Skip to main content

The Long-Term Behavioral and Neurobiological Consequences of Treatment with Psychomotor Stimulant Drugs: Implications for Psychopathology

  • Chapter
Contemporary Issues in Modeling Psychopathology

Part of the book series: Neurobiological Foundation of Aberrant Behaviors ((NFAB,volume 1))

Abstract

When psychoactive drugs are administered repeatedly many of their effects change, and these changes take two main forms: tolerance or sensitization. The sensitization produced by the repeated administration of psychostimulant drugs, such as amphetamine or cocaine, has attracted considerable attention recently, for two major reasons. First, psychostimulant sensitization is an interesting example of experience-dependent plasticity, whereby very persistent changes in behavior occur as a function of past experience — in this case, past drug experience. Thus, the phenomenon provides an interesting model to explore the nature of neuroplastic adaptations underlying experience-dependent changes in behavior. Second, psychomotor stimulant drug-induced sensitization is thought to provide an animal model for studying some forms of drug-induced psychopathology. These include the development of paranoid schizophrenic-like symptoms often seen with repeated exposure to amphetamine or cocaine (Post, 1975; Segal et al., 1981; Robinson and Becker, 1986), as well as the compulsive patterns of drug-seeking behavior that characterize the development of addiction (Robinson and Berridge, 1993). The purpose of this chapter is to briefly review some recent advances in our understanding of this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostaras S.G. and Robinson T.E. (1996) Sensitization to the psychomotor stimulant effects of amphetamine: modulation by associative learning. Behav Neurosci 110: 1397–1414.

    Article  PubMed  CAS  Google Scholar 

  • Badiani A., Anagnostaras S.G., Robinson T.E. (1995a) The development of sensitization to the psychomotor stimulant effects of amphetamine is enhanced in a novel environment. Psychopharmacol 117: 443–452.

    Article  CAS  Google Scholar 

  • Badiani A., Browman K.E, Robinson T.E. (1995b) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res 674: 291298.

    Google Scholar 

  • Badiani A., Camp D.M, Robinson T.E. (1997) Enduring enhancement of amphetamine sensitization by drug-associated environmental stimuli. J Pharmacol exp Ther 282: 787–794.

    PubMed  CAS  Google Scholar 

  • Badiani A, Oates M.M., Day H.E.W., Watson S.J., Akil H., Robinson T.E. (1998) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J Neurosci 18: 10579–10593.

    PubMed  CAS  Google Scholar 

  • Badiani A., Oates M.M., Day H.E.W., Watson S.J., Akil H., Robinson T.E. (1999) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav Brain Res 103: 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Badiani A., Oates M.M., Fraioli S., Browman K.E., Ostrander M.M., Xue C.-J., Wolf M.E, Robinson T.E. (2000a) Environmental modulation of the response to amphetamine: dissociation between changes in behavior and changes in dopamine and glutamate overflow in the striatal complex. Psychopharmacology (in press).

    Google Scholar 

  • Badiani A., Oates M.M, Robinson T.E. (2000b) Modulation of morphine sensitization in the rat by contextual stimuli. Psychopharmacology (in press)

    Google Scholar 

  • Bickerdike M.J. and Abercrombie E.D. (1997) Striatal acetylcholine release correlates with behavioral sensitization in rats withdrawn from chronic amphetamine. J Pharmacol Exp Ther 282: 818–26.

    PubMed  CAS  Google Scholar 

  • Bouton M.E. (1993) Context, time, and memory retrieval in the interference paradigms of Pavlovian learning. Psycho(Bull 114: 80–99.

    CAS  Google Scholar 

  • Browman K.E., Badiani A, Robinson T.E. (1998a) The influence of environment on the induction of sensitization to the psychomotor activating effects of intravenous cocaine in rats is dose-dependent. Psychopharmacology 137: 90–98.

    Article  PubMed  CAS  Google Scholar 

  • Browman K.E., Badiani A, Robinson T.E. (1998b) Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. J Pharmacol exp Ther 287: 1007–1014.

    PubMed  CAS  Google Scholar 

  • Camp D.M., DeJonghe D.K, Robinson T.E. (1997) Time-dependent effects of repeated amphetamine treatment on norepinephrine in the hypothalamus and hippocampus assessed with in vivo microdialysis. Neuropsychopharmacology 17: 130–140.

    Article  PubMed  CAS  Google Scholar 

  • Castaneda E., Becker J.B and Robinson T.E. (1988) The long-term effects of repeated amphetamine treatment in vivo on amphetamine, KCI and electrical stimulation evoked striatal dopamine release in vitro. Life Sci 42: 2447–56.

    Google Scholar 

  • Clark D. and Overton P.G. (1998) Alterations in excitatory amino acid-mediated regulation of midbrain dopa minergic neurones induced by chronic psychostimulant administration and stress: relevance to behavioral sensitization and drug addiction. Addiction Biology 3: 109–135.

    Article  CAS  Google Scholar 

  • Crombag H.S., Badiani A., Robinson T.E. (1996) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res 722: 227–231.

    Article  PubMed  CAS  Google Scholar 

  • Crombag H.S., Badiani A, Robinson T.E. (1997) The effects of drug-predictive cues on sensitization to the psychomotor stimulant effects of amphetamine. Soc Neurosci Abst 23: 2404.

    Google Scholar 

  • Flores C., Samaha, A.-N, Stewart, J. (2000) Requirement of endogenous basic fibroblast growth factor for sensitization to amphetamine. J Neurosci 20 RC55: 1–5.

    Google Scholar 

  • Flores C., Rodaros D, Stewart J (1998) Long-lasting induction of astrocytic basic fibroblast growth factor by repeated injections of amphetamine: blockade by concurrent treatment with a glutamate antagonist. J Neurosci 18: 9547–55.

    PubMed  CAS  Google Scholar 

  • Fraioli S., Crombag H.S., Badiani A, Robinson T.E. (1999) Susceptibility to amphetamine-induced locomotor sensitization is modulated by environmental stimuli. Neuropsychopharmacology 20: 533541.

    Google Scholar 

  • Gerfen C.R., Engber T.M., Mahan L.C., Susel Z., Chase T.N., Monsma F.J.J, Sibley D.R. (1990) D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250: 1429–32.

    Article  PubMed  CAS  Google Scholar 

  • Harlan R.E. and Garcia M.M. (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16: 221–67.

    Article  PubMed  CAS  Google Scholar 

  • Harmer C.J., Hitchcott P.K., Morutto S.L, Phillips G.D. (1997) Repeated d-amphetamine enhances stimulated mesoamygdaloid dopamine transmission. Psychopharmacology 132: 247–54.

    Article  PubMed  CAS  Google Scholar 

  • Harmer C.J. and Phillips G.D. (1999) Enhanced dopamine efflux in the amygdala by a predictive, but not a non-predictive, stimulus: facilitation by prior repeated D-amphetamine. Neuroscience 90: 119–30.

    Article  PubMed  CAS  Google Scholar 

  • Henry D.J, White F.J. (1991) Repeated cocaine administration causes persistent enhancement of D1 dopamine receptor sensitivity within the rat nucleus accumbens. J Pharmacol Exp Ther 258: 882–890.

    PubMed  CAS  Google Scholar 

  • Henry D.J. and White F.J. (1995) The persistence of behavioral sensitization to cocaine parallels enhanced inhibition of nucleus accumbens neurons. J Neurosci 15: 6287–6299.

    PubMed  CAS  Google Scholar 

  • Holland P.C. (1992) Occasion setting in Pavlovian conditioning. In: P. C. Holland ed. The Psychology of Learning and Motivation, Vol. 28, 69–125. San Diego: Academic Press.

    Google Scholar 

  • Horger B.A., Iyasere C.A., Berhow M.T., Messer C.J., Nestler E.J, Taylor J.R. (1999) Enhancement of locomotor activity and conditioned reward to cocaine by brain-derived neurotrophic factor. J Neurosci 19: 4110–22.

    PubMed  CAS  Google Scholar 

  • Kalivas P.W, Stewart J. (1991) Dopamine transmission in the initiation and expression of drug-and stress-induced sensitization of motor activity. Brain Res Rev 16: 223–244.

    Article  PubMed  CAS  Google Scholar 

  • Kantor L., Hewlett G.H, Gnegy M.E. (1999) Enhanced amphetamine-and K-mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca2- and calmodulin-dependent phosphorylation and synaptic vesicles. J Neurosci 19: 3801–8.

    PubMed  CAS  Google Scholar 

  • Karler R., Calder L.D., Chaudhry I.A, Turkanis S.A. (1989) Blockade of reverse tolerance to cocaine and amphetamine by MK-801. Life Sci 45: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Kuczenski R. (1983) Biochemical actions of amphetamine and other stimulants. In: I. Creese, ed. Stimulants: Neurochemical, Behavioral and Clinical Perspectives, 31–61. New York: Raven Press.

    Google Scholar 

  • Lorrain D.S., Arnold G.M, Vezina P. (2000) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav Brain Res 107: 9–19.

    Article  PubMed  CAS  Google Scholar 

  • Mendrek A., Blaha C.D, Phillips A.G. (1998) Pre-exposure of rats to amphetamine sensitizes self- administration of this drug under a progressive ratio schedule. Psychopharmacology 135: 416–22.

    Article  PubMed  CAS  Google Scholar 

  • Nestby P., Vanderschuren L.J., De Vries T.J., Hogenboom F., Wardeh G., Mulder A.H., Schoffelmeer A.N. (1997) Ethanol, like psychostimulants and morphine, causes long-lasting hyperreactivity of dopamine and acetylcholine neurons of rat nucleus accumbens: possible role in behavioural sensitization. Psychopharmacology (Berl) 133: 69–76.

    Article  CAS  Google Scholar 

  • Parsons L.H. and Justice J.B., Jr. (1993) Serotonin and dopamine sensitization in the nucleus accumbens, ventral tegmental area, and dorsal raphe nucleus following repeated cocaine administration. J Neurochem 61: 1611–9

    Google Scholar 

  • Paulson P.E., Camp D.M, Robinson T.E. (1991) The time course of transient behavioral depression and persistent behavioral sensitization in relation to regional brain monoamine concentrations during amphetamine withdrawal in rats. Psychopharmacology 103: 480–492.

    Article  PubMed  CAS  Google Scholar 

  • Pert A., Post R, Weiss S.R. (1990) Conditioning as a critical determinant of sensitization induced by psychomotor stimulants. NIDA Res Monogr 97: 208–41.

    PubMed  CAS  Google Scholar 

  • Piazza P.V., Deminière J.-M., Maccari S., Le Moal M., Mormède P, Simon H. (1991) Individual vulnerability to drug self-administration: action of corticosterone on dopaminergic systems as a possible pathophysiological mechanism. In: P. Willner and J. Scheel-Kruger, eds. The Mesolimbic Dopamine System: From Motivation to Action, 473–495. New York: John Wiley and Sons Ltd.

    Google Scholar 

  • Pierce R.C. and Kalivas P.W. (1997) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res Rev 25: 192–216.

    Article  PubMed  CAS  Google Scholar 

  • Pierce R.C. and Kalivas P.W. (1997) Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J Neurosci 17: 3254–61.

    PubMed  CAS  Google Scholar 

  • Post R.M. (1975) Cocaine psychoses: a continuum model. Am J Psychiatry 132: 225–31.

    PubMed  CAS  Google Scholar 

  • Rescorla R.A., Durlach P.J, Grau J.W. (1985) Contextual learning in Pavlovian conditioning. In: P. Balsam and A. Tomie, Context and Learning, 23–56. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Robinson T.E. (1988) Stimulant drugs and stress: factors influencing individual differences in the susceptibility to sensitization. In: P. W. Kalivas and C. D. Barnes, eds. CD Sensitization of the Nervous System, 145–173. Caldwell, N. J.: Telford Press.

    Google Scholar 

  • Robinson T.E. and Becker J.B. (1982) Behavioral sensitization is accompanied by an enhancement in amphetamine-stimulated dopamine release from striatal tissue in vitro. Eur J Pharmacol 85: 253–4.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T.E. and Becker J.B. (1986) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res Rev 11: 157–98.

    Article  CAS  Google Scholar 

  • Robinson T.E. and Berridge K.C. (1993) The neural basis of drug craving: An incentive-sensitization theory of addiction. Brain Res Rev 18: 247–291.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T.E., Browman K.E., Crombag H.S, Badiani A. (1998) Modulation of the induction or expression of psychostimulant sensitization by the circumstances surrounding drug administration. Neurosci Biobehav Rev 22: 347–354.

    Article  PubMed  CAS  Google Scholar 

  • Robinson T.E. and Kolb B. (1997) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J Neurosci 17: 84918497.

    Google Scholar 

  • Robinson T.E. and Kolb B. (1999) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci 11: 1598–1604.

    Article  PubMed  CAS  Google Scholar 

  • Schenk S. and Partridge B. (1997) Sensitization and tolerance in psychostimulant self-administration. Pharmacol Biochem Behav 57: 543–50.

    Article  PubMed  CAS  Google Scholar 

  • Segal D.S., Geyer M.A, Schuckit M.A. (1981) Stimulant-induced psychosis: an evaluation of animal models. Essays Neurochem Neuropharmacol 5: 95–129.

    PubMed  CAS  Google Scholar 

  • Segal D.S. and Schuckit M.A. (1983) Animal models of stimulant-induced psychosis. In: I. Creese, ed.

    Google Scholar 

  • Stimulants: Neurochemical, Behavioral and Clinical Perspectives, 131–67. New York: Raven Press.

    Google Scholar 

  • Steiner H. and Gerfen C.R. (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123: 60–76.

    Article  PubMed  CAS  Google Scholar 

  • Stewart J. (1992) Conditioned stimulus control of the expression of sensitization of the behavioral activating effects of opiate and stimulant drugs. In: I. Gormezano and E. A. Wasserman, eds. Learning and Memory: The Behavioral and Biological Substrates, 129–151. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stewart J. and Badiani A. (1993) Tolerance and sensitization to the behavioral effects of drugs. Behav Pharmacol 4: 289–312.

    PubMed  CAS  Google Scholar 

  • Tilson H.A. and Rech R.A. (1973) Conditioned drug effects and absence of tolerance to d-amphetamine induced motor activity. Pharmacol Biochem Behav 1: 149–153.

    Article  CAS  Google Scholar 

  • Uslaner J., Badiani A., Day H.E.W., Watson S.E., Akil H, Robinson T.E. (1999) c-fos mRNA expression after acute amphetamine or cocaine: the influence of environmental novelty. Soc Neurosci Abst 25: 310.

    Google Scholar 

  • Vanderschuren L.J.M.J., Schoffelmeer A.N.M., Mulder A.H, De Vries T.J. (1999) Dopaminergic mechanisms mediating the long-term expression of locomotor sensitization following pre-exposure to morphine or amphetamine. Psychopharmacology 143: 244–253.

    Article  PubMed  CAS  Google Scholar 

  • Warburton E.C., Mitchell S.N, Joseph M.H. (1996) Calcium dependence of sensitized dopamine release in the rat nucleus accumbens following amphetamine challenge: implications for the disruption of latent inhibition. Behav Pharmacol 7: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • White F.J. and Kalivas P.W. (1998) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend 51: 141–53.

    Article  PubMed  CAS  Google Scholar 

  • Wolf M.E. (1998) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog Neurobiol 54: 679–720.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinson, T.E. (2000). The Long-Term Behavioral and Neurobiological Consequences of Treatment with Psychomotor Stimulant Drugs: Implications for Psychopathology. In: Myslobodsky, M.S., Weiner, I. (eds) Contemporary Issues in Modeling Psychopathology. Neurobiological Foundation of Aberrant Behaviors, vol 1. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4860-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4860-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4996-7

  • Online ISBN: 978-1-4757-4860-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics