The Latent Inhibition Model of Schizophrenia

  • Ina Weiner
Part of the Neurobiological Foundation of Aberrant Behaviors book series (NFAB, volume 1)


As detailed by McKinney (1988) and Willner (1991), there are several ways of going about building an animal model of psychopathology. The LI model of schizophrenia begun its way with mimicking a widely documented behavioral manifestation of the disorder, an inability to ignore irrelevant stimuli (face validity) coupled with a central neurotransmitter dysfunction postulated to occur in schizophrenia, i.e., dopaminergic (construct validity). The development of the model included its extension to normal humans and schizophrenia patients on the one hand, and an analysis of the underlying neural and cognitive mechanisms in the rat model on the other hand. I believe that the results of these lines of LI research have now converged to provide interesting leads on the neuropsychology and pathophysiology of schizophrenia, at present largely speculative, but ripe to be tested in the clinic.


Latent Inhibition Entorhinal Cortex Conditioning Trial Behav Brain Bioi Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackil, J., Mellgren, R.L., Halgren, C., Frommer, S.P. (1969) Effects of CS preexposure on avoidance learning in rats with hippocampal lesions. J Comp Physiol Psychol. 69: 739–747.PubMedCrossRefGoogle Scholar
  2. Adams, W., Kendell, R.E., Hare, E.H., Munk-Jorgensen, P. (1993) Epidemiological evidence that maternal influenza contributes to the aetiology of schizophrenia. An analysis of Scottish, English, and Danish data. Br J Psychiatry 163: 522–534.PubMedCrossRefGoogle Scholar
  3. Akbarian, S., Vinuela, A., Kim, J.J., Potkin, S.G., Bunney, W.E., Jr., Jones, E.G. (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50: 178–187.PubMedCrossRefGoogle Scholar
  4. Altamura, A.C., Boin, F., Maes, M. (1999) HPA axis and cytokines dysregulation in schizophrenia: Potential implications for the antipsychotic treatment. Eur J Neuropsychopharmacol. 10: 1–4.CrossRefGoogle Scholar
  5. Anscombe, F. (1987) The disorder of consciousness in schizophrenia. Schiz Bull. 13: 241–260.CrossRefGoogle Scholar
  6. Amt, J. and Skarsfeldt, T. (1998) Do novel antipsychotics have similar pharmacological characteristics? A review of the evidence. Neuropsychopharmacology 18: 63–101.CrossRefGoogle Scholar
  7. Asarnow, R.F., Marder, S.R., J., M., Van Putten, T., Zimmerman, K.E. (1988) Differential effect of low and conventional doses of fluphenazine on schizophrenic outpatients with good or poor information-processing abilities. Arch Gen Psychiatry 45: 822–826.PubMedGoogle Scholar
  8. Asin, K.E., Wirtshafter, D., Kent, E.W. (1980) The effects of electrolytic median raphe lesions on two measures of latent inhibition. Behav Neur Biol. 28: 408–417.CrossRefGoogle Scholar
  9. Bakshi, V.P., Geyer, M.A., Taaid, N., Swerdlow, N.R. (1995) A comparison of the effects of amphetamine, strychnine and caffeine on prepulse inhibition and latent inhibition. Behav Pharmacol. 6: 801–809.PubMedCrossRefGoogle Scholar
  10. Baruch, I., Hemsley, D., Gray, J.A. (1988a) Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis. 176: 598–606.PubMedCrossRefGoogle Scholar
  11. Baruch, I., Hemsley, D.R., Gray, J.A. (1988b) Latent inhibition and `psychotic pronness’ in normal subjects. Pers Indiv Differ. 9: 777–783.CrossRefGoogle Scholar
  12. Beckmann, H. and Jakob, H. (1991) Prenatal disturbances of nerve cell migration in the entorhinal region: a common vulnerability factor in functional psychoses. J Neural Trans. 84: 155–164.CrossRefGoogle Scholar
  13. Berendse, H.W., Groenewegen, H.J., Lohman, A.H.M. (1992) Compartmental distribution of ventral striatal neurons projecting to the ventral mesencephalon in the rat. J Neurosci. 12: 2070–2103.Google Scholar
  14. Bleuler, E. (1911) Dementia Praecox or the Group of Schizophrenias. New York: International Universities Press.Google Scholar
  15. Bogerts, B. (1991) The neuropathology of schizophrenia: Pathophysiological and neurodevelopmental implications. In S.A. Mednick, T.D. Cannon, C.E. Barr and M. Lyon, ed. Fetal neural development and adult schizophrenia, Cambridge: Cambridge University Press.Google Scholar
  16. Bogerts, B. (1993) Recent advances in the neuropathology of schizophrenia. Schizophr. Bull. 19: 431–445.PubMedCrossRefGoogle Scholar
  17. Braff, D.L. and Sacuzzo, D.P. (1982) Effect of antipsychotic medication on speed of information processing in schizophrenic patients. Am J Psychiatry 139: 1127–1130.PubMedGoogle Scholar
  18. Braunstein-Bercovitz, H., Lubow, R.E. (1998) Are high schizotypal normal participants distractible or limited in attentional resources? A study of latent inhibition as a function of masking task load and schizotypy. J Abn Psychol. 107: 659–670.CrossRefGoogle Scholar
  19. Breier, A., Wolkowitz, O.M., Doran, A.R., Roy, A., Boronow, J., Hommer, D.W., Pickar, D. (1987) Neuroleptic responsivity of negative and positive symptoms in schizophrenia. Am J Psychiatry 144: 1549–1555.PubMedGoogle Scholar
  20. Broen, W.E. (1968) Schizophrenia: research and theory. New York: Academic Press.Google Scholar
  21. Broersen, L.M., Feldon, J., Weiner, I. (1999) Dissociative effects of apomorphine infusions into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine-induced locomotion. Neuroscience 94: 39–46.PubMedCrossRefGoogle Scholar
  22. Broersen, L.M., Heinsbroek, R.P., de Bruin, J.P., Olivier, B. (1996) Effects of local application of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition. Biol Psychiatry 40: 1083–1090.PubMedCrossRefGoogle Scholar
  23. Brunello, N., Masotto, C., Steardo, L., Markstein, R., Racagni, G. (1995) New insights into the biology of schizophrenia through the mechanism of action of clozapine. Neuropsychopharmacolog 13: 177–213.CrossRefGoogle Scholar
  24. Burns, L.H., Everitt, B.J., Kelley, A.E., Robbins, T.W. (1994) Glutamate-dopamine interactions in the ventral striatum: role in locomotor activity and responding with conditioned reinforcement. Psychopharmacology 115: 516–528.PubMedCrossRefGoogle Scholar
  25. Cador, M., Robbins, T.W., Everitt, B.J., Simon, H., LeMoal, M., Stinus, L. (1991) Limbic-striatal interactions in reward-related processes: modulation by the dopaminergic system. In P. Willner and J. Scheel-Kruger, ed. The mesolimbic dopamine system: from motivation to action. Chichester: John Wiley.Google Scholar
  26. Carlsson, M. and Carlsson, A. (1989) The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine-depleted mice. J Neural Transm. 75: 221–226.PubMedCrossRefGoogle Scholar
  27. Carlsson, M. and Carlsson, A. (1990) Schizophrenia: a subcortical neurotransmitter imbalance syndrome? Schizophr Bull. 16: 425–432.PubMedCrossRefGoogle Scholar
  28. Carpenter, W.T., Buchanan, R.W., Kirkpatrick, B., Tamminga, C., Wood, F. (1993) Strong inference, theory testing, and the neuroanatomy of schizophrenia. Arch Gen Psychiatry 50: 825–831.PubMedCrossRefGoogle Scholar
  29. Carpenter, W.T., Heinrichs, D.W., Alphs, L.D. (1985) Treatment of negative symptoms. Schiz Bull. 11: 440–452.CrossRefGoogle Scholar
  30. Carpenter, W.T., Heinrichs, D.W., Wagman, A.M. (1988) Deficit and nondeficit forms of schizophrenia: The concept. Am J Psychiatry 145: 578–583.PubMedGoogle Scholar
  31. Cassaday, H.F., Hodges, H., Gray, J.A. (1993a) The effects of ritanserin, RU 24969 and 8-OH-DPAT on latent inhibition in the rat. Psychopharmacology 7: 63–71.Google Scholar
  32. Cassaday, H.J., Mitchell, S.N., Williams, J.H., Gray, J.A. (1993b) 5,7-ihydroxytryptamine lesions in the fornix-fimbria attenuate latent inhibition. Behav Neural Biol. 59: 194–207.Google Scholar
  33. Christison, G.W., Atwater, G.E., Dunn, L.A., Kilts, C.D. (1988) Haloperidol enhancement of latent inhibition: Relation to therapeutic action? Biol Psychiatry 23: 746–749.PubMedCrossRefGoogle Scholar
  34. Clark, A.J.M., Feldon, J., Rawlins, J.N.P. (1992) Aspiration lesions of rat ventral hippocampus disinhibit responding in conditioned suppression or extinction, but spare latent inhibition and the partial reinforcement extinction effect. Neuroscience 48: 821–829.PubMedCrossRefGoogle Scholar
  35. Cools, A., Jaspers, R., Schwartz, M., Sontag, K.H., Vrijmoed de Vries, M., Van den Bereken, J. (1984) Basal ganglia and switching motor programs. In J.S. McKenzie, R.E. Kemm and N. Wilcock, ed. The basal ganglia, New York: Plenum Press.Google Scholar
  36. Cornblatt, B., Erlenmeyer- Kimling, L. (1984) Early attentional predictors of adolescent behavioral disturbances in children at risk for schizophrenia. In N.F. Watt, E.F. Anthony, L.C. Wynne and J.E. Rolf, ed. Children at risk for schizophrenia: A longitudinal perspective, New York: Cambridge University Press.Google Scholar
  37. Cornblatt, B. and Winters, L., Erlenmeyer-Kimling, L. (1989) Attentional markers of schizophrenia: Evidence from the New York high-risk study. In S.C. Schulz and C.A. Tamminga, ed. Schizophrenia: Scientific Progress, New-York: Oxford University Press.Google Scholar
  38. Cornblatt, B.A., Lezenweger, M.F., Dworkin, R.H., Erlenmeyer-Kimling, L. (1985) Positive and negative schizophrenic symptoms, attention, and information processing. Schiz Bull. 11: 397–408.CrossRefGoogle Scholar
  39. Coutureau, E., Galani, R., Gosselin, O., Majchrzak, M., Di Scala, G. (1999) Entorhinal but not hippocampal or subicular lesions disrupt latent inhibition in rats. Neurobiol Learn Mem. 72: 143–57.PubMedCrossRefGoogle Scholar
  40. Cowell, P.E., Kostianovsky, D.J., Gur, R.C., Turetsky, B.I., Gur, R.E. (1996) Sex differences in neuroanatomical and clinical correlations in schizophrenia. Am J Psychiatry 153: 799–805.PubMedGoogle Scholar
  41. Crider, A. (1997) Perseveration in schizophrenia. Schiz Bull. 23: 63–74.CrossRefGoogle Scholar
  42. Csernansky, J.G., Murphy, G.M., Faustman, W.O. (1991) Limbic/mesolimbic connections and the pathogenesis of schizophrenia. Biol Psychiatry 30: 383–400.PubMedCrossRefGoogle Scholar
  43. De la Casa, G. and Lubow, R.E. (1994) Memory for attended and nominally unattended stimuli in low and high psychotic-prone normal subjects: the effects of test-anticipation. Pers Ind Diff. 17: 783–789.CrossRefGoogle Scholar
  44. De la Casa, L.G., Ruiz, G., Lubow, R.E. (1993a) Amphetamine-produced attenuation of latent inhibition is modulated by stimulus preexposure duration: implications for schizophrenia. Biol Psychiatry 33: 707–711.PubMedCrossRefGoogle Scholar
  45. De la Casa, L.G., Ruiz, G., Lubow, R.E. (1993b) Latent inhibition and recall/recognition of irrelevant stimuli as a function of preexposure duration in high and low psychotic-prone normals. Br J Psychol. 84: 119–132.PubMedCrossRefGoogle Scholar
  46. Della Casa, V., Hofer, I., Weiner, I., Feldon, J. (1999) Effects of smoking status and schizotypy on latent inhibition. J Psychopharmacol. 13: 45–57.PubMedCrossRefGoogle Scholar
  47. Deutch, A.Y. and Cameron, D.S. (1992) Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 46: 49–56.PubMedCrossRefGoogle Scholar
  48. Dunn, L.A., Atwater, G.E., Kilts, C.D. (1993) Effects of antipsychotic drugs on latent inhibition: Sensitivity and specificity of an animal behavioral model of clinical drug action. Psychopharmacology 112: 315–323.PubMedCrossRefGoogle Scholar
  49. Dunn, L.A. and Scibilia, R.J. (1996) Reaction time and pupil response measures show reduced latent inhibition in chronic schizophrenia. Soc Neurosci. 22: 315–323.Google Scholar
  50. Ellenbroek, B.A., Budde, S., Cools, A.R. (1996) Prepulse inhibition and latent inhibition: The role of dopamine in the medial prefrontal cortex. Neuroscience 75: 535–542.PubMedCrossRefGoogle Scholar
  51. Ellenbroek, B.A., Knobbout, D.A., Cools, A.R. (1997) The role of mesolimbic and nigrostriatal dopamine in latent inhibition as measured with the conditioned taste aversion paradigm. Psychopharmacology 129: 112–120.PubMedCrossRefGoogle Scholar
  52. Everitt, B. and Robbins, T.W. (1992) Amygdala-ventral striatal interactions and reward-related processes. In J.P. Aggleton, ed. The Amygdala. Neurobiological Aspects of Emotion, Memory and Mental Dysfunction, Chichester: Wiley-Liss.Google Scholar
  53. Feldon, J., Avnimelech-Gigus, N., Weiner, I. (1990) The effects of pre-and postweaning rearing conditions on latent inhibition and partial reinforcement extinction effect in male rats. Behav Neural Biot. 53: 189–204.CrossRefGoogle Scholar
  54. Feldon, J., Shalev, U., Weiner, I. (1995) “Super” latent inhibition (LI) with high dose of amphetamine. Soc Neurosci Abstracts. 21: 12–30.Google Scholar
  55. Feldon, J., Shofel, A., Weiner, I. (1991) Latent inhibition is unaffected by direct dopamine agonists. Pharmacol Biochem Behay. 38: 309–314.CrossRefGoogle Scholar
  56. Feldon, J. and Weiner, I. (1988) Long-term attentional deficit in nonhandled males: possible involvement of the dopaminergic system. Psychopharmacology 95: 231–236.PubMedGoogle Scholar
  57. Feldon, J. and Weiner, I. (1991) The latent inhibition model of schizophrenic attention disorder: Haloperidol and sulpiride enhance rats’ ability to ignore irrelevant stimuli. Biol Psychiatry 29: 635–646.PubMedCrossRefGoogle Scholar
  58. Feldon, J. and Weiner, I. (1992) From an animal model of an attentional deficit towards new insights into the pathophysiology of schizophrenia. J Psychiat Res. 26: 345–366.PubMedCrossRefGoogle Scholar
  59. Freed, W.J. (1994) Glutamatergic mechanisms mediating stimulant and antipsychotic drug effects. Neurosci Biobehav Rev. 18: 111–120.PubMedCrossRefGoogle Scholar
  60. Frith, C.D. (1979) Consciousness, information processing and schizophrenia. Br J Psychiatry 134: 225–235.PubMedCrossRefGoogle Scholar
  61. Gal, G. (2000) Disrupted and undisruptable latent inhibition following shell and core lesions: The dual role of the nucleus accumbens in latent inhibition. Dept Psychol, Tel Aviv University.Google Scholar
  62. Gallagher, M. and Chiba, A.A. (1996) The amygdala and emotion. Curr Opin Neurobiol. 6: 221–227.PubMedCrossRefGoogle Scholar
  63. Ganguli, R., Brar, J.S., Chengappa, K.R., DeLeo, M., Yang, Z.W., Shurin, G., Rabin, B.S. (1995) Mitogen-stimulated interleukin-2 production in never-medicated, first-episode schizophrenic patients: The influence of age at onset and negative symptoms. Arch Gen Psychiatry 52: 668–672.PubMedCrossRefGoogle Scholar
  64. Gelissen, M. and Cools, A. (1988) Effect of intracaudate haloperidol and apomorphine on switching motor patterns upon current behavior of cats. Behav Brain Res. 29: 17–26.PubMedCrossRefGoogle Scholar
  65. Gjerde, P.F. (1983) Attentional capacity dysfunction and arousal in schizophrenia. Psychol Bull. 93: 57–72.PubMedCrossRefGoogle Scholar
  66. Gosselin, G., Oberling, P., Di Scala, G. (1996) Antagonism of amphetamine-induced disruption of latent inhibition by the atypical antipsychotic olanzapine in rats. Behav Pharmacol. 7: 820–826.PubMedCrossRefGoogle Scholar
  67. Grace, A.A. (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24.PubMedCrossRefGoogle Scholar
  68. Gracey, D.J., Bell, R., King, D.J. (2000) PD-135,158, a cholecystokinin(B) antagonist, enhances latent inhibition. Pharmacol Biochem Behay. 65: 459–463.CrossRefGoogle Scholar
  69. Gray, J.A., Feldon, J., Rawlins, J.N.P., Hemsley, D.R., Smith, A.D. (1991) The neuropsychology of schizophrenia. Behav Brain Sci. 14: 1–84.CrossRefGoogle Scholar
  70. Gray, J.A., Joseph, M.H., Hemsley, D.R., Young, A.M.J., Warburton, E.C., Boulenguez, P., Grigoryan, G.A., Peters, S.L., Rawlins, J.N.P., Tai, C.T., Yee, B.K., Cassaday, H., Weiner, I., Gal, G., Gusak, O., Joel, D., Shadach, E., Shalev, U., Tarrasch, R., Feldon, J. (1995a) The role of mesolimbic dopaminergic and retrohippocampal afferents to the nucleus accumbens in latent inhibition: implications for schizophrenia. Behav Brain Res. 71: 19–31.PubMedCrossRefGoogle Scholar
  71. Gray, J.A., Moran, P.M., Grigoryan, G., Peters, S.L., Young, A.M.J., Joseph, M.H. (1997) Latent inhibition: the nucleus accumbens connection revisited. Behav Brain Res. 88: 27–34.PubMedCrossRefGoogle Scholar
  72. Gray, N.S., Hemsley, D.R., Gray, J.A. (1992a) Abolition of latent inhibition in acute, but not chronic, schizophrenics. Neurol Psychiatr Brain Res. 1: 83–89.Google Scholar
  73. Gray, N.S., Pickering, A.D., Hemsley, D.R., Dawling, S., Gray, J.A. (1992b) Abolition of latent inhibition by a single 5 mg dose of d-amphetamine in Man. Psychopharmacology 107: 425–430.PubMedCrossRefGoogle Scholar
  74. Gray, N.S., Pilowsky, L.S., Gray, J.A., Kerwin, R.W. (1995b) Latent inhibition in drug naive schizophrenics: relationship to duration of illness and dopamine D2 binding using SPET. Schiz Res. 17: 95–107.CrossRefGoogle Scholar
  75. Grecksch, G., Bernstein, H.G., Becker, A., Hollt, V., Bogerts, B. (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20: 525–532.PubMedCrossRefGoogle Scholar
  76. Groenewegen, H.G., Wright, C.I., Beijer, V.J., Voorn, P. (1999) Convergence and segregation of ventral striatal inputs and outputs. In J.F. McGintry, ed. Advancing from the ventral striatum to the extended amygdala, New York: Annals of the New York Academy of Sciences.Google Scholar
  77. Groenewegen, H.J., Berendse, H.W., Meredith, G.E., Haber, S.N., Voorn, P., Wolters, J.G., Lohman, A.H.M. (1991) Functional anatomy of the ventral, limbic system-innervated striatum. In P. Willner and J. Scheel-Kruger, ed. The mesolimbic dopamine system: from motivation to action, Chinchester: John Wiley.Google Scholar
  78. Groenewegen, H.J., Berendse, H.W., Wolters, J.G., Lohman, A.H.M. (1990) The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. Prog Brain Res. 85: 95–118.PubMedCrossRefGoogle Scholar
  79. Groenewegen, H.J., Vermeulen-Van der Zee, E., te Kortschot, A., Witter, M.P. (1987) Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of phaseolus vulgaris leucoagglutinin. Neuroscience 23: 103–120.PubMedCrossRefGoogle Scholar
  80. Groenewegen, H.J., Wright, C.I., Beijer, A.V.J. (1996) The nucleus accumbens: gateway for limbic structures to reach the motor system? Prog Brain Res. 107: 485–511.PubMedCrossRefGoogle Scholar
  81. Gur, R.E., Petty, R.G., Turetsky, B.I., Gur, R.C. (1996) Schizophrenia throughout life: Sex differences in severity and profile of symptoms. Schiz Res. 21: 1–12.CrossRefGoogle Scholar
  82. Hafner, H., Riecher-Rossler, A., An Der Heiden, W., Maurer, K., Fatkenheuer, B., Loffler, W. (1993) Generating and testing a causal explanation of the gender difference in age at first onset of schizophrenia. Psychol Med. 23: 925–940.PubMedCrossRefGoogle Scholar
  83. Harrison, P.J. (1995) On the neuropathology of schizophrenia and its dementia: neurodevelopmental, neurodegenerative, or both? Neurodegeneration 4: 1–12.PubMedCrossRefGoogle Scholar
  84. Hemsley, D.R. (1993) A simple (or simplistic?) cognitive model for schizophrenia. Behav Res Ther. 31: 633–645.PubMedCrossRefGoogle Scholar
  85. Hemsley, D.R. (1994) Cognitive disturbance as the link between schizophrenic symptoms and their biological bases. Neurol Psychiatry Brain Res. 2: 163–170.Google Scholar
  86. Hijzen, T., Gommans, J., Poth, M., Wolterink, G. (1996) 6-OHDA lesion in the nucleus accumbens do not affect latent inhibition. Behav Pharmacol. 5 (Suppll): 121.Google Scholar
  87. Hitchcock, J.M., Lister, S., Fischer, T.R., Wettstein, J.G. (1997) Disruption of latent inhibition in the rat by the 5-HT2 agonist DOI: effects of MDL 100,907, clozapine, risperidon and haloperidol. Behav Brain Res. 88: 43–49.Google Scholar
  88. Holt, W. and Maren, S. (1999) Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci. 19: 9054–9062.PubMedGoogle Scholar
  89. Honey, R.C. and Good, M. (1993) Selective hippocampal lesions abolish the contextual specificity of latent inhibition and conditioning. Behav Neurosci. 107: 23–33.PubMedCrossRefGoogle Scholar
  90. Joel, D., Weiner, I., Feldon, J. (1997) Electrolytic lesions of the medial prefrontal cortex in rats disrupt performance on an analog of Wisconsin Card Sorting Test but do not disrupt latent inhibition: Implications for animal models of schizophrenia. Behav Brain Res. 85: 187–201.PubMedCrossRefGoogle Scholar
  91. Kane, J.M. (1995) Current problems with the pharmacotherapy of schizophrenia. Clin Neuropharmacol. 18: S154 - S161.CrossRefGoogle Scholar
  92. Kane, J.M., Safferman, A.Z., Pollack, S., Johns, C. (1994) Clozapine, negative symptoms, and extrapyramidal side effects. J Clin Psychiatry 55: S74 - S77.Google Scholar
  93. Karnath, H.O. and Wallesch, C.W. (1992) Inflexibility of mental planning: a characteristic disorder with prefrontal lobe lesions? Neuropsychologia 30: 1011–1016.PubMedCrossRefGoogle Scholar
  94. Kay, S.R. and Singh, M.M. (1989) The positive-negative distinction in drug-free schizophrenic patients. Arch Gen Psychiatry 46: 711–718.PubMedCrossRefGoogle Scholar
  95. Kaye, H. and Pearce, J.M. (1987a) Hippocampal lesions attenuate latent inhibition and the decline of the orienting response in rats. Quart J Exp Psychol. 39B: 107–125.Google Scholar
  96. Kaye, H. and Pearce, J.M. (1987b) Hippocampal lesions attenuate latent inhibition of a CS and of a neutral stimulus. Psychobiology 15: 293–299.Google Scholar
  97. Killcross, A.S., Dickinson, A., Robbins, T.W. (1994a) Effects of the neuroleptic alpha-flupenthixol on latent inhibition in aversively–and appetitively–motivated paradigms: Evidence for dopamine-reinforcer interactions. Psychopharmacology 115: 196–205.PubMedCrossRefGoogle Scholar
  98. Killcross, A.S., Dickinson, A., Robbins, T.W. (1994b) Amphetamine-induced disruptions of latent inhibition are reinforcer mediated: Implications for animal models of schizophrenic attentional dysfunction. Psychopharmacology 115: 185–195.PubMedCrossRefGoogle Scholar
  99. Killcross, A.S. and Robbins, T.W. (1993) Differential effects of intra-accumbens and systemic amphetamine on latent inhibition using an on-baseline, within-subject conditioned suppression paradigm. Psychopharmacology 110: 479–489.PubMedCrossRefGoogle Scholar
  100. King, D.J. (1998) Drug treatment of the negative symptoms of schizophrenia. Eur J Neuropsychopharmacol. 8: 33–42.CrossRefGoogle Scholar
  101. Kinon, B.J. and Lieberman, J.A. (1996) Mechanisms of action of atypical antipsychotic drugs: A critical analysis. Psychopharmacology 124: 2–34.PubMedCrossRefGoogle Scholar
  102. Kline, L., Decena, E., Hitzemann, R., McCaughran, J. (1998) Acoustic startle, prepulse inhibition, locomotion, and latent inhibition in the neuroleptic-responsive (NR) and neuroleptic-nonresponsive (NNR) lines of mice. Psychopharmacology 139: 322–331.PubMedCrossRefGoogle Scholar
  103. Konstandi, M. and Kafetzopoulos, E. (1993) Effects of striatal or accumbens lesions on the amphetamine-induced abolition of latent inhibitions. Pharmacol Biochem Behay. 44: 751–754.CrossRefGoogle Scholar
  104. Koob, G.F., Riley, S.J., Smith, S.C., Robbins, T.W. (1978) Effects of 6-ydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. J Comp Physiol Psycho!. 92: 917–927.CrossRefGoogle Scholar
  105. Kornetzky, C. (1972) The use of simple test of attention as a measure of drug effects in schizophrenic patients. Psychopharmacology 24: 99–106.CrossRefGoogle Scholar
  106. Kovelman, J.A. and Scheibel, A.B. (1984) A neurobiological correlate of schizophrenia. Biol Psychiatry 19: 601–621.Google Scholar
  107. Kraepelin, E. (1919) Dementia praecox and paraphrenia. New York: Robert E. Kreiger Publishing Co.Google Scholar
  108. Lacroix, L., Broersen, L.M., Feldon, J., Weiner, I. (2000) Effects of local infusions of dopaminergic drugs into the medial prefrontal cortex of rats on latent inhibition, prepulse inhibition and amphetamine induced activity. Behav Brain Res. 107: 111–121.PubMedCrossRefGoogle Scholar
  109. Lacroix, L., Broersen, L.M., Weiner, I., Feldon, J. (1998) The effects of excitotoxic lesion of the medial prefrontal cortex on latent inhibition, prepulse inhibition, food hoarding, elevated plus maze, active avoidance and locomotor activity in the rat. Neuroscience 84: 431–442.PubMedCrossRefGoogle Scholar
  110. Laruelle, M., Abi-Dargham, A., Gil, R., Kegeles, L., Innis, R. (1999) Increased dopamine transmission in schizophrenia: Relationship to illness phases. Biol Psychiatry 46: 56–72.PubMedCrossRefGoogle Scholar
  111. Le Moal, M. and Simon, H. (1991) Mesocorticolimbic dopaminergic network: Functional and regulatory roles. Physiol Rev. 71: 155–234.PubMedGoogle Scholar
  112. LeDoux, J.E. (1992) Brain mechanisms of emotion and emotional learning. Curr Opin Neurobiol. 2: 19–27.Google Scholar
  113. Lewis, S. (1992) Sex and schizophrenia: Vive la difference. Br J Psychiatry 161: 445–450.PubMedCrossRefGoogle Scholar
  114. Leysen, J.E., Janssen, P.M.F., Schotte, A., Luyten, W.H.M.L., Megens, A.A.H.P. (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects - role of 5HT(2) receptors. Psychopharmacology 112: S40 - S54.PubMedCrossRefGoogle Scholar
  115. Liddle, P.F., Friston, K.J., Frith, C.D., Jones, T., Hirsh, S.R., Frackowiak, R.S.J. (1992) Pattems of cerebral blood flow in schizophrenia. Br J Psychiatry 160: 179–186.PubMedCrossRefGoogle Scholar
  116. Lipp, O.V. and Vaitl, D. (1992) Latent inhibition in human Pavlovian differential conditioning: Effect of additional stimulation after preexposure and relation to schizotypal traits. Pers Indiv Differ. 13: 1003–1012.CrossRefGoogle Scholar
  117. Lorden, J.F., Rickert, E.J., Berry, D.W. (1983) Forebrain monoamines and associative learning: I. Latent inhibition and conditioned inhibition. Behav Brain Res. 9: 181–199.PubMedCrossRefGoogle Scholar
  118. Louilot, A., Simon, H., Taghzouti, K., Le Moal, M. (1985) Modulation of dopaminergic activity in the nucleus accumbens following facilitation or blockade of the dopaminergic transmission in the amygdala: A study by in vivo differential pulse voltammetry. Brain Res. 346: 141–145.PubMedCrossRefGoogle Scholar
  119. Lubow, R.E. (1973) Latent inhibition. Psychol Bull. 79: 398–407.PubMedCrossRefGoogle Scholar
  120. Lubow, R.E. (1989) Latent inhibition and conditioned attention theory. Cambridge, England: Cambridge University Press.Google Scholar
  121. Lubow, R.E. (1997) Latent inhibition as a measure of learned inattention: some problems and solutions. Behav Brain Res. 88: 75–83.PubMedCrossRefGoogle Scholar
  122. Lubow, R.E. and Gewirtz, J.C. (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull. 117: 87–103.PubMedCrossRefGoogle Scholar
  123. Lubow, R.E., Ingberg-Sachs, Y., Zalstein-Orda, N., Gewirtz, J.C. (1992) Latent inhibition in low and high `psychotic-prone’ subjects. Pers Indiv Differ. 13: 563–572.CrossRefGoogle Scholar
  124. Lubow, R.E., Kaplan, 0., Rudnick, A., Laor, N. (in press) Visual search in schizophrenics: latent inhibition and novel pop-out effects. Schiz Res.Google Scholar
  125. Lubow, R.E., Rifkin, B., Alek, M. (1976) The context effect: the relationship between stimulus preexposure and environmental preexposure determines subsequent learning. J Exp Psychol: Animal Behav Proc. 2: 38–47.CrossRefGoogle Scholar
  126. Lubow, R.E., Weiner, I., Schnur, P. (1981) Conditioned attention theory. In G.H. Bower, ed. The psychology of learning and motivation, New York: Academic Press.Google Scholar
  127. Lyon, M. (1991) Animal models of mania and schizophrenia. In P. Willner, ed. Behavioral models in psychopharmacology: Theoretical, industrial and clinical perspectives., Cambridge: Cambridge University Press.Google Scholar
  128. Mackintosh, N.J. (1975) A theory of attention: Variations in the associability of stimuli with reinforcement. Psychol Rev. 82: 276–298.CrossRefGoogle Scholar
  129. Maes, M., Meltzer, H.Y., Buckley, P., Bosmans, E. (1995) Plasma-soluble interleukin-2 and transferring receptor in schizophrenia and major depression. Eur Arch Psychiatry Clin Neurosci. 244: 325–329.PubMedCrossRefGoogle Scholar
  130. Magaro, P.A. (1980) Cognition in schizophrenia and paranoia: The integration of cognitive processes. Hillsdale: Lawrence Erlbaum.Google Scholar
  131. Maher, B.A., Manschreck, T.C., Molino, M.A. (1983) Redundancy, pause distributions and thought disorder in schizophrenia. Lang Speech. 26: 191–199.PubMedGoogle Scholar
  132. Maldonado-Irizarry, C.S., Kelley, A.E. (1994) Differential behavioral effects following microinjection of an NMDA antagonist into nucleus accumbens subregions. Psychopharmacology 116: 65–72.PubMedCrossRefGoogle Scholar
  133. Maldonado-Irizarry, C.S. and Kelley, A.E. (1995) Excitotoxic lesions of the core and shell subregions of the nucleus accumbens differentially disrupt body weight regulation and motor activity in rat. Brain Res Bull. 38: 551–559.PubMedCrossRefGoogle Scholar
  134. McAllister, K.H. (1997) A single administration of d-amphetamine prior to stimulus pre-exposure and conditioning attenuates latent inhibition. Psychopharmacology 130: 79–84.PubMedCrossRefGoogle Scholar
  135. McGhie, A. and Chapman, J. (1961) Disorders of attention and perception in early schizophrenia. Br J Med Psychol. 34: 103–116.PubMedCrossRefGoogle Scholar
  136. McKinney, W.T. (1988) Models of mental disorders: A new comparative psychiatry. New-York: Plenum Press.CrossRefGoogle Scholar
  137. Mednick, S.A. and Cannon, T.D. (1991) Fetal development, birth and the syndroms of adult schizophrenia. In S.A. Mednick, T.D. Cannon and C.E. Barr, ed. Fetal development and adult schizophrenia, Cambridge: Cambridge University press.Google Scholar
  138. Mednick, S.A., Machon, R.A., Huttunen, M.O., Bonett, D. (1988) Adult schizophrenia following prenatal exposure to an influenza epidemic. Arch Gen Psychiatry 45: 189–192.PubMedCrossRefGoogle Scholar
  139. Meltzer, H.Y. (1989) Clinical studies on the mechanism of action of clozapine: The dopamine-serotonin hypothesis of schizophrenia. Psychopharmacology 99: S18 - S27.PubMedCrossRefGoogle Scholar
  140. Meltzer, H.Y. and Nash, J.F. (1991) Effects of antipsychotic drugs on serotonin receptors. Pharmacol Rev. 43: 587–604.PubMedGoogle Scholar
  141. Meltzer, H.Y. and Stahl, S.M. (1976) The dopamine hypothesis of schizophrenia: A review. Schiz Bull. 2: 19–76.CrossRefGoogle Scholar
  142. Millan, M.J., Brocco, M., Rivet, J.M., Audinot, V., Newman-Tancredi, A., Maiofiss, L., Queriaux, S., Despaux, N., Peglion, J.L., Dekeyne, A. (2000a) S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3yl)piperid-1-yl]ethyl]3- phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: II. Functional profile and a multiparametric comparison with haloperidol, clozapine, and 11 other antipsychotic agents. J Pharmacol Exp Ther. 292: 54–66.PubMedGoogle Scholar
  143. Millan, M.J., Gobert, A., Newman-Tancredi, A., Lejeune, F., Cussac, D., Rivet, J.M., Audinot, V., Adhumeau, A., Brocco, M., Nicolas, J.P., Boutin, J.A., Despaux, N., Peglion, J.L. (2OOOb) S18327 (1-[2-[4-(6-fluoro-1, 2-benzisoxazol-3-yl)piperid-1-yl]ethyl]3- phenyl imidazolin-2-one), a novel, potential antipsychotic displaying marked antagonist properties at alpha(1)- and alpha(2)-adrenergic receptors: I. Receptorial, neurochemical, and electrophysiological profile. J Pharmacol Exp Ther. 292: 38–53.Google Scholar
  144. Moore, H., West, A.R., Grace, A.A. (1999) The regulation of forebrain dopamine transmission: Relevance to the pathophysiology and psychopathology of schizophrenia. Biol Psychiatry 46: 40–55.PubMedCrossRefGoogle Scholar
  145. Moran, P.M., Fischer, T.R., Hitchcock, J.M., Moser, P.C. (1996) Effects of clozapine on latent inhibition in the rat. Behav Pharmacol. 7: 42–48.PubMedCrossRefGoogle Scholar
  146. Moser, P.C., Moran, P.M., Frank, R.A., Kehne, J.H. (1996) Reversal of amphetamine-induced behaviours by MDL 100,907, a selective 5-HT2A antagonist. Behav Brain Res. 73: 163–167.PubMedCrossRefGoogle Scholar
  147. Murray, R.M. and Lewis, S.W. (1987) Is schizophrenia a nerodevelopmental disorder? Br Med J. 295: 681–682.CrossRefGoogle Scholar
  148. Nordstrom, A.L., Farde, L., Halídin, C. (1993) High 5-HT(2) receptor occupancy in clozapine treated patients demonstrated by PET. Psychopharmacology 110: 365–367.PubMedCrossRefGoogle Scholar
  149. Nuechterlein, K.H. and Dawson, M.E. (1984) Information processing and attentional functioning in the developmental course of the schizophrenic disorder. Schiz Bull. 10: 160–203.CrossRefGoogle Scholar
  150. O’Callaghan, E., Larkin, C., Kinsella, A., Waddington, J.L. (1991) Familial, obstetric, and other clinical correlates of minor physical anomalies in schizophrenia. Am J Psychiatry 148: 479–483.PubMedGoogle Scholar
  151. O’Donnell, P. and Grace, A.A. (1998) Dysfunctions in multiple interrelated systems as the neurobiological bases of schizophrenic symptom clusters. Schiz Bull. 24: 267–283.CrossRefGoogle Scholar
  152. Oades, R.D. (1982) Attention and schizophrenia: Neurobiological bases. London: Pitman.Google Scholar
  153. Oades, R.D. (1985) The role of noradrenaline in tuning and dopamine in switching between signals in the CNS. Neurosci Biobehav Rev. 9: 261–282.PubMedCrossRefGoogle Scholar
  154. Payne, R.W. (1966) The measurement and significance of overinclusive thinking and retardation in schizophrenic patients. In P. Hoch and J. Zubin, ed. Psychopathology of schizophrenia, New York: Grune and Stratton.Google Scholar
  155. Pearce, J.M. and Hall, G. (1980) A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychol Rev. 87: 532–552.PubMedCrossRefGoogle Scholar
  156. Pennartz, C.M., Groenewegen, H.J., Lopes da Silva, F.H. (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol. 42: 719–761.PubMedCrossRefGoogle Scholar
  157. Peters, S.L. and Joseph, M.H. (1993) Haloperidol potentiation of latent inhibition in rats: evidence for a critical role at conditioning rather than pre-exposure. Behav Pharmacol. 4: 183–186.PubMedCrossRefGoogle Scholar
  158. Phillips, R.G. and LeDoux, J.E. (1995) Lesions of the fornix but not the entorhinal or perirhinal cortex interfere with contextual fear conditioning. J Neurosci. 15: 5308–5315.PubMedGoogle Scholar
  159. Pouzet, B., Veenman, C.L., Yee, B.K., Feldon, J., Weiner, I. (1999) The effects of radiofrequency lesion or transection of the fimbria-fornix on latent inhibition in the rat. Neuroscience 91: 1355–1368.PubMedCrossRefGoogle Scholar
  160. Rao, M.L. and Moller, H.J. (1994) Biochemical findings of negative symptoms in schizophrenia and their putative relevance to pharmacologic treatment–a review. Neuropsychobiology 30: 160–172.PubMedCrossRefGoogle Scholar
  161. Rappaport, M., Silverman, J., Hopkins, H.K., Hall, K. (1971) Phenotiazine effects on auditory signal detection in paranoids and paranoid schizophrenics. Science 174: 723–725.PubMedCrossRefGoogle Scholar
  162. Redgrave, P., Prescott, T.J., Gurney, K. (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89: 1009–1023.PubMedCrossRefGoogle Scholar
  163. Reilly, S., Harley, C., Revusky, S. (1993) Ibotanate lesions of the hippocampus enhance latent inhibition in conditioned taste aversion and increase resistance to extinction in conditioned taste preference. Behav Neurosci. 107: 996–1004.PubMedCrossRefGoogle Scholar
  164. Robbins, T.W. (1991) Cognitive deficits in schizophrenia and Parkinson’s disease - neural basis and the role of dopamine. In P. Willner and J. Scheel-Kruger, ed. The mesolimbic dopamine system - from motivation to action, Chichester: John Wiley and Sons Ltd.Google Scholar
  165. Robbins, T.W. and Everitt, B.J. (1982) Functional studies of the central catecholamines. Int Rev Neurobiol. 23: 303–365.PubMedCrossRefGoogle Scholar
  166. Robbins, T.W. and Koob, G.F. (1980) Selective disruption of displacement behaviour by lesions of the mesolimbic dopamine system. Nature 285: 409–412.PubMedCrossRefGoogle Scholar
  167. Robbins, T.W., Sahakian, B.J. (1983) Behavioural effects of psychomotor stimulant drugs: clinical and neuropsychological implications. In I. Creese, ed. Stimulants: neurochemical, behavioral and clinical perspectives, New York: Raven Press.Google Scholar
  168. Robinson, G.B., Port, R.L., Stillwell, E.G. (1993) Latent inhibition of the classically conditioned rabbit nictitating membrane response is unaffected by the NMDA antagonist MK-801. Psychobiology 21: 120–124.Google Scholar
  169. Rochford, J., Sen, A.P., Quirion, R. (1996b) Effect of nicotine and nicotinic receptor agonists on latent inhibition in the rat. J Pharmacol Exp Ther. 277: 1267–1275.PubMedGoogle Scholar
  170. Rochford, J., Sen, A.P., Rousse, I., Weiner, S.A. (1996a) The effect of quisqualic acid-induced lesions of the nucleus basalis magnocellularis on latent inhibition. Brain Res Bull. 41: 313–317.PubMedCrossRefGoogle Scholar
  171. Ruob, C., Elsner, J., Weiner, I., Feldon, J. (1997) Amphetamine-induced disruption and haloperidolinduced potentiation of latent inhibition depend on the nature of the stimulus. Behav Brain Res. 88: 35–41.PubMedCrossRefGoogle Scholar
  172. Ruob, C., Weiner, I., Feldon, J. (1998) Haloperidol-induced potentiation of latent inhibition: Interaction with parameters of conditioning. Behav Pharmacol. 9: 245–253.PubMedGoogle Scholar
  173. Schmajuk, N., Lam, Y.W., Christiansen, B.A. (1994) Latent inhibition of the rat eyeblink response: effect of hippocampal aspiration lesions. Physiol Behay. 55: 597–601.CrossRefGoogle Scholar
  174. Schmajuk, N.A. and Moore, J.W. (1985) Real-time attentional models for classical conditioning and the hippocampus. Physiol Psychol. 13: 278–290.Google Scholar
  175. Schmajuk, N.A., Moore, J.W. (1988) The hippocampus and the classically conditioned nictitating membrane response: A real-time attentional-associative model. Psychobiology 16: 20–35.Google Scholar
  176. Schotte, A., Janssen, P.F.M., Gommeren, W., Luyten, W.H.M.L., Van Gompel, P., Lesage, A.S., De Loore, K., Leysen, J.E. (1996) Risperidone compared with new and reference antipsychotic drugs: In vitro and in vivo receptor binding. Psychopharmacology 124: 57–73.PubMedCrossRefGoogle Scholar
  177. Schroeder, U., Schroeder, H., Darius, J., Grecksch, G., Sabel, B.A. (1998) Simulation of psychosis by continuous delivery of PCP from controlled-release polymer implants. Behav Br Res. 97: 59–68.CrossRefGoogle Scholar
  178. Schultz, W. (1998) Predictive reward signal of dopamine neurons. J Neurophysiol. 80: 1–27.PubMedGoogle Scholar
  179. Serban, G., Siegel, S., Gaffney, M. (1992) Response of negative symptoms of schizophrenia to neuroleptic treatment. J Clin Psychiatry 53: 229–234.PubMedGoogle Scholar
  180. Shadach, E., Feldon, J., Weiner, I. (1999) Clozapine-induced potentiation of latent inhibition is due to its action in the conditioning stage: implications for the mechanism of action of antipsychotic drugs. Int J Neuropsychopharmacology 283–291.Google Scholar
  181. Shadach, E., Gaisler, I., Schiller, D., Weiner, I. (in press) The latent inhibition model dissociates between clozapine, haloperidol and ritanserin. Neuropsychopharmacology.Google Scholar
  182. Shakow, D. (1962) Segmental set: a theory of the formal psychological deficit in schizophrenia. Arch Gen Psychiatry 6: 17–33.CrossRefGoogle Scholar
  183. Shalev, U. (1998) A neurodevelopmental model of an attentional deficit: the effects of perinatal treatments and stress on latent inhibition. Dept Psychol, Tel-Aviv University.Google Scholar
  184. Shalev, U., Feldon, J., Weiner, I. (1998) Gender-and age-dependent differences in latent inhibition following pre-weaning non-handling: implications for a neurodevelopmental animal model of schizophrenia. Int J Dev Neurosci. 16: 279–288.PubMedCrossRefGoogle Scholar
  185. Shervan-Schreiber, D., Cohen, J.D., Steingard, S. (1996) Schizophrenic deficits in the processing of context: A test of a theoretical model. Arch Gen Psychiatry 53: 1105–1113.CrossRefGoogle Scholar
  186. Snyder, S.H. (1976) The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 133: 197–202.PubMedGoogle Scholar
  187. Solomon, P., Kiney, C.A., Scott, D.R. (1978) Disruption of latent inhibition following systemic administration of parachlorophenylalanine (PCPA). Physiol Behay. 20: 265–271.CrossRefGoogle Scholar
  188. Solomon, P. and Moore, J.W. (1975) Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. J Comp Physiol Psychol. 89: 1192–1203.PubMedCrossRefGoogle Scholar
  189. Solomon, P., Nichols, G.L., Kiernan, J.M.I., Kamer, R.S., Kaplan, L.J. (1980) Differential effects of lesions in medial and dorsal raphe of the rat: latent inhibition and septo-hippocampal serotonin levels. J Comp Physiol Psychol. 94: 145–154.PubMedCrossRefGoogle Scholar
  190. Solomon, P.R., Crider, A., Winkelman, J.W., Turi, A., Kamer, R.M., Kaplan, L.J. (1981) Disrupted latent inhibition in the rat with chronic amphetamine or haloperidol-induced supersensitivity: Relationship to schizophrenic attention disorder. Biol Psychiatry 16: 519–537.PubMedGoogle Scholar
  191. Solomon, P.R. and Staton, D.M. (1982) Differential effects of microinjections of d-amphetamine into the nucleus accumbens or the caudate putamen on the rat’s ability to ignore an irrelevant stimulus. Biol Psychiatry 17: 743–756.PubMedGoogle Scholar
  192. Sotty, F., Sandner, G., Gosselin, O. (1996) Latent inhibition in conditioned emotional response: c-fos immunolabelling evidence for brain areas involved in the rat. Brain Res. 737: 243–254.PubMedCrossRefGoogle Scholar
  193. Spitzer, M., Braun, U., Hermle, L., Maier, S. (1993) Associative semantic network dysfunction in thought-disorded schizophrenic patients–direct evidence from indirect semantic priming. Biol Psychiatry 34: 864–877.PubMedCrossRefGoogle Scholar
  194. Surwit, R.S. and Poser, E.G. (1974) Latent inhibition in the conditioned elctrodermal response. J Comp Physiol Psychol. 86: 534–548.CrossRefGoogle Scholar
  195. Swerdlow, N.R., Braff, D.L., Hartston, H., Perry, W., Geyer, M.A. (1996) Latent inhibition in schizophrenia. Schiz Res. 20: 91–103.CrossRefGoogle Scholar
  196. Swerdlow, N.R. and Koob, G.F. (1987) Dopamine, schizophrenia, mania and depression: Toward a unified hypothesis of cortico-striato-pallido-thalamic function. Behav Brain Sci. 10: 215–217.CrossRefGoogle Scholar
  197. Taghzouti, K., Louilot, A., Herman, J., Le Moal, M., Simon, H. (1985a) Alternation behavior, spatial discrimination, and reversal disturbances following 6-hydroxydopamine lesions in the nucleus accumbens of the rat. Behav Neural Biol. 44: 354–363.PubMedCrossRefGoogle Scholar
  198. Taghzouti, K., Simon, H., Louilot, A., Herman, J.P., Le Moal, M. (1985b) Behavioral study after local injection of 6-hydroxydopamine into the nucleus accumbens in the rat. Brain Res. 344: 9–20.PubMedCrossRefGoogle Scholar
  199. Tai, C.T., Cassaday, H.J., Feldon, J., Rawlins, J.N.P. (1995) Both electrolytic and excitotoxic lesions of nucleus accumbens disrupt latent inhibition of learning in rats. Neurobiol Learn Memory 64: 36–48.CrossRefGoogle Scholar
  200. Tamminga, C. (1999) Glutamatergic aspects of schizophrenia. Br J Psychiatry 174 (Suppl. 37): 12–15. Tandon, R. (1995) Expert commentary: Neurobiological substrate of dimensions of schizophrenic illness. J Psychiatr Res. 29: 255–260.Google Scholar
  201. Tandon, R., Arbor, A., Kane, M.J., Oaks, G. (1993) Neuropharmacologic basis for clozapine’s unique profile. Arch Gen Psychiatry 50: 158–159.PubMedCrossRefGoogle Scholar
  202. Tandon, R., Goldman, R.S., Goodson, J., Greden, J.F. (1990) Mutability and relationship between positive and negative symptoms during neuroleptic treatment in schizophrenia. Biol Psychiatry 27: 1323–1326.PubMedCrossRefGoogle Scholar
  203. Thornton, J.C.,Dawe, S., Lee, C., Capstick, C., Corr, P.J., Cotter, P., Frangou, S., Gray, N.S., Russell, M.A., Gray, J.A. (1996) Effects of nicotine and amphetamine on latent inhibition in human subjects. Psychopharmacology 127: 164–173.Google Scholar
  204. Torrey, E.F. (1991) A viral-anatomical explanation of schizophrenia. Schiz Bull. 17: 15–18.CrossRefGoogle Scholar
  205. Totterdell, S. and Meredith, G.E. (1997) Topographical organization of projections from the entorhinal cortex to the striatum of the rat. Neuroscience 78: 715–729.PubMedCrossRefGoogle Scholar
  206. Trimble, K.M., Bell, R., King, D.J. (1997) Enhancement of latent inhibition in the rat by the atypical antipsychotic agent remoxipride. Pharmacol Biochem Behay. 56: 809–816.CrossRefGoogle Scholar
  207. Trimble, K.M., Bell, R., King, D.J. (1998) Enhancement of latent inhibition in the rat at a high dose of clozapine. J Psychopharmacol. 12: 215–219.PubMedCrossRefGoogle Scholar
  208. Vaid, R.R., Yee, B.K., Shalev, U., Rawlins, J.N., Weiner, I., Feldon, J., Totterdell, S. (1997) Neonatal nonhandling and in utero prenatal stress reduce the density of NADPH-diaphorase-reactive neurons in the fascia dentata and Ammon’s horn of rats. J Neurosci. 17: 5599–5609.PubMedGoogle Scholar
  209. Vaitl, D. and Lipp, V. (1997) Latent inhibition and autonomic responses: A psycholophysiological approach. Behav Brain Res. 88: 85–94.PubMedCrossRefGoogle Scholar
  210. Van den Bos, R. and Cools, A.R. (1989) The involvement of the nucleus accumbens in the ability of rats to switch to cue-directed behaviors. Life Sci. 44: 1697–1704.PubMedCrossRefGoogle Scholar
  211. Venables, P.H. (1984) Cerebral mechanisms, autonomic responsiveness and attention in schizophrenia. In W.D. Spaulding and J.K. Cole, ed. Theories of schizophrenia and psychosis, Lincoln: University of Nebraska Press.Google Scholar
  212. Wagner, A.R. and Rescorla, R.A. (1972) Inhibition in Pavlovian conditioning: Application of a theory. In R.A. Boakes and M.A. Halliday, ed. Inhibition and Learning, New York: Academic Press.Google Scholar
  213. Warburton, E.C., Joseph, M.H., Feldon, J., Weiner, I., Gray, J.A. (1994) Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron: implications for a possible antipsychotic action of ondansetron. Psychopharmacology 114: 657–664.PubMedCrossRefGoogle Scholar
  214. Weinberger, D.R. and Lipska, B.K. (1995) Cortical maldevelopment, anti-psychotic drugs, and schizophrenia: a search for common ground. Schiz Res. 16: 87–110.CrossRefGoogle Scholar
  215. Weiner, I. (1990) Neural substrates of latent inhibition: The switching model. Psychol Bull. 108: 442–461.PubMedCrossRefGoogle Scholar
  216. Weiner, I., Bernasconi, E., Broersen, L.M., Feldon, J. (1997a) Amphetamine-induced disruption of latent inhibition depends on the nature of the stimulus. Behav Pharmacol. 8: 442–457.PubMedCrossRefGoogle Scholar
  217. Weiner, I. and Feldon, J. (1987) Facilitation of latent inhibition by haloperidol in rats. Psychopharmacology 91: 248–253.PubMedGoogle Scholar
  218. Weiner, I. and Feldon, J. (1992) Phencyclidine does not disrupt latent inhibition in rats: implications for animal models of schizophrenia. Pharmacol Biochem Behay. 42: 625–631.CrossRefGoogle Scholar
  219. Weiner, I. and Feldon, J. (1997) The switching model of latent inhibition: An update of neural substrates. Behav Brain Res. 88: 11–25.PubMedCrossRefGoogle Scholar
  220. Weiner, 1., Feldon, J., Katz, Y. (1987a) Facilitation of the expression but not the acquisition of latent inhibition by haloperidol in rats. Pharmacol Biochem Behay. 26: 241–246.Google Scholar
  221. Weiner, I., Feldon, J., Tarrasch, R., Hairston, I., Joel, D. (1998a) Fimbria-fornix cut affects spontaneous activity, two-way avoidance and delayed non matching to sample, but not latent inhibition. Behav Brain Res. 96: 59–70.PubMedCrossRefGoogle Scholar
  222. Weiner, I., Feldon, J., Ziv-Harris, D. (1987b) Early handling and latent inhibition in the conditioned suppression paradigm. Dev Psychobiol. 20: 233–240.PubMedCrossRefGoogle Scholar
  223. Weiner, I., Gal, G., Feldon, J. (1999) Disrupted and undisruptable latent inhibition following shell and core lesions. Ann N Y Acad Sci. 877: 723–727.PubMedCrossRefGoogle Scholar
  224. Weiner, I., Gal, G., Rawlins, J.N., Feldon, J. (1996a) Differential involvement of the shell and core subterritories of the nucleus accumbens in latent inhibition and amphetamine-induced activity. Behav Brain Res. 81: 123–133.PubMedCrossRefGoogle Scholar
  225. Weiner, I., Hairston, I., Shayit, M., Feldman, G., Joel, D. (1998b) Strain differences in latent inhibition. Psychobiology 26: 57–64.Google Scholar
  226. Weiner, I., Izraeli-Telerant, A., Feldon, J. (1987c) Latent inhibition is not affected by acute or chronic administration of 6 mg/kg dl-amphetamine. Psychopharmacology. 91: 345–351.PubMedCrossRefGoogle Scholar
  227. Weiner, I., Kidron, R., Tarrasch, R., Amt, J., Feldon, J. (1994) The effects of the new antipsychotic, sertindole, on latent inhibition in rats. Behav Pharm. 5: 119–124.Google Scholar
  228. Weiner, I., Lubow, R.E., Feldon, J. (1981) Chronic amphetamine and latent inhibition. Behav Brain Res. 2: 285–286.CrossRefGoogle Scholar
  229. Weiner, I., Lubow, R.E., Feldon, J. (1984) Abolition of the expression but not the acquisition of latent inhibition by chronic amphetamine in rats. Psychopharmacology 83: 194–199.PubMedCrossRefGoogle Scholar
  230. Weiner, I., Lubow, R.E., Feldon, J. (1988) Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacol Biochem Behay. 30: 871–878.CrossRefGoogle Scholar
  231. Weiner, I., Schnabel, I., Lubow, R.E., Feldon, J. (1985) The effects of early handling on latent inhibition in male and female rats. Dev Psychobiol. 18: 291–297.PubMedCrossRefGoogle Scholar
  232. Weiner, I., Shadach, E., Barkai, R., Feldon, J. (1997b) Haloperidol-and clozapine-induced enhancement of latent inhibition with extended conditioning: Implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology 16: 42–50.PubMedCrossRefGoogle Scholar
  233. Weiner, I., Shadach, E., Tarrasch, R., Kidron, R., Feldon, J. (1996b) The latent inhibition model of schizophrenia: further validation using the atypical neuroleptic, clozapine. Biol Psychiatry 40: 834–843.PubMedCrossRefGoogle Scholar
  234. Weiner, I., Smith, A.D., Rawlins, J.N., Feldon, J. (1992) A neuroleptic-like effect of ceronapril on latent inhibition. Neuroscience 49: 307–315.PubMedCrossRefGoogle Scholar
  235. Weiner, I., Tarrasch, R., Bernasconi, E., Broersen, L.M., Ruttimann, T.C., Feldon, J. (1997c) Amphetamine-induced disruption of latent inhibition is not reinforcer-mediated. Pharmacol Biochem Behay. 56: 817–826.CrossRefGoogle Scholar
  236. Weiner, I., Tarrasch, R., Feldon, J. (1996c) Basolateral amygdala lesions do not disrupt latent inhibition. Behav Brain Res. 72: 73–81.CrossRefGoogle Scholar
  237. Williams, J.H., Wellman, N.A., Geaney, D.P., Cowen, P.J., Feldon, J., Rawlins, J.N. (1998) Reduced latent inhibition in people with schizophrenia: an effect of psychosis or of its treatment. Br J Psychiatry 172: 243–249.PubMedCrossRefGoogle Scholar
  238. Williams, J.H., Wellman, N.A., Geaney, D.P., Feldon, J., Cowen, P.J., Rawlins, J.N.P. (1997) Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology 133: 262–268.PubMedCrossRefGoogle Scholar
  239. Williams, J.H., Wellman, N.A., Geaney, D.P., Feldon, J., Rawlins, J.N., Cowen, P.J. (1996) Anti-psychotic drug effects in a model of schizophrenic attentional disorder: A randomised trial of the effects of haloperidol on latent inhibition in healthy people. Biol Psychiatry 40: 1135–1143.PubMedCrossRefGoogle Scholar
  240. Willner, P. (1991) Behavioural models in psychopharmacology. In P. Willner, ed. Behavioural models in psychopharmacology: Theoretical, industrial and clinical perspectives, Cambridge: Cambridge University Press.Google Scholar
  241. Wolkin, A., Sanfilipo, M., Wolf, A.P., Angrist, B., Brodie, J.D., Rotrosen, J. (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry 49: 959–965.PubMedCrossRefGoogle Scholar
  242. Yee, B.K., Feldon, J., Rawlins, J.N.P. (1995) Latent inhibition in rats is abolished by NMDA-induced neuronal loss in the retrohippocampal region but this lesion effect can be prevented by systemic haloperidol treatment. Behav Neurosci. 109: 227–240.PubMedCrossRefGoogle Scholar
  243. Young, A.M.J., Joseph, M.H., Gray, J.A. (1993) Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54: 5–9.PubMedCrossRefGoogle Scholar
  244. Zahm, D.S. (1999) Functional-anatomical implications of the nucleus accumbens core and shell subterritories. Ann N, Y. Acad Sci. 877: 113–128.CrossRefGoogle Scholar
  245. Zahm, D.S. and Brog, J.S. (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50: 751–767.PubMedCrossRefGoogle Scholar
  246. Zalstein-Orda, N. and Lubow, R.E. (1995) Context control of negative transfer induced by preexposure to irrelevant stimuli:latent inhibition in humans. Learn Motiv. 26: 11–28.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Ina Weiner

There are no affiliations available

Personalised recommendations