Coping with Uncertainty: What Would an Animal Model of Schizophrenia Look Like?

  • Loring J. Ingraham
  • Michael Myslobodsky
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 1)

Abstract

In our field, where the clinical, genetic, psychophysiological, biochemical and psychopharmacological characterization of “schizophrenia” is incomplete, there has been limited success in investigating schizophrenia with the help of animal models. Nevertheless, there have been a number of putative models proposed to address individual features of the disorder. Below we review some of the models that have been suggested as being applicable to schizophrenia, outline some of the critical features required for successfully modeling schizophrenia-like behavioral features, and propose an empirically useful model of neurodevelopment and behavioral teratogenesis.

Keywords

Schizophrenic Patient Temporal Lobe Epilepsy Prenatal Exposure Prenatal Stressor Chronic Mild Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbarian, S., Bunney, W.E., Potkin, S.G., Wigal, S.B., Hagman, J.O., Sandman, C.A., Jones, E.G. (1993a) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiat. 50: 169–177.PubMedCrossRefGoogle Scholar
  2. Akbarian, S., Vinuela, A., Kim, J., Potkin, S.G., Bunney, W.E., Jones, E.G. (19936) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiat. 50: 178–187.Google Scholar
  3. Allebeck, P., Rodvall, Y., Wistedt, B. (1985) Incidence of rheumatoid arthritis among patients with schizophrenia, affective psychosis and neurosis. Acta Psychiatr Scand. 71: 615–9.PubMedCrossRefGoogle Scholar
  4. Auroux, M. (1997) Behavioral teratogenesis: An extension to the teratogenesis of functions. Biology Of The Neonate. 71: 137–147.Google Scholar
  5. Baldwin, J.A. (1979) Schizophrenia and physical disease. Psychol Med. 9: 611–8.PubMedCrossRefGoogle Scholar
  6. Belichenko, P.V., Sourander, P., Malmgren, K., Nordborg, C., von Essen, C., Rydenhag, B., et al. (1994) Dendritic morphology in epileptogenic cortex from TRPE patients, revealed by intracellular Lucifer Yellow microinjection and confocal laser scanning microscopy. Epilepsy Res. 18: 233–47.PubMedCrossRefGoogle Scholar
  7. Bellinger, D.C., Stiles, K.M., Needleman, H.L. (1992) Low-level lead exposure, intelligence and academic achievement: a long-term follow-up. Pediatrics. 90: 855–61.PubMedGoogle Scholar
  8. Benenson, J.F., Philippoussis, M., Leeb, R. (1999) Sex differences in neonates’ cuddliness. J Genetic Psychol. 160: 332–42.CrossRefGoogle Scholar
  9. Benes, F.M. and Bird, E.D. (1987) An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Arch Gen Psychiat. 44: 608–16.PubMedCrossRefGoogle Scholar
  10. Benes, F.M., McSparren, J., Bird, E.D., SanGiovanni, J.P., Vincent, S.L. (1991) Deficits in small interneurons in prefrontal and cingulate cortices in schizophrenic and schizoaffective patients. Arch Gen Psychiat. 48: 996–1001.PubMedCrossRefGoogle Scholar
  11. Brent, R.L., Beckman, D.A., Jensh, R.P. (1987) Relative radiosensitivity of fetal tissues. Adv Rad Biol. 12: 239–56.Google Scholar
  12. Cannon, M., Jones, P., Huttunen, M.O., Tanskanen, A., Huttunen, T., Rabe-Hesketh, S., Murray, R.M. (1999) School performance in Finnish children and later development of schizophrenia: a population-based longitudinal study. Arch Gen Psychiat. 56: 457–63.PubMedCrossRefGoogle Scholar
  13. Clarke, P.G., Cowan, W.M. (1975) Ectopic neurons and aberrant connections during neural development. Proc Natl Acad Sci U S A. 72: 4455–8.PubMedCrossRefGoogle Scholar
  14. Cockerham, L.G., Prell, G.D. (1989) Prenatal radiation risk to the brain. Neurotoxicology. 10: 467–74.PubMedGoogle Scholar
  15. Conrad, A.J., Abebe, T., Austin, R., Forsythe, S., Scheibel, A.B. (1991) Hippocampal pyramidal cell disarray in schizophrenia as a bilateral phenomenon. Arch Gen Psychiat. 48: 413–7.PubMedCrossRefGoogle Scholar
  16. Crow, T.J. (1987) The scope for nongenetic factors in etiology.: the retrovirus/transposon hypothesis. In: Heimchen, H., Henn, F.A., eds. Biological Perspectives of Schizophrenia, Chichester: John Willey and Sons.Google Scholar
  17. Crow, T.J. (1998) Schizophrenia as a transcallosal misconnection syndrome. Schizophr Res. 10: 111–4.CrossRefGoogle Scholar
  18. De Bellis, M.D., Baum, A.S., Birmaher, B., Keshavan, M.S., Eccard, C.H., Boring, A.M., Jenkins, F.J., Ryan, N.D. (1999) Developmental traumatology part I: biological stress systems. Biol Psychi. 45: 1259–70.CrossRefGoogle Scholar
  19. De Bellis, M.D., Keshavan, M.S., Clark, D.B., Casey, B.J., Giedd, J.N., Boring, A.M., Frustaci, K., Ryan, N.D. (1999) Developmental traumatology part II: brain development. Biol Psychi. 45: 127–184.CrossRefGoogle Scholar
  20. De Leon, J. (1996) Smoking and vulnerability for schizophrenia. Schiz Bull. 22: 405–9.CrossRefGoogle Scholar
  21. Dobbing, J. and Sands, J. (1979) Comparative aspects of the brain growth spurt. Early Human Develop. 3: 79–83.CrossRefGoogle Scholar
  22. Donoso, J.A. and Norton, S. (1982) The pyramidal neuron in cerebral cortex following prenatal X-irradiation. Neurotox. 3: 72–84.Google Scholar
  23. Eaton, W.W., Hayward, C., Ram, R. (1992) Schizophrenia and rheumatoid arthritis: a review. Schizophr Res. 6: 181–92.PubMedCrossRefGoogle Scholar
  24. EULEP Symposium. (1984) Effects of prenatal irradiation with special emphasis on late effects. Streffer, C., Patric, G., eds. Commission of the European Comunities Publication EUR-8067.Google Scholar
  25. Farmer, A., McGuffin, P., Gottesman I.I. (1990) Problems and pitfalls of the family history positive and negative dichotomy: response to Dalen. Schizophr Bull. 16: 367–70.PubMedCrossRefGoogle Scholar
  26. Fish, B. (1977) Neurobiologie antecedents of schizophrenia in children. Arch Gen Psychiat. 34: 1297–313.PubMedCrossRefGoogle Scholar
  27. Fish, B., Marcus, J., Hans, S.L., Auerbach, J.G., Perdue, S. (1992) Infants at risk for schizophrenia: sequelae of a genetic neurointegrative defect. A review and replication analysis of pandysmaturation in the Jerusalem Infant Development Study. Arch Gen Psychiat. 49: 221–35.Google Scholar
  28. Fleming, K., Goldberg, T.E., Binks, S., Randolph, C., Gold, J.M., Weinberger, D.R. (1997) Visuospatial working memory in patients with schizophrenia. Biol Psychiatry. 41: 43–9.PubMedCrossRefGoogle Scholar
  29. Flor-Henry, P. (1969) Psychosis and temporal lobe epilepsy. Epilepsia. 10: 363–95.PubMedCrossRefGoogle Scholar
  30. Fraser, F.C. (1959) Causes of congenital malformations in human beings. J Chron Dis. 10: 97–113.PubMedCrossRefGoogle Scholar
  31. GSF Symposium. (1985) Radiation risks to the developing nervous system. Kriegel, H., ed. Commission of the European Communities Publication EUR-10414.Google Scholar
  32. Goldberg, M.B. (1966) Developmental and functional characteristics of conditioned reflexes in adult rats X-irradiated on day 16 of embryogeny. In: I. Piontkovsky (Ed), Neuroradioembryological Effects. Moscow: Nauka.Google Scholar
  33. Goldberg, T.E., Patterson, K.J., Taqqu, Y., Wilder, K. (1998) Capacity limitations in short-term memory in schizophrenia: tests of competing hypotheses. Psychol Med. 28: 665–73.PubMedCrossRefGoogle Scholar
  34. Goldschmidt, R. (1935) Zeitschr. fur induktive Abstammungs-und Vererbungslehre. LXIX: 46.Google Scholar
  35. Gottesman, I.1. and Bertelsen, A. (1989) Confirming unexpressed genotypes for schizophrenia. Risks in the offspring of Fischer’s Danish identical and fraternal discordant twins. Arch Gen Psychi. 46: 867–72.Google Scholar
  36. Hicks, S.P. Radiation as an experimental tool in mammalian developmental neurology. Physiol. Rev., 38: 337–358, 1958.Google Scholar
  37. Hicks, S.P. and D’Amato, C.J. (1978). Effects of ionizing radiation on developing brain and behavior. In: G. Gottlieb, ed. Studies on the Development of Behavior and the Nervous System. V. 4, Early influences. London: Academic Press.Google Scholar
  38. Hirsch, S.R. and Weinberger, D. (1995) Schizophrenia. London: Blackwell.Google Scholar
  39. Hofstadter, D.R. (1996) Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books.Google Scholar
  40. Hollister, J. M., Laing, P., Mednick S.A. (1996) Rhesus incompatibility as a risk factor for schizophrenia in male adults. Arch Gen Psychi. 53: 19–24.CrossRefGoogle Scholar
  41. Holt, A.B., Renfree, M.B., Cheek, D.B. (1981) Comparative aspects of brain growth: s critical evaluation of mammalian species used in brain growth research with emphasis on the Tamar Wallaby. In: Hetzel, B.S., Smith, R.M., eds. Fetal Brain Disorders - Recent Approaches to the Problem Of Mental Deficiency. Amsterdam: Elsevier.Google Scholar
  42. Huttunen, M.O. and Niskanen, P. (1978) Prenatal loss of father and psychiatric disorders. Arch Gen Psychi. 35: 429–31.CrossRefGoogle Scholar
  43. Ingraham, L. J. (1995) Family-genetic research and schizotypal personality. In: Raine, A., ed. Schizotypal Personality. Cambridge: Cambridge U. Press.Google Scholar
  44. Ingraham, L. J. (1999) Empirical characterization of the schizophrenia spectrum. In: Maj, M., Sartorius, N., eds. Evidence and Experience in Psychiatry. New York: John Wiley.Google Scholar
  45. Jacob, H. and Beckman, H. (1986) Prenatal developmental disturbances in the limbic cortex in schizophrenics. J Neural Transmis. 65: 303–26.CrossRefGoogle Scholar
  46. Jeste, D.V., Gladsjo, J.A., Lindamer, L.A., Lacro, J.P. (1996) Medical comorbidity in schizophrenia. Schizophr Bull. 22: 413–30.PubMedCrossRefGoogle Scholar
  47. Kety, S.S., Wender, P.H., Jacobsen, B., Ingraham, L.J., Jansson, L., Faber, B., Kinney, D.K. (1994) Mental illness in the biological and adoptive relatives of schizophrenic adoptees. Replication of the Copenhagen Study in the rest of Denmark. Arch Gen Psychi. 51: 442–55Google Scholar
  48. Kim, J.W. and Kirkpatrick, B. (1996) Social isolation in animal model of relevance to neuropsychiatric disorders. Biol Psychiat. 40: 918–22.PubMedCrossRefGoogle Scholar
  49. Kimler, B.F. (1998) Prenatal irradiation: a major concern for the developing brain. Int J Radiat Biol. 73: 423–34.PubMedCrossRefGoogle Scholar
  50. Kovelman, J.A. and Scheibel, A.B. (1984) A neurohistological correlate of schizophrenia. Biol Psychiat. 19: 1601–21.PubMedGoogle Scholar
  51. Lim, K. O., Beal, D.M., Harvey, R.L. Jr., Myers, T., Lane, B., Sullivan, E.V., Faustman, W.O., Pfefferbaum, A. (1995) Brain dysmorphology in adults with congenital rubella plus schizophrenialike symptoms. Biol Psychiatry. 37: 764–76.PubMedCrossRefGoogle Scholar
  52. Lipska, B.K., Jaskiw, G.E., Weinberger, D.R. (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: A potential animal model of schizophrenia. Neuropsychopharmacol. 9: 67–75.Google Scholar
  53. Lipska, B.K. and Weinberger, D.R. (1993) Delayed effect of neonatal hippocampal damage on haloperidol-induced catalepsy and apomorphin-induced stereotypic behaviors in the rat. Dev Brain Res. 75: 213–222.CrossRefGoogle Scholar
  54. Matthysse S. (1987) “The middle game” in the genetics of schizophrenia. In H. Heimchen, F.A. Henn, eds. Dahlem Workshop on Biological Perspectives of Schizophrenia. Chichester: Wiley.Google Scholar
  55. McGuffin, P., Farmer, A. E., Gottesman, I. I. (1987) Is there really a split in schizophrenia? The genetic evidence. Br J Psychi. 150: 581–92.CrossRefGoogle Scholar
  56. McKinney, W.T. (1988) Models of Mental Disorders: A New Comparative Psychiatry. New York: Plenum.CrossRefGoogle Scholar
  57. McKinney, W.T. and Bunney, W.E., Jr. (1969) Animal models of depression. Review of evidence: implications for research. Arch Gen Psychi. 21: 240–8.CrossRefGoogle Scholar
  58. Mednick, S.A. (1970) Breakdown in individuals at high risk for schizophrenia: possible predispositional perinatal factors. Mental Hygiene. 54: 50–63.Google Scholar
  59. Mednick, S.A., Machon, R.A., Huttunen, M.O., Bonet, D. Adult schizophrenia following prenatal exposure to an influenza epidemic. (1988) Arch Gen Psychi. 45: 171–6.Google Scholar
  60. Meier, G.W. (1961) Prenatal anoxia and irradiation: maternal-fetal relations. Psychol Rep. 9: 417–24.Google Scholar
  61. Michailova, N.G. (1966) Effects of amphetamine on self-stimulation in prenatally X-irradiated animal. In: I. Piontkovsky, ed. Neuroradioembryological Effects. Moscow: Nauka.Google Scholar
  62. Mickley, G.A., Ferguson, J.L., Nemeth, T.J., Mulvihill, M.A., Alderks, C.E. (1989) Spontaneous perseverative turning in rats with radiation-induced hippocampal damage. Behav Neurosci. 103: 722–30.PubMedCrossRefGoogle Scholar
  63. Mirsky, A. F., Ingraham, L. J., Kugelmass, S. (1995) Neuropsychological assessment of attention and its pathology in the Israeli cohort. Schiz Bull. 21: 193–204.CrossRefGoogle Scholar
  64. Mortensen, P.B. (1989) The incidence of cancer in schizophrenic patients. J Epidemiol Community Health. 43: 43–7.PubMedCrossRefGoogle Scholar
  65. Mortensen, P.B. (1992) Neuroleptic medication and reduced risk of prostate cancer in schizophrenic patients. Acta Psychiatr Scand. 85: 390–3.PubMedCrossRefGoogle Scholar
  66. Mortensen, P.B. (1994) The occurrence of cancer in first admitted schizophrenic patients. Schizophr Res. 12: 185–94.PubMedCrossRefGoogle Scholar
  67. Myhrman, A., Rantakallio, P., Isohanni, M., Jones, P., Partanen, U. (1996) Unwantedness of a pregnancy and schizophrenia in the child. Br J Psychi. 169: 637–640.CrossRefGoogle Scholar
  68. Myslobodsky, M. (1976) Petit Mal Epilepsy. A Search for Precursors of Petit Mal Activity. New York: Academic Press.Google Scholar
  69. Myslobodsky, M., Mintz, M., Kofman, O. (1981) Pharmacologic analysis of the postictal immobility syndrome. Pharmacol Biochem Behay. 15: 93–100.CrossRefGoogle Scholar
  70. Myslobodsky, M. and Mirsky, A., eds. (1988) Elements of Petit Mal Epilepsy. New York: Lcang.Google Scholar
  71. Myslobodsky, M. and Valenstein, E. (1980) Amygdaloid kindling and the GABA system. Epilepsia. 21:163–175.CrossRefGoogle Scholar
  72. Nishimura, H. and Sirota, K. (1975) Summary of comparative embryology and teratology. Handbook of Teratology. New York: Plenum.Google Scholar
  73. Norton, S., Kimler, B.F., Mullenix, P.J. (1991) Progressive behavioral changes in rat after exposure to low levels of ionizing radiation in utero. Neurotoxicology and Teratology. 13: 181–8.PubMedCrossRefGoogle Scholar
  74. Ojeda, S.R. and Urbanski, H.F. (1994) Puberty in the rat. In: E. Knobil, J.D. Neill, eds. The Physiology of Reproduction. 2nd ed.Google Scholar
  75. Oppenheim, R.W. and Nunez, R. (1982) Electrical stimulation of hindlimb increases neuronal cell death in chick embryo. Nature. 295: 57–59.PubMedCrossRefGoogle Scholar
  76. Otake, M. and Schull, W.J. (1998) Radiation-related brain damage and growth retardation among the prenatally exposed atomic bomb survivors. Int J Radiat Biol. 74: 159–71.PubMedCrossRefGoogle Scholar
  77. Pasamanick, B. and Knobloch, H. (1966) Retrospective studies on the epidemiology of reproductive casualty: old and new. Merrill-Palmer Quat. 12: 7–26.Google Scholar
  78. Pittman, R.H. and Oppenheim, R.W. (1978) Neuromuscular blockade increases motoneuronal survival during normal cell death in chick embryo. Nature. 271: 364–6.PubMedCrossRefGoogle Scholar
  79. Rackic, P. (1988) Defects of migration and the pathogenesis of cortical malformtations. Prog Brain Res. 73: 15–37.CrossRefGoogle Scholar
  80. Rugh, R. (1962) Low level of X-irradiation and the early mammalian embryo. Amer. J. Roentgenol. 87: 559–566.Google Scholar
  81. Schmajuk, N.A. (1987) Animal model for schizophrenia: The hippocampally lesioned animal. Schiz Bull. 13: 317–27.Google Scholar
  82. Schull, W.J., Norton, S., Jensh, R.P. (1990) Ionizing radiation and the developing brain. Neurotoxicol Teratol. 12: 249–60.PubMedCrossRefGoogle Scholar
  83. Shofer, R.J., Pappas, G.D., Purpura, D.P. (1964) Radiation-induced changes in morphological and physiological properties of immature cerebellar cortex. In: T.J. Haley, R.S. Snyder eds. Response of the Nervous System to Ionizing Radiation. Boston: Little Brown.Google Scholar
  84. Spear, L.P. (1984) Age at the time of testing reconsidered in neurobehavioral teratological research. In: Ynai, J. ed. Neurobehavioral Teratology. Amsterdam: Elsevier.Google Scholar
  85. Stevens, J.R. (1973) An anatomy of schizophrenia? Arch Gen Psychiat. 29: 177–89.PubMedCrossRefGoogle Scholar
  86. Stamford, J.A., Muscat, R., OConnor, J.J., Patel, J., Trout, S.J, Wieczorek, W.J, Kruk, Z.L., Willner, P. (1991) Voltammetric evidence that subsensitivity to reward following chronic mild stress is associated with increased release of mesolimbic dopamine. Psychopharmacol. 105: 275–82.CrossRefGoogle Scholar
  87. Stein, Z., Kline, J., Kharrazi, M. (1984). What is a teratogen? Epidemiological criteria. In: H. Kalter, ed. Issues and Reviews in Teratology, v. 2. New York: Plenum.Google Scholar
  88. Streissguth, A.P., Barr, H.M., Sampson, P.D., Bookstein, F.L. (1994) Prenatal alcohol and offspring development: the first fourteen years. Drug Alcohol Depend. 36: 89–99.PubMedCrossRefGoogle Scholar
  89. Susser, E. and Lin, P. (1996) Schizophrenia after prenatal exposure to the Dutch hunger winter of 1944–1945. Arch Gen Psychi., 53: 25–31.CrossRefGoogle Scholar
  90. Symonds, C.P. (1937) The assessment of symptoms following head injury. Guys Hospital Gazette. 51: 461–468.Google Scholar
  91. Taylor, M.A., Abrams, R. (1987) Cognitive impairment patterns in schizophrenia and affective disorder. J Neurol Neurosurg Psychiatry. 50: 895–9.PubMedCrossRefGoogle Scholar
  92. Walker, E.F. and Lewine, R.J. (1990) The prediction of adult-onset schizophrenia from childhood home movies of patients. Am J Psychi. 147: 1052–56.Google Scholar
  93. Wilson, J.G. (1973) Environment and Birth Defects. New York: Academic Press.Google Scholar
  94. Wright, P., Gill, M., Murray, R.M. (1993) Schizophrenia: genetics and the maternal immune response to viral infection. Am J Med Genet. 48: 40–46.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Loring J. Ingraham
  • Michael Myslobodsky

There are no affiliations available

Personalised recommendations