRefGoogle Scholar
  68. Nawa, H., Pelleymounter, M. A., Carnahan, J. (1994). Intraventricular administration of BDNF increases neuropeptide expression in newborn rat brain. J. of Neurosci. 14, 3751–3765.Google Scholar
  69. Nitsch, R., Bergman, I., Kuppers, K., Mueller, G., Frotscher, M. (1990). Late appearance of parvalbumin-immunoreactivity in the development of GABAergic neurons in the rat hippocampus. Neurosci. Lett. 118, 147–150.PubMedCrossRefGoogle Scholar
  70. O’Connor, W. M., Masukawa, L., Freese, A., Sperling, M. R., French, J. A., O’Conner, M. J. (1996). Hippocampal cell distributions in temporal lobe epilepsy: a comparison between patients with and without an early risk factor. Epilepsia 37, 440–449.PubMedCrossRefGoogle Scholar
  71. Oberst, R. D. (1993). Viruses as teratogens. Vet. Clinics of N. Amer.: Food Anim. Prac. 9, 23–31.Google Scholar
  72. Oldstone, M. B. A. and Dixon, F. J. (1974). Aging and chronic virus infection: is there a relationship? Federation Proc. 33, 2057–2059.Google Scholar
  73. Oldstone, M. B. A. and Rall, G. F. (1993). Mechanism and consequence of viral persistence in cells of the immune system and neurons. Intervirology 35, 116–121.PubMedGoogle Scholar
  74. Olney, J. W. (1990). Excitotoxin-mediated neuron death in youth and old age. Prog. Brain Res. 86, 37–51.PubMedCrossRefGoogle Scholar
  75. Olney, J. W. and Farber, N. B. (1995). Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psych. 52, 998–1007.CrossRefGoogle Scholar
  76. Otten, U., Scully, J. L., Ehrhard, P. B., Gadient, R. A. (1994). Neurotrophins: signals between the nervous and immune systems. Prog. Brain Res. 103, 293–305.PubMedCrossRefGoogle Scholar
  77. Patterson, P. H.,and Nawa, H. (1993). Neuronal differentiation factors/cytokines and synaptic plasticity. Neuron 10, 123–137.Google Scholar
  78. Pearce, B. D., Po, C., Jones, S., Pisell, T. L., Miller, A. H. (1997). The role of the immune response and inhibitory circuits in latent virus-induced hippocampal degeneration. Neuroscience Abstract: Society of Neuroscience.Google Scholar
  79. Pearce, B. D., Po, C. L., Pisell, T. L., Miller, A. H. (1999). Lymphocytic responses and the gradual hippocampal neuron loss following infection with lymphocytic choriomeningitis virus (LCMV). J. of Neuroimmunol. 101, 137–147.CrossRefGoogle Scholar
  80. Pearce, B. D., Steffensen, S. C., Paoletti, A. D., Henriksen, S. J., Buchmeier, M. J. (1996). Persistent dentate granule cell hyperexcitability after neonatal infection with lymphocytic choriomeningitis virus. J. Neurosci. 16, 220–228.PubMedGoogle Scholar
  81. Plioplys, A. V. (1988). Expression of the 210 kDa neurofilament subunit in cultured central nervous system from normal and trisomy 16 mice: regulation by interferon. J. Neurosci. 85, 209–222.Google Scholar
  82. Pousset, F. (1994). Development expression of cytokine genes in the cortex and hippocampus of the rat central nervous system. Dev. Brain Res. 81, 143–146.CrossRefGoogle Scholar
  83. Powchik, P., Davidson, M., Haroutunian, V., Gabriel, S. M., Purohit, D. P., Perl, D. P., Harvey, P. D., Davis, K. L. (1998). Postmortem studies in schizophrenia. Schizophrenia Bull. 24, 325–41.CrossRefGoogle Scholar
  84. Proschel, M., Saunders, A., Roses, A. D., Muller, C. R. (1992). Dinucleotide repeat polymorphism at the human gene for the brain-derived neurotrophic factor (BDNF). Human Molec. Genetics 1, 353.CrossRefGoogle Scholar
  85. Qin, Z. H., Zhang, S. P., Weiss, B. (1994). Dopaminergic and glutamatergic blocking drugs differentially regulate glutamic acid decarboxylase mRNA in mouse brain. Brain Res. Mol. Brain Res. 21, 293–302.CrossRefGoogle Scholar
  86. Rapin, I. and Katzman, R. (1998). Neurobiology of autism. Ann. Neurol. 43, 7–14.PubMedCrossRefGoogle Scholar
  87. Rapoport, J. L., Giedd, J., Kumra, S., Jacobsen, L., Smith, A., Lee, P., Nelson, J., Hamburger, S. (1997). Childhood-onset schizophrenia. Progressive ventricular change during adolescence. Arch. of Gen. Psych. 54, 897–903.Google Scholar
  88. Reynolds, G. P. (1995). Neurotransmitter systems in schizophrenia. Int. Rev. Neurobiol. 38, 305–39.Google Scholar
  89. Reynolds, G. P., Czudek, C., Andrews, H. B. (1990). Deficit and hemispheric asymmetry of GABA uptake sites in the hippocampus in schizophrenia. Biol. Psychiatry 27, 1038–1044.PubMedCrossRefGoogle Scholar
  90. Roberts, G. W., Ferrier, I. N., Lee, Y., Crow, T. J., Johnstone, E. C., Owens, D. G., Bacarese-Hamilton, A. J., McGregor, G., O’Shaughnessey, D., Polak, J. M. (1983). Peptides, the limbic lobe and schizophrenia. Brain Res. 288, 199–211.PubMedCrossRefGoogle Scholar
  91. Rodier, P. M. (1994). Vulnerable periods and processes during central nervous system development. Environmental Health Perspectives 102 Suppl 2, 121–4.Google Scholar
  92. Rodriguez, M., Buchmeier, M. J., Oldstone, M. B. A., Lampert, P. W. (1983). Ultrastructural localization of viral antigens in the CNS of mice persistently infected with lymphocytic choriomeningitis virus (LCMV). American J. Path. 110, 95–100.Google Scholar
  93. Sagar, H. J. and Oxbury, J. M. (1987). Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann. Neurol. 22, 334–340.PubMedCrossRefGoogle Scholar
  94. Sherman, A. D., Davidson, A. T., Baruah, S., Hegwood, T. S., Waziri, R. (1991). Evidence of glutamatergic deficiency in schizophrenia. Neurosci. Lett. 121, 77–80.PubMedCrossRefGoogle Scholar
  95. Simpson, M. D., Slater, P., Deakin, J. F., Royston, M. C., Skan, W. J. (1989). Reduced GABA uptake sites in the temporal lobe in schizophrenia. Neurosci. Lett. 107, 211–5.PubMedCrossRefGoogle Scholar
  96. Sloviter, R. S. (1987). Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. Science 235, 73–76.PubMedCrossRefGoogle Scholar
  97. Smith, M. A., Makino, S., Kvetnansky, R., Post, R. M. (1995). Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J. Neurosci. 15, 1768–1777.PubMedGoogle Scholar
  98. Squires, R. F. (1997). How a poliovirus might cause schizophrenia: a commentary on Eagles’ hypothesis. Neurochem. Res. 22, 647–56.PubMedCrossRefGoogle Scholar
  99. Stevens, J. R. (1992). Abnormal reinnervation as a basis for schizophrenia: a hypothesis. Arch. Gen. Psychiatry 49, 238–243.PubMedCrossRefGoogle Scholar
  100. Suddath, R. L., Christison, G. W., Torrey, F. E., Casanova, M. F., Weinberger, D. R. (1990). Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. The NEJM 322, 789–794.CrossRefGoogle Scholar
  101. Sverdlov, E. D. (1998). Perpetually mobile footprints of ancient infections in human genome. FEBS Lett. 428, 1–6.PubMedCrossRefGoogle Scholar
  102. Swanson, L. W. (1983). The hippocampus and the concept of the limbic system. In: W. Seifert, ed. Neurobiology of the Hippocampus. New York: Academic Press, pp. 3–19.Google Scholar
  103. Todtenkopf, M. S. and Benes, F. M. (1998). Distribution of glutamate decarboxylase65 immunoreactive puncta on pyramidal and nonpyramidal neurons in hippocampus of schizophrenic brain. Synapse 29, 323–32.PubMedCrossRefGoogle Scholar
  104. Torrey, E. F., Yolken, R. H. (1995). Could schizophrenia be a viral zoonosis transmitted from house cats? Schizophrenia Bull. 21, 167–171.CrossRefGoogle Scholar
  105. Torrey, E. F. and Yolken, R. H. (1999). Familial and genetic mechanisms in schizophrenia. Brain Res. In press.Google Scholar
  106. Tsai, G., Passani, L. A., Slusher, B. S., Carter, R., Baer, L., Kleinman, J. E., Coyle, J. T. (1995). Abnormal excitatory neurotransmitter metabolism in schizophrenic brains. Arch. Gen. Psychiatry 52, 829–836.PubMedCrossRefGoogle Scholar
  107. Tsai, G., van Kammen, D. P., Chen, S., Kelley, M. E., Grier, A., Coyle, J. T. (1998). Glutamatergic neurotransmission involves structural and clinical deficits of schizophrenia. Biol. Psychiatry 49, 66–774.Google Scholar
  108. Usuku, K., Sonoda, S., Osame, M., Yashiki, S., Takahashi, K., Matsumoto, M., Sawada, T., Tsuji, K., Tara, M., Igata, A. (1988). HLA haplotype-linked high immune responsiveness against HTLV-I in HTLV-I-associated myelopathy: comparison with adult T-cell leukemia/lymphoma. Ann. Neurol. 23 Suppl, S143–50.Google Scholar
  109. Volpe, J. J. (1995). Neurology of the Newborn. Philadelphia: W.B. Sanders Company, pp. 675–729.Google Scholar
  110. Walker, E. F., Diforio, D., Baum, K. (1999). Developmental neuropathology and the precursors of schizophrenia. Acta Psychiatrica Scandinavica, Suppl. 395, 12–9.Google Scholar
  111. Walker, E. F., Savoie, T., Davis, D. (1994). Neuromotor precursors of schizophrenia. Schizophrenia Bull. 20, 441–51.CrossRefGoogle Scholar
  112. Wasterlain, C. G. and Shirasaka, Y. (1994). Seizures, brain damage and brain development. Brain and Devel. 16, 279–295.CrossRefGoogle Scholar
  113. Watson, J. B., Mednick, S. A., Huttunen, M., Wang, X. (1999). Prenatal teratogens and the development of adult mental illness. Devel. Psychopath. 11, 457–466.CrossRefGoogle Scholar
  114. Weinberger, D. R. (1995). From neuropathology to neurodevelopment. Lancet 346, 552–7.PubMedCrossRefGoogle Scholar
  115. Whitley, R. J. and Stagno, S. (1997). Perinatal viral infections. In W. M. Scheid, R. J. Whitley and D. T. Durack, eds. Infections of the Central Nervous System. Philadelphia: Lippencott-Raven, pp. 223–242.Google Scholar
  116. Whitton, J. L. and Fujinami, R. S. (1999). Viruses as triggers of autoimmunity: facts and fantasies. Curr. Opinion Microbiol. 2, 392–7.CrossRefGoogle Scholar
  117. Woo, T. U., Whitehead, R. E., Melchitzky, D. S., Lewis, D. A. (1998). A subclass of prefrontal gammaaminobutyric acid axon terminals are selectively altered in schizophrenia. PNAS (USA) 95, 5341–6.CrossRefGoogle Scholar
  118. Woods, B. T. (1998). Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am. J. of Psych. 155, 1661–70.Google Scholar
  119. Wright, R., Johnson, D., Neumann, M., Ksiazek, T. G., Rollin, P., Keech, R. V., Bonthius, D. J., Hitchon, P., Grose, C. F., Bell, W. E., Bale, J. F., Jr. (1997). Congenital lymphocytic choriomeningitis virus syndrome: a disease that mimics congenital toxoplasmosis or Cytomegalovirus infection. Pediatrics 100, 1–6.CrossRefGoogle Scholar
  120. Yolken, R. H., Karlsson, H., Yee, F., Wilson, N. L., Torrey, E. F. (1999). Retroviruses and Schizophrenia. Brain Res. In press Google Scholar
  121. Yolken, R. H. and Torrey, E. F. (1995). Viruses, schizophrenia, and bipolar disorder. Clin. Microbiol. Rev. 8, 131–145.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Bradley D. Pearce

There are no affiliations available

Personalised recommendations