Catecholamines and the Sympathoadrenal System: The Regulation of Metabolism

  • James B. Young
  • Lewis Landsberg


Initial recognition of a critical role for the sympathoadrenal system in metabolic regulation can be attributed, in large measure, to the work of W. B. Cannon and his colleagues more than half a centrury ago. In his classic monograph, The Wisdom of the Body,1 Cannon clearly articulated the view, based on his own experimental observations, that the sympathoadrenal system acts to defend internal homeostasis (Cannon’s own term) in a constantly changing environment. The “flight-or-fight” doctrine derived from Cannon’s general theory of sympathoadrenal function has since become one of the central tenets of modern physiology. In recent years, heightened interest in the contribution of the sympathoadrenal system to metabolic regulation has resulted from improved techniques for the in vivo assessment of sympathoadrenal activity and from increased appreciation of the potential effects of catecholamines derived from in vitro studies. Consequently, a large and complex literature has developed over the past decade; this chapter will attempt to review the relevant literature and to provide perspective on the contribution of the sympathoadrenal system to metabolic regulation.


Sympathetic Nerve Sympathetic Activity Cold Exposure Adrenal Medulla Sodium Reabsorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cannon, W.B., 1939, The Wisdom of the Body, W.W. Norton & Co., New York.Google Scholar
  2. 2.
    Landsberg, L., 1976, Catecholamines and the sympathoadrenal system, in: The Year in Endocrinology 1975–1976 (S.H. Ingbar, ed.), pp. 177–231, Plenum Medical Book Company, New York.Google Scholar
  3. 3.
    Wirsén, C., 1965, Distribution of adrenergic nerve fibers in brown and white adipose tissue, in: Handbook of Physiology, Section 5: Adipose Tissue (A.E. Renold and G.F. Cahill, Jr., eds.), pp. 197–199, American Physiological Society, Washington, D.C.Google Scholar
  4. 4.
    . Barajas, L., 1978, Innervation of the renal cortex, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37: 1192–1201.Google Scholar
  5. 5.
    Mazzanti, L., del Tacca, M., and Breschi, M.C., 1977, Histochemical studies of noradrenergic innervation of the liver in untreated and daunomycin-pretreated guinea-pigs, Histochemistry 53: 17–24.Google Scholar
  6. 6.
    Duncan, C.P., and Shim, S.-S., 1977, The autonomic nerve supply of bone, J. Bone Joint Surg. 59B: 323–330.Google Scholar
  7. 7.
    Landsberg, L., 1978, The sympathoadrenal system, in: The Year in Endocrinology 1977 (S.H. Ingbar, ed.), pp. 291–344, Plenum Medical Book Company, New York.Google Scholar
  8. 8.
    Mathias, C.J., Christensen, N.J., Corbett, J.L., Frankel, H.L., and Spalding, J.M.K., 1976, Plasma catecholamines during paroxysmal neurogenic hypertension in quadriplegic man, Circ. Res. 39: 204–208.PubMedGoogle Scholar
  9. 9.
    Silverberg, A.B., Shah, S.D., Haymond, M.W., and Cryer, P.E., 1978, Norepinephrine: Hormone and neurotransmitter in man, Am. J. Physiol. 234: E252–E256.PubMedGoogle Scholar
  10. 10.
    von Euler, U.S., 1964, Quantitation of stress by catecholamine analysis, Clin. Pharmacol. Ther. 5: 398–404.Google Scholar
  11. 11.
    Niijima, A., 1975, The effect of 2-deoxy-D-glucose and D-glucose on the efferent discharge rate of sympathetic nerves, J. Physiol. (London) 251: 231–243.Google Scholar
  12. 12.
    Young, J.B., and Landsberg, L., 1978, Fasting in third trimester pregnant rat stimulates the adrenal medulla but suppresses sympathetic nerves, Clin. Res. 26: 632A.Google Scholar
  13. 13.
    Leduc, J., 1961, Catecholamine production and release in exposure and acclimation to cold, Acta Physiol. Scand. 53(Suppl. 183): 1–101.Google Scholar
  14. 14.
    Richardson, D.W., and Zanchetti, A., 1976, Neural control of rerun release, in: The Nervous System in Arterial Hypertension (S. Julius and M.D. Esler, eds.), pp. 186–204, Charles C. Thomas, Springfield, Illinois.Google Scholar
  15. 15.
    Stella, A., Dampney, R.A.L., Golin, R., and Zanchetti, A., 1978, Afferent vagal control of renin release in the anesthetized cat, Circ. Res. 43(Suppl. I): I–107–I–111.Google Scholar
  16. 16.
    Mason, J.W., Hardey, L.H., Kotchen, T.A., Mougey, E.H., Ricketts, P.T., and Jones, L.G., 1973, Plasma cortisol and norepinephrine responses in anticipation of muscular exercise, Psychosom. Med. 35: 406–414.PubMedGoogle Scholar
  17. 17.
    Young, J.B., and Landsberg, L., 1977, Catecholamines and the regulation of hormone secretion, Clin. Endocrinol. Metab. 6: 657–695.PubMedGoogle Scholar
  18. 18.
    Dale, H.H., 1906, On some physiological actions of ergot, J. Physiol. (London) 34: 163–206.Google Scholar
  19. 19.
    Ahlquist, R.P., 1948, A study of the adrenotropic receptors, Am. J. Physiol. 153: 586–600.PubMedGoogle Scholar
  20. 20.
    Slater, I.H., and Powell, C.E., 1957, Blockade of adrenergic inhibitory receptor sites by 1-(3′,4′-dichlorophenyl)-2-isopropylamino-ethanol hydrochloride, Fed. Proc. Fed. Am. Soc. Exp. Biol. 16: 336.Google Scholar
  21. 21.
    Lands, A.M., Arnold, A., McAuliff, J.P., Luduena, F.P., and Brown, T.G., Jr., 1967, Differentiation of receptor systems activated by sympathomimetic amines, Nature (London) 214: 597–598.Google Scholar
  22. 22.
    Ahlquist, R.P., 1977, Adrenoceptor sensitivity in disease as assessed through response to temperature alteration, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 2572–2574.Google Scholar
  23. 23.
    Strittmatter, W.J., Davis, J.N., and Lefkowitz, R.J., 1977, α-Adrenergic receptors in rat parotid cells. II. Desensitization of receptor binding sites and potassium release, J. Biol. Chem. 252: 5478–5482.PubMedGoogle Scholar
  24. 24.
    Williams, L.T., and Lefkowitz, R.J., 1977, Slowly reversible binding of catecholamine to a nucleotide-sensitive state of the β adrenergic receptor, J. Biol. Chem. 252: 7207–7213.PubMedGoogle Scholar
  25. 25.
    Poyart, C., and Nahas, G.G., 1966, Inhibition of catecholamine-induced calorigenesis and lipolysis by hypercapnic acidosis, Am. J. Physiol. 211: 161–168.PubMedGoogle Scholar
  26. 26.
    Hjemdahl, P., and Fredholm, B.B., 1974, Comparison of the lipolytic activity of circulating and locally released noradrenaline during acidosis, Acta Physiol. Scand. 92: 1–11.PubMedGoogle Scholar
  27. 27.
    Hjemdahl, P., 1976, Inhibition of the lipolytic response to nerve stimulation during acidosis, Acta Physiol. Scand. 98: 80–84.PubMedGoogle Scholar
  28. 28.
    Ui, M., 1965, Blockage of epinephrine-induced hyperglycemia during exposure to simulated altitudes, Am. J. Physiol. 209: 353–358.PubMedGoogle Scholar
  29. 29.
    Maher, J.T., Denniston, J.C., Wolfe, D.L., and Cymerman, A., 1978, Mechanism of the attenuated cardiac response to β-adrenergic stimulation in chronic hypoxia, J. Appl. Physiol. 44: 647–651.PubMedGoogle Scholar
  30. 30.
    Baum, D., 1969, The inhibition of norepinephrine-stimulated lipolysis by acute hypoxia, J. Pharmacol. Exp. Ther. 169: 87–94.PubMedGoogle Scholar
  31. 31.
    Wilmore, D.W., Long, J.M., Mason, A.D., Jr., Skreen, R.W., and Pruitt, B.A., Jr., 1974, Catecholamines: Mediator of the hypermetabolic response to thermal injury, Ann. Surg. 180: 653–668.PubMedGoogle Scholar
  32. 32.
    Csákó, G., Szilágyi, T., Csernyánsky, H., and Tóth, S., 1976, Effect of endotoxin and trypsin on the blood pressor response to catecholamines in normo-and hypothermic rabbits, Med. Biol. 54: 243–253.PubMedGoogle Scholar
  33. 33.
    Kjellberg, J., and Östman, J., 1971, Lipolysis and glucose tolerance in obese subjects during prolonged starvation, Acta Med. Scand. 190: 191–198.PubMedGoogle Scholar
  34. 34.
    Arner, P., and Östman, J., 1976, Changes in the adrenergic control and the rate of lipolysis of isolated human adipose tissue during fasting and after re-feeding, Acta Med. Scand. 200: 273–279.PubMedGoogle Scholar
  35. 35.
    Boyer, P.A., Langley, P.E., Terry, B.E., Robison, G.A., and Burns, T.W., 1978, The effect of fasting on adrenergic receptor site activity of human adipose tissue cells, Endocrinology 102(Suppl.): 337.Google Scholar
  36. 36.
    Stirling, J.L., and Stock, M.J., 1968, Metabolic origins of thermogenesis induced by diet, Nature (London) 220: 801–802.Google Scholar
  37. 37.
    Östman, I., 1975, Changed vascular sensitivity to noradrenaline in rats trained by physical exercise, J. Physiol. (London) 252: 38P–39P.Google Scholar
  38. 38.
    Sigvardsson, K., Svanfeldt, E., and Kilbom, A., 1977, Role of the adrenergic nervous system in development of training-induced bradycardia, Acta Physiol. Scand. 101: 481–488.PubMedGoogle Scholar
  39. 39.
    Joy, R.J.T., 1963, Responses of cold-acclimitized men to infused norepinephrine, J. Appl. Physiol. 18: 1209–1212.PubMedGoogle Scholar
  40. 40.
    Fregly, M.J., Field, F.P., Nelson, E.L., Jr., Tyler, P.E., and Dasler, R., 1977, Effect of chronic exposure to cold on some responses to catecholamines, J. Appl. Physiol. 42: 349–354.PubMedGoogle Scholar
  41. 41.
    Koo, A., and Liang, I.Y.S., 1978, Microvascular responses to norepinephrine in skeletal muscle of cold-acclimated rats, J. Appl. Physiol. 44: 190–194.PubMedGoogle Scholar
  42. 42.
    Kunos, G., and Szentiványi, M., 1968, Evidence favoring the existence of a single adrenergic receptor, Nature (London) 217: 1077–1078.Google Scholar
  43. 43.
    Benfey, B.G., 1977, Cardiac adrenoceptors at low temperature: What is the experimental evidence for the adrenoceptor interconversion hypothesis?, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 2575–2579.Google Scholar
  44. 44.
    Nickerson, M., and Kunos, G., 1977, Discussion of evidence regarding induced changes in adrenoceptors, Fed. Proc. Fed. Am. Soc. Exp. Biol. 36: 2580–2583.Google Scholar
  45. 45.
    Martinez, T.T., and McNeill, J.H., 1977, The effect of temperature on cardiac adrenoceptors, J. Pharmacol. Exp. Ther. 203: 457–466.PubMedGoogle Scholar
  46. 46.
    Janssens, W.J., and Vanhoutte, P.M., 1978, Instantaneous changes of alpha-adrenoceptor affinity caused by moderate cooling in canine cutaneous veins, Am. J. Physiol. 234: H330–H337.PubMedGoogle Scholar
  47. 47.
    Lafontan, M., and Agid, R., 1976, Alpha and beta adrenergic receptors in the regulation of rabbit white adipose tissue lipolysis, Comp. Biochem. Physiol. 55c: 85–90.Google Scholar
  48. 48.
    Williams, L.T., Lefkowitz, R.J., Watanabe, A.M., Hathaway, D.R., and Besch, H.R., Jr., 1977, Thyroid hormone regulation of β-adrenergic receptor number, J. Biol. Chem. 252: 2787–2789.PubMedGoogle Scholar
  49. 49.
    Ciaraldi, T., and Marinetti, G.V., 1977, Thyroxine and propylthiouracil effects in vivo on alpha and beta adrenergic receptors in rat heart, Biochem. Biophys. Res. Commun. 74: 984–991.PubMedGoogle Scholar
  50. 50.
    Bilezikian, J.P., and Loeb, J.N., 1978, Thyroid status and the beta-adrenergic responsiveness of the turkey erythrocyte, Endocrinology 102(Suppl.): 121.Google Scholar
  51. 51.
    Himms-Hagen, J., 1972, Effects of catecholamines on metabolism, in: Catecholamines (H. Blaschko and E. Muscholl, eds.), pp. 363–462, Springer-Verlag, Berlin.Google Scholar
  52. 52.
    Wolfe, B.B., Harden, T.K., and Molinoff, P.B., 1976, β-Adrenergic receptors in rat liver: Effects of adrenalectomy, Proc. Natl. Acad. Sci. U.S.A. 73: 1343–1347.PubMedGoogle Scholar
  53. 53.
    Guellaen, G., Yates-Aggerbeck, M., Vauquelin, G., Strosberg, D., and Hanoune, J., 1978, Characterization with (3H)dihydroergocryptine of the α-adrenergic receptor of the hepatic plasma membrane, J. Biol. Chem. 253: 1114–1120.PubMedGoogle Scholar
  54. 54.
    Roberts, J.M., Goldfien, R.D., Insel, P.A., Tsuchiya, A.M., and Goldfien, A., 1978, Uterine α-adrenergic receptors increase but platelet α-adrenergic receptors decrease with estrogen, Clin. Res. 26: 494A.Google Scholar
  55. 55.
    Alexander, W.D., and Oake, R.J., 1977, The effect of insulin on vascular reactivity to norepinephrine, Diabetes 26: 611–614.PubMedGoogle Scholar
  56. 56.
    Lee, J.C., and Downing, S.E., 1976, Effects of insulin on cardiac muscle contraction and responsiveness to norepinephrine, Am. J. Physiol. 230: 1360–1365.PubMedGoogle Scholar
  57. 57.
    Miles, D.W., and Hayter, C.J., 1968, The effect of intravenous insulin on the circulatory responses to tilting in normal and diabetic subjects with special reference to baroceptor reflex block and atypical hypoglycaemic reactions, Clin. Sci. 34: 419–430.Google Scholar
  58. 58.
    Page, M. McB., and Watkins, P.J., 1976, Provocation of postural hypotension by insulin in diabetic autonomic neuropathy, Diabetes 25: 90–95.PubMedGoogle Scholar
  59. 59.
    Appenzeller, O., and Goss, J.E., 1970, Glucose and baroreceptor function, Arch. Neurol. 23: 137–146PubMedGoogle Scholar
  60. 60.
    Cseuz, R., Kunos, K., and Szentiványi, M., 1971, Adrenergic reaction patterns in experimental diabetes, Acta Physiol. Acad. Sci. Hung. 39: 254.Google Scholar
  61. 61.
    Zapf, J., Feuerlein, D., Waldvogel, M., and Froesch, E.R., 1975, Increased sensitivity of diabetic rat adipose tissue towards the lipolytic action of epinephrine, Diabetologia 11: 509–516.PubMedGoogle Scholar
  62. 62.
    Arner, P., and Östman, J., 1976, Abnormalities in the adrenergic control and the rate of lipolysis in isolated human subcutaneous adipose tissue in diabetes mellitus, Diabetologia 12: 593–599.PubMedGoogle Scholar
  63. 63.
    Reckless, J.P.D., and Galton, D.J., 1976, Catecholamine receptor sensitivity and the regulation of lipolysis in adult diabetes, Diabetologia 12: 351–358.PubMedGoogle Scholar
  64. 64.
    Sanger, G.J., and Watt, A.J., 1976, A postsynaptic action of prostaglandin E1 on sympathetic responses in guinea-pig ileum, Br. J. Pharmacol. 58: 290P–291P.PubMedGoogle Scholar
  65. 65.
    Cahill, G. E, Jr., 1976, Starvation in man, Clin. Endocrinol. Metab. 5: 397–415.PubMedGoogle Scholar
  66. 66.
    Sutherland, E.W., and Robison, G.A., 1966, The role of cydic-3′,5′-AMP in responses to catecholamines and other hormones, Pharmacol. Rev. 18: 145–161.PubMedGoogle Scholar
  67. 67.
    Sherline, P., Lynch, A., and Glinsmann, W.H., 1972, Cyclic AMP and adrenergic receptor control of rat liver glycogen metabolism, Endocrinology 91: 680–690.PubMedGoogle Scholar
  68. 68.
    Hutson, N.J., Brumley, F.T., Assimacopoulos, F.D., Harper, S.C., and Exton, J.H., 1976, Studies on the α-adrenergic activation of hepatic glucose output. I. Studies on the α-adrenergic activation of phosphorylase and gluconeogenesis and inactivation of glycogen synthase in isolated rat liver parenchymal cells, J. Biol. Chem. 251: 5200–5208.PubMedGoogle Scholar
  69. 69.
    Cherrington, A.D., Assimacopoulos, F.D., Harper, S.C., Corbin, J.D., Park, C.R., and Exton, J.H., 1976, Studies on the α-adrenergic activation of hepatic glucose output. II. Investigation of the roles of adenosine 3′:5′-monophosphate and adenosine 3′:5′-monophosphate-dependent protein kinase in the actions of phenylephrine in isolated hepatocytes, J. Biol. Chem. 251: 5209–5218.PubMedGoogle Scholar
  70. 70.
    Birnbaum, M.J., and Fain, J.N., 1977, Activation of protein kinase and glycogen phosphorylase in isolated rat liver cells by glucagon and catecholamines, J. Biol. Chem. 252: 528–535.PubMedGoogle Scholar
  71. 71.
    Assimacopoulos-Jennet, F.D., Blackmore, P.F., and Exton, J.H., 1977, Studies on α-adrenergic activation of hepatic glucose output: Studies on role of calcium in α-adrenergic activation of phosphorylase, J. Biol. Chem. 252: 2662–2669.Google Scholar
  72. 72.
    Frisk-Holmberg, M., and Östman, J., 1977, Differential inhibition of lipolysis in human adipose tissue by adrenergic beta receptor blocking drugs, J. Pharmacol. Exp. Ther. 200: 598–605.PubMedGoogle Scholar
  73. 73.
    Luzio, J.P., Jones, R.C., Siddle, K., and Hales, C.N., 1974, Dissociation of the effect of adrenalin on glucose uptake from that on adenosine cyclic 3′,5′-monophosphate levels and on lipolysis in rat isolated fat cells, Biochim. Biophys. Acta 362: 29–36.PubMedGoogle Scholar
  74. 74.
    Rosenqvist, U., 1972, Inhibition of noradrenaline-induced lipolysis in hypothyroid subjects by increased α-adrenergic responsiveness, Acta Med. Scand. 192: 353–359.PubMedGoogle Scholar
  75. 75.
    Tolbert, M.E.M., Butcher, F.R., and Fain, J.N., 1973, Lack of correlation between catecholamine effects on cyclic adenosine 3′:5′-monophosphate and gluconeogenesis in isolated rat liver cells, J. Biol. Chem. 248: 5686–5692.PubMedGoogle Scholar
  76. 76.
    Le Cam, A., and Freychet, P., 1978, Effect of catecholamines on amino acid transport in isolated rat hepatocytes, Endocrinology 102: 379–385.PubMedGoogle Scholar
  77. 77.
    Forichon, J., Jomain, M.J., Schellhorn, J., and Minaire, Y., 1977, Effect of epinephrine upon irreversible disposal and recycling of glucose in dogs, Experientia 33: 1171–1173.PubMedGoogle Scholar
  78. 78.
    Forichon, J., Jomain, M.J., Dallevet, G., and Minaire, Y., 1977, Effect of cold and epinephrine on glucose kinetics in dogs, J. Appl. Physiol. 43: 230–237.PubMedGoogle Scholar
  79. 79.
    Kusaka, M., and Ui, M., 1977, Activation of the Cori cycle by epinephrine, Am. J. Physiol. 232: E145–E155.PubMedGoogle Scholar
  80. 80.
    Havel, R.J., and Carlson, L.A., 1963, Comparative turnover rates of free fatty acids and glycerol in blood of dogs under various conditions, Life Sci. 2: 651–658.Google Scholar
  81. 81.
    Miller, H.I., 1967, Plasma free fatty acid appearance in plasma triglycerides, Metabolism 16: 1096–1105.PubMedGoogle Scholar
  82. 82.
    Abramson, E.A., and Arky, R.A., 1968, Role of beta-adrenergic receptors in counterregulation to insulin-induced hypoglycemia, Diabetes 17: 141–146.PubMedGoogle Scholar
  83. 83.
    Garber, A.J., Cryer, P.E., Santiago, J.V., Haymond, M.W., Pagliara, A.S., and Kipnis, D.M., 1976, The rale of adrenergic mechanisms in the substrate and hormonal response to insulin-induced hypoglycemia in man, J. Clin. Invest. 58: 7–15.PubMedGoogle Scholar
  84. 84.
    Saitoh, Y., Itaya, K., and Ui, M., 1974, Adrenergic α-receptor-mediated stimulation of the glucose utilization by isolated rat diaphragm, Biochim. Biophys. Acta 343: 492–499.Google Scholar
  85. 85.
    Wilmore, D.W., 1976, Carbohydrate metabolism in trauma, Clin. Endocrinol. Metab. 5: 731–745.PubMedGoogle Scholar
  86. 86.
    Hiatt, N., Davidson, M.B., Chapman, L.W., and Sheinkopf, J.A., 1978, Epinephrine enhancement of potassium-stimulated immunoreactive insulin secretion, Diabetes 27: 550–553.PubMedGoogle Scholar
  87. 87.
    Cannon, W.B., McIver, M.A., and Bliss, S.W., 1924, Studies on the conditions of activity in endocrine glands. XIII. A sympathetic and adrenal mechanism for mobilizing sugar in hypoglycemia, Am. J. Physiol. 69: 46–66.Google Scholar
  88. 88.
    Houssay, B.A., Molinelli, E.A., and Lewis, J.T., 1924, Accion de la insulina sobre la secrecion de adrenalina, Rev. Asoc. Med. Argent. 37: 486–499.Google Scholar
  89. 89.
    Clarke, W.L., Santiago, J.V., and Cryer, P.E., 1977, Catecholamine and growth hormone release with physiologic decrements in the plasma glucose concentration in normal and diabetic man, Clin. Res. 25: 561A.Google Scholar
  90. 90.
    Gundersen, H.J.G., and Christensen, N.J., 1977, Intravenous insulin causing loss of intravascular water and albumin and increased adrenergic nervous activity in diabetics, Diabetes 26: 551–557.PubMedGoogle Scholar
  91. 91.
    Anand, B.K., Chhina, G.S., Sharma, K.N., Dua, S., and Singh, B., 1964, Activity of single neurons in the hypothalamic feeding centers: effect of glucose, Am. J. Physiol. 207: 1146–1154.PubMedGoogle Scholar
  92. 92.
    Frohman, L.A., 1971, The hypothalamus and metabolic control, in: Pathobiology Annual, Vol. 2 (H.L. Ioachim, ed.), pp. 353–372, Appleton-Century-Crofts, New York.Google Scholar
  93. 93.
    Sheps, S.G., and Maher, F.T., 1968, Histamine and glucagon tests in diagnosis of pheochromocytoma, J. Am. Med. Assoc. 205: 895–899.Google Scholar
  94. 94.
    Young, J.B., Landsberg, L., and Knopp, R.H., 1976, Effect of intravenous glucagon on urinary catecholamine excretion in normal man, Metabolism 25: 233–237.PubMedGoogle Scholar
  95. 95.
    Cherrington, A.D., and Exton, J.H., 1976, Studies on the role of cAMP-dependent protein kinase in the actions of glucagon and catecholamines on liver glycogen metabolism, Metabolism 25: 1351–1354.PubMedGoogle Scholar
  96. 96.
    Pilkis, S.J., Claus, T.H., Johnson, R.A., and Park, C.R., 1975, Hormonal control of cyclic 3′:5′-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats, J. Biol. Chem. 250: 6328–6336.PubMedGoogle Scholar
  97. 97.
    Sokal, J.E., Sarcione, E.J., and Henderson, A.M., 1964, Relative potency of glucagon and epinephrine as hepatic glycogenolytic agents: Studies with the isolated perfused rat liver, Endocrinology 74: 930–938.PubMedGoogle Scholar
  98. 98.
    Hirsch, L.J., Ayabe, T., and Glick, G., 1976, Direct effects of various catecholamines on liver circulation in dogs, Am. J. Physiol. 230: 1394–1399.PubMedGoogle Scholar
  99. 99.
    Carneiro, J.J., and Donald, D.E., 1977, Change in liver blood flow and blood content in dogs during direct and reflex alteration of hepatic sympathetic nerve activity, Circ. Res. 40: 150–158.PubMedGoogle Scholar
  100. 100.
    Koo, A., Liang, I.Y.S., and Cheng, K.K., 1977, Adrenergic mechanisms in the hepatic microcirculation in the rat, Q.J. Exp. Physiol. 62: 199–208.Google Scholar
  101. 101.
    Lautt, W.W., 1977, Effect of stimulation of hepatic nerves on hepatic O2 uptake and blood flow, Am. J. Physiol. 232: H652–H656.PubMedGoogle Scholar
  102. 102.
    Richardson, P.D.I., and Withrington, P.G., 1976, The inhibition by glucagon of the vasoconstrictor actions of noradrenaline, angiotensin and vasopressin on the hepatic arterial vascular bed of the dog, Br. J. Pharmacol. 57: 93–102.PubMedGoogle Scholar
  103. 103.
    Richardson, P.D.I., and Withrington, P.G., 1977, Glucagon inhibition of hepatic arterial responses to hepatic nerve stimulation, Am. J. Physiol. 233: H647–H654.PubMedGoogle Scholar
  104. 104.
    Morris, M., McCann, S.M., and Orias, R., 1977, Role of transmitters in mediating hypothalamic control of electrolyte excretion, Can. J. Physiol. Pharmacol. 55: 1143–1154.PubMedGoogle Scholar
  105. 105.
    Fisher, D.A., 1968, Norepinephrine inhibition of vasopressin antidiuresis, J. Clin. Invest. 47: 540–547.PubMedGoogle Scholar
  106. 106.
    Schrier, R.W., and Berl, T., 1973, Mechanism of effect of alpha adrenergic stimulation with norepinephrine on renal water excretion, J. Clin. Invest. 52: 502–511.PubMedGoogle Scholar
  107. 107.
    McDonald, K.M., Kuruvila, K.C., Aisenbrey, G.A., and Schrier, R.W., 1977, Effect of alpha and beta adrenergic stimulation on renal water excretion and medullary tissue cyclic AMP in intact and diabetes insipidus rats, Kidney Int. 12: 96–103.PubMedGoogle Scholar
  108. 108.
    Shimamoto, K., and Miyahara, M., 1976, Effect of norepinephrine infusion on plasma vasopressin levels in normal human subjects, J. Clin. Endocrinol. Metab. 43: 201–204.PubMedGoogle Scholar
  109. 109.
    Klein, L.A., Liberman, B., Laks, M., and Kleeman, C., 1971, Interrelated effects of antidiuretic hormone and adrenergic drugs on water metabolism, Am. J. Physiol. 221: 1657–1665.PubMedGoogle Scholar
  110. 110.
    Handler, J.S., Bensinger, R., and Orloff, J., 1968, Effect of adrenergic agents on toad bladder response to ADH, 3′,5′-AMP and theophylline, Am. J. Physiol. 215: 1024–1031.PubMedGoogle Scholar
  111. 111.
    Kurokawa, K., and Massry, S.G., 1973, Interaction between catecholamines and vasopressin on renal medullary cyclic AMP of rat, Am. J. Physiol. 225: 825–829.PubMedGoogle Scholar
  112. 112.
    Besarab, A., Silva, P., Landsberg, L., and Epstein, F.H., 1977, Effect of catecholamines on tubular function in the isolated perfused rat kidney, Am. J. Physiol. 233: F39–F45.PubMedGoogle Scholar
  113. 113.
    DiBona, G.F., 1978, Symposium: Neural control of renal function: Introductory remarks, Fed. Proc. Fed. Am. Soc. Exp. Biol. 37: 1191.Google Scholar
  114. 114.
    Pomeranz, B.H., Birtch, A.G., and Barger, A.C., 1968, Neural control of intrarenal blood flow, Am. J. Physiol. 215: 1067–1081.PubMedGoogle Scholar
  115. 115.
    Kilcoyne, M.M., and Cannon, P.J., 1971, Influence of thoracic caval occlusion on intrarenal blood flow distribution and sodium excretion, Am. J. Physiol. 220: 1220–1230.PubMedGoogle Scholar
  116. 116.
    DiBona, G.F., Zambraski, E.J., Aguilera, A.J., and Kaloyanides, G.J., 1977, Neurogenic control of renal tubular sodium reabsorption in the dog: A brief review and preliminary report concerning possible humoral mediation, Circ. Res. 40(Suppl. I): I–127–130.Google Scholar
  117. 117.
    Bello-Reuss, E., Trevino, D.L., and Gottschalk, C.W., 1976, Effect of renal sympathetic nerve stimulation on proximal water and sodium reabsorption, J. Clin. Invest. 57: 1104–1107.Google Scholar
  118. 118.
    Atlas, D., Melamed, E., and Lahav, M., 1977, β-Adrenergic receptors in rat kidney: Direct localization by a fluorescent β-blocker, Lab. Invest. 36: 465–468.PubMedGoogle Scholar
  119. 119.
    Barajas, L., 1964, The innervation of the juxtaglomerular apparatus, Lab. Invest. 13: 916–929.PubMedGoogle Scholar
  120. 120.
    Hollenberg, N.K., Epstein, M., Guttman, R.D., Conroy, M., Basch, R.I., and Merrill, J.P., 1970, Effect of sodium balance on intrarenal distribution of blood flow in normal man, J. Appl. Physiol. 28: 312–317.PubMedGoogle Scholar
  121. 121.
    Wilcox, C.S., Aminoff, M.J., and Slater, J.D.H., 1977, Sodium homeostasis in patients with autonomic failure, Clin. Sci. Mol. Med. 53: 321–328.PubMedGoogle Scholar
  122. 122.
    Blaufox, M.D., Lewis, E.J., Jagger, P., Lauler, D., Hickler, R., and Merrill, J.P., 1969, Physiologie responses of the transplanted human kidney: Sodium regulation and renin secretion, N. Engl. J. Med. 280: 62–66.PubMedGoogle Scholar
  123. 123.
    D’Silva, J.L., 1934, The action of adrenaline on serum potassium, J. Physiol. (London) 82: 393–398.Google Scholar
  124. 124.
    D’Silva, J.L., 1936, The action of adrenaline on serum potassium, J. Physiol. (London) 86: 219–228.Google Scholar
  125. 125.
    Todd, E.P., and Vick, R.L., 1971, Kalemotropic effect of epinephrine: Analysis with adrenergic agonists and antagonists, Am. J. Physiol. 220: 1964–1969.PubMedGoogle Scholar
  126. 126.
    Vick, R.L., Todd, E.P., and Luedke, D.W., 1972, Epinephrine-induced hypokalemia: Relation to liver and skeletal muscle, J. Pharmacol. Exp. Ther. 181: 139–146.PubMedGoogle Scholar
  127. 127.
    Pettit, G.W., and Vick, R.L., 1974, An analysis of the contribution of the endocrine pancreas to the kalemotropic actions of catecholamines, J. Pharmacol. Exp. Ther. 190: 234–242.PubMedGoogle Scholar
  128. 128.
    Lum, B.K.B., and Lockwood, R.H., 1972, Effects of nicotine and sympathomimetic amines on potassium intoxication, J. Pharmacol. Exp. Ther. 181: 147–154.PubMedGoogle Scholar
  129. 129.
    Lockwood, R.H., and Lum, B.K.B., 1974, Effects of adrenergic agonists and antagonists on potassium metabolism, J. Pharmacol. Exp. Ther. 189: 119–129.PubMedGoogle Scholar
  130. 130.
    Lockwood, R.H., and Lum, B.K.B., 1977, Effects of adrenalectomy and adrenergic antagonists on potassium metabolism, J. Pharmacol. Exp. Ther. 203: 103–111.PubMedGoogle Scholar
  131. 131.
    Silva, P., Spokes, K., and Epstein, F.H., 1977, Catecholamines and potassium homeostasis, Kidney Int. 12: 544.Google Scholar
  132. 132.
    Knochel, J.P., 1977, Role of glucoregulatory hormones in potassium homeostasis, Kidney Int. 11: 443–452.PubMedGoogle Scholar
  133. 133.
    Beal, A.M., 1976, Changes in arterial blood pressure, heart rate, and haematocrit during acute hyperkalaemia in conscious sheep, Q.J. Exp. Physiol. 61: 297–308.Google Scholar
  134. 134.
    Vassalle, M., Greineder, J.K., and Stuckey, J.H., 1973, Role of the sympathetic nervous system in the sinus node resistance to high potassium, Circ. Res. 32: 348–355.PubMedGoogle Scholar
  135. 135.
    Vogt, M., 1952, The secretion of the denervated adrenal medulla of the cat, Br. J. Pharmacol. Chemother. 7: 325–330.PubMedGoogle Scholar
  136. 136.
    Hiatt, N., Chapman, L.W., and Davidson, M.B., 1977, Enhancement of K transfer to intracellular fluid by cerebral artery K-loading, J. Lab. Clin. Med. 90: 1035–1042.PubMedGoogle Scholar
  137. 137.
    Carlsson, E., Fellenius, E., Lundborg, P., and Svensson, L., 1978, β-Adrenoceptor blockers, plasma-potassium, and exercise, Lancet 2: 424–425.PubMedGoogle Scholar
  138. 138.
    Silva, P., Brown, R.S., and Epstein, F.H., 1977, Adaptation to potassium, Kidney Int. 11: 466–475.PubMedGoogle Scholar
  139. 139.
    Silva, P., Young, J.B., Landsberg, L., and Spokes, K., 1978, Sympathetic nervous activity and potassium homeostasis, Clin. Res. 26: 545A.Google Scholar
  140. 140.
    Yeung, R.T.T., and Tse, T.F., 1974, Thyrotoxic periodic paralysis: Effect of propranolol, Am. J. Med. 57: 584–590.PubMedGoogle Scholar
  141. 141.
    Wang, P., and Clausen, T., 1976, Treatment of attacks in hyperkalaemic familial periodic paralysis by inhalation of salbutamol, Lancet 1: 221–223.PubMedGoogle Scholar
  142. 142.
    Goldfarb, S., Cox, M., Singer, I., and Goldberg, M., 1976, Acute hyperkalemia induced by hyperglycemia: Hormonal mechanisms, Ann. Intern. Med. 84: 426–432.PubMedGoogle Scholar
  143. 143.
    Finlayson, J.F., and Casey, J.H., 1975, Hypercalcaemia and multiple pheochromocytomas, Ann. Intern. Med. 82: 810–811.PubMedGoogle Scholar
  144. 144.
    De Plaen, J.F., Boemer, F., and van Ypersele DeStrihou, C., 1976, Hypercalcaemic phaeochromocytoma, Br. Med. J. 2: 734.PubMedGoogle Scholar
  145. 145.
    Rude, R.K., Oldham, S.B., Singer, F.R., and Nicoloff, J.T., 1976, Treatment of thyrotoxic hypercalcemia with propranolol, N. Engl. J. Med. 294: 431–433.PubMedGoogle Scholar
  146. 146.
    Szalay, L., Bencsáth, P., and Tarács, L., 1977, Effect of splanchnicotomy on the renal excretion of inorganic phosphate in the anesthetized dog, Pfluegers Arch. 367: 283–286.Google Scholar
  147. 147.
    Morey, E.R., and Kenny, A.D., 1964, Effects of catecholamines on urinary calcium and phosphorus in intact and parathyroidectomized rats, Endocrinology 75: 78–85.PubMedGoogle Scholar
  148. 148.
    Januszewicz, W., Sznajdelman-Ciswicka, M., and Wocial, B., 1967, Urinary excretion of catecholamines in fasting obese subjects, J. Clin. Endocrinol. Metab. 27: 130–133.PubMedGoogle Scholar
  149. 149.
    Landsberg, L., and Young, J.B., 1978, Fasting, feeding and the regulation of the sympathetic nervous system, N. Engl. J. Med. 298: 1295–1301.PubMedGoogle Scholar
  150. 150.
    Palmblad, J., Levi, L., Burger, A., Melander, A., Westgren, U., von Schenck, H., and Skude, G., 1977, Effects of total energy withdrawal (fasting) on the levels of growth hormone, thyrotropin, cortisol, adrenaline, noradrenaline, T4, T3, and rT3 in healthy males, Acta Med. Scand. 201: 15–22.PubMedGoogle Scholar
  151. 151.
    Grollman, A., 1929, Physiological variations in the cardiac output of man. III. The effect of ingestion of food on the cardiac output, pulse rate, blood pressure, and oxygen consumption of man, Am. J. Physiol. 89: 366–370.Google Scholar
  152. 152.
    Apéria, A., and Carlens, E., 1931, Vergleich zwischen der Wirkung von Fett, Kohlenhydrat und Eiweiβ auf den Kreislauf des Menschen, Skand. Arch. Physiol. 63: 151–163.Google Scholar
  153. 153.
    Abramson, D.I., and Fierst, S.M., 1941, Peripheral vascular responses in man during digestion, Am. J. Physiol. 133: 686–693.Google Scholar
  154. 154.
    Fronek, K., and Stahlgren, L.H., 1968, Systemic and regional hemodynamic changes during food intake and digestion in nonanesthetized dogs, Circ. Res. 23: 687–692.PubMedGoogle Scholar
  155. 155.
    Blair-West, J.R., and Brook, A.H., 1969, Circulatory changes and renin secretion in sheep in response to feeding, J. Physiol. (London) 204: 15–30.Google Scholar
  156. 156.
    Vatner, S.F., Franklin, D., and van Citters, R.L., 1970, Mesenteric vasoactivity associated with eating and digestion in the conscious dog, Am. J. Physiol. 219: 170–174.PubMedGoogle Scholar
  157. 157.
    Vatner, S.F., Franklin, D., and van Citters, R.L., 1970, Coronary and visceral vasoactivity associated with eating and digestion in the conscious dog, Am. J. Physiol. 219: 1380–1385.PubMedGoogle Scholar
  158. 158.
    Bloom, S.R., Edwards, A.V., Hardy, R.N., Malinowska, K., and Silver, M., 1975, Cardiovascular and endocrine responses to feeding in the young calf, J. Physiol. (London) 253: 135–155.Google Scholar
  159. 159.
    Ehrlich, V., Frŏnková, K., and Šiéger, L., 1958, Die Wirkung des Reserpins auf die Speichelsekretion und den Kreislauf während des unbedingten und bedingten Nahrungsreflexes und während der Differenzierungshemmung beim Hunde, Arch. Int. Pharmacodyn. 115: 373–396.PubMedGoogle Scholar
  160. 160.
    Webster, A.J.F., and Hays, F.L., 1968, Effects of beta-adrenergic blockade on the heart rate and energy expenditure of sheep during feeding and during acute cold exposure, Can. J. Physiol. Pharmacol. 46: 577–583.PubMedGoogle Scholar
  161. 161.
    Young, J.B., and Landsberg, L., 1978, Effects of glucose ingestion on cardiovascular (CV) and sympathetic nervous system (SNS) in humans, Clin. Res. 26: 632A.Google Scholar
  162. 162.
    Heymsfield, S., Chandler, J., and Nutter, D., 1978, Hyperalimentation causes a hyperdynamic hypermetabolic state, Clin. Res. 26: 284A.Google Scholar
  163. 163.
    DeBons, A.F., Krimsky, I., Likuski, H.J., From, A., and Cloutier, R.J., 1968, Gold thioglucose damage to the satiety center: Inhibition in diabetes, Am. J. Physiol. 214: 652–658.PubMedGoogle Scholar
  164. 164.
    Young, J.B., and Landsberg, L., 1978, Ventromedial hypothalamus (VMH) mediates dietary-induced changes in sympathetic activity in the mouse, Clin. Res. 26: 632A.Google Scholar
  165. 165.
    Sims, E.A.H., 1976, Experimental obesity, dietary-induced thermogenesis, and their clinical implications, Clin. Endocrinol. Metab. 5: 377–395.PubMedGoogle Scholar
  166. 166.
    Danforth, E., Jr., Burger, A.G., Goldman, R.F., and Sims, E.A.H., 1978, Thermogenesis during weight gain, in: Energy Expenditure in Obesity Research: II. Proceedings of the Second International Congress on Obesity, pp. 229–236, Newman Publishing Limited, London.Google Scholar
  167. 167.
    Zwillich, C.W., Sahn, S.A., and Weil, J.V., 1977, Effects of hypermetabolism on ventilation and chemosensitivity, J. Clin. Invest. 60: 900–906.PubMedGoogle Scholar
  168. 168.
    Himms-Hagen, J., 1976, Cellular thermogenesis, Annu. Rev. Physiol. 38: 315–351.PubMedGoogle Scholar
  169. 169.
    Clausen, T., and Hansen, O., 1977, Active Na-K transport and the rate of ouabain binding: The effect of insulin and other stimuli on skeletal muscle and adipocytes, J. Physiol. (London) 270: 415–430.Google Scholar
  170. 170.
    Clausen, T., and Flatman, J.A., 1977, The effect of catecholamines on Na-K transport and membrane potential in rat soleus muscle, J. Physiol. (London) 270: 383–414.Google Scholar
  171. 171.
    Brooke, O.G., Harris, M., and Salvosa, C.B., 1973, The response of malnourished babies to cold, J. Physiol. (London) 233: 75–91.Google Scholar
  172. 172.
    Bignall, K.E., Heggeness, F.W., and Palmer, J.E., 1974, Effects of acute starvation on cold-induced thermogenesis in the preweanling rat, Am. J. Physiol. 227: 1088–1093.PubMedGoogle Scholar
  173. 173.
    Bignall, K.E., Heggeness, F.W., and Palmer, J.E., 1975, Effect of neonatal decerebration on thermogenesis during starvation and cold exposure in the rat, Exp. Neurol. 49: 174–188.PubMedGoogle Scholar
  174. 174.
    Heller, H.C., and Glotzbach, S.F., 1977, Thermoregulation during sleep and hibernation, in: Environmental Physiology II, Int. Rev. Physiol. 15 (D. Robertshaw, ed.), pp. 147–188, University Park Press, Baltimore.Google Scholar
  175. 175.
    Vigersky, R.A., Andersen, A.E., Thompson, R.H., and Loriaux, D.L., 1977, Hypothalamic dysfunction in secondary amenorrhea associated with simple weight loss, N. Engl. J. Med. 297: 1141–1145.PubMedGoogle Scholar
  176. 176.
    Gross, H.A., Lake, C.R., Ebert, M.H., Ziegler, M.G., and Kopin, I.J., 1978, Catecholamine metabolism in primary anorexia nervosa (unpublished observations).Google Scholar
  177. 177.
    Goodner, C.J., Tustison, W.A., Davidson, M.B., Chu, P.-C., and Conway, M.J., 1967, Studies of substrate regulation in fasting. I. Evidence for central regulation of lipolysis by plasma glucose mediated by the sympathetic nervous system, Diabetes 16: 576–589.PubMedGoogle Scholar
  178. 178.
    Conway, M.J., Goodner, C.J., Werrbach, J.H., and Gale, C.C., 1969, Studies of substrate regulation in fasting. II. Effect of infusion of glucose into the carotid artery upon fasting lipolysis in the baboon, J. Clin. Invest. 48: 1349–1362.PubMedGoogle Scholar
  179. 179.
    Goodner, C.J., Koerker, D.J., Werrbach, J.H., Toivola, P., and Gale, C.C., 1973, Adrenergic regulation of lipolysis and insulin secretion in the fasted baboon, Am. J. Physiol. 224: 534–539.PubMedGoogle Scholar
  180. 180.
    Koerker, D.J., Goodner, C.J., Chideckel, E.W., and Ensinck, J.W., 1975, Adaptation to fasting in baboon. II. Regulation of lipolysis early and late in fasting, Am. J. Physiol. 229: 350–354.PubMedGoogle Scholar
  181. 181.
    Mayerle, J.A., and Havel, R.J., 1969, Nutritional effects on blood flow in adipose tissue of unanesthetized rats, Am. J. Physiol. 217: 1694–1698.PubMedGoogle Scholar
  182. 182.
    Streja, D.A., Steiner, G., Marliss, E.B., and Vranic, M., 1977, Turnover and recycling of glucose in man during prolonged fasting, Metabolism 26: 1089–1098.PubMedGoogle Scholar
  183. 183.
    Boulter, P.R., Spark, R.F., and Arky, R.A., 1974, Dissociation of the renin-aldosterone system and refractoriness to the sodium-retaining action of mineralocorticoid during starvation in man, J. Clin. Endocrinol. Metab. 38: 248–254.PubMedGoogle Scholar
  184. 184.
    Chinn, R.H., Brown, J.J., Fraser, R., Heron, S.M., Lever, A.F., Murchison, L., and Robertson, J.I.S., 1970, The natriuresis of fasting: Relationship to changes in plasma renin and plasma aldosterone concentrations, Clin. Sci. 39: 437–455.PubMedGoogle Scholar
  185. 185.
    Sigler, M.H., 1975, The mechanism of the natriuresis of fasting, J. Clin. Invest. 55: 377–387.PubMedGoogle Scholar
  186. 186.
    DeFronzo, R.A., Cooke, C.R., Andres, R., Faloona, G.R., and Davis, P.J., 1975, The effect of insulin on renal handling of sodium, potassium, calcium, and phosphate in man, J. Clin. Invest. 55: 845–855.PubMedGoogle Scholar
  187. 187.
    Spark, R.F., Arky, R.A., Boulter, P.R., Saudek, C.D., and O’Brian, J.T., 1975, Renin, aldosterone and glucagon in the natriuresis of fasting, N. Engl. J. Med. 292: 1335–1340.PubMedGoogle Scholar
  188. 188.
    Hayashi, Y., Nohno, T., and Murayama, Y., 1976, Effects of sugar and insulin on sodium balance in fasted rats, Jpn. J. Pharmacol. 26: 627–631.PubMedGoogle Scholar
  189. 189.
    Kolanowski, J., Salvador, G., Desmecht, P., Henquin, J.C., and Crabbé, J., 1977, Influence of glucagon on natriuresis and glucose-induced sodium retention in the fasting obese subject, Eut. J. Clin. Invest. 7: 167–175.Google Scholar
  190. 190.
    Nohno, T., Hayashi, Y., and Murayama, Y., 1977, Natriuresis of fasting in intact and adrenalectomized rats, Jpn. J. Pharmacol. 27: 667–678.PubMedGoogle Scholar
  191. 191.
    Saudek, C.D., Boulter, P.R., Knopp, R.H., and Arky, R.A., 1974, Sodium retention accompanying insulin treatment of diabetes mellitus, Diabetes 23: 240–246.PubMedGoogle Scholar
  192. 192.
    Gray, T.K., and Munson, P.L., 1969, Thyrocalcitonin: Evidence for physiological function, Science 166: 512–513.Google Scholar
  193. 193.
    Lindeman, R.D., Adler, S., Yiengst, M.J., and Beard, E.S., 1967, Influence of various nutrients on urinary divalent cation excretion, J. Lab. Clin. Med. 70: 236–245.PubMedGoogle Scholar
  194. 194.
    Kalbfleisch, J.M., Lindeman, R.D., Ginn, H.E., and Smith, W.O., 1963, Effects of ethanol administration on urinary excretion of magnesium and other electrolytes in alcoholic and normal subjects, J. Clin. Invest. 42: 1471–1475.PubMedGoogle Scholar
  195. 195.
    Lemann, J., Jr., Lennon, E.J., Piering, W.R., Prien, E.L., Jr., and Ricanati, E.S., 1970, Evidence that glucose ingestion inhibits net renal tubular reabsorption of calcium and magnesium in man, J. Lab. Clin. Med. 75: 578–585.PubMedGoogle Scholar
  196. 196.
    Phillippo, M., Lawrence, C.B., Bruce, J.B., and Donaldson, D.R., 1972, Feeding and calcitonin secretion in sheep, J. Endocrinol. 53: 419–424.PubMedGoogle Scholar
  197. 197.
    Amatruda, J.M., Livingston, J.N., and Lockwood, D.H., 1975, Insulin receptor: Role in the resistance of human obesity to insulin, Science 188: 264–266.PubMedGoogle Scholar
  198. 198.
    York, D.A., Bray, G.A., and Yukimura, Y., 1978, An enzymatic defect in the obese (ob/ob) mouse: Loss of thyroid-induced sodium-and potassium-dependent adenosinetriphosphatase, Proc. Natl. Acad. Sci. U.S.A. 75: 477–481.PubMedGoogle Scholar
  199. 199.
    Lin, M.H., Romsos, D.R., Akera, T., and Leveille, G.A., 1978, Na+,K+-ATPase enzyme units in skeletal muscle from lean and obese mice, Biochem. Biophys. Res. Commun. 80: 398–404.PubMedGoogle Scholar
  200. 200.
    Reisin, E., Abel, R., Modan, M., Silverberg, D.S., Eliahou, H.E., and Modan, B., 1978, Effect of weight loss without salt restriction on the reduction of blood pressure in overweight hypertensive patients, N. Engl. J. Med. 298: 1–6.PubMedGoogle Scholar
  201. 201.
    Young, J.B., Mullen, D., and Landsberg, L., 1978, Caloric restriction lowers blood pressure in the spontaneously hypertensive rat, Metabolism 27: 1711–1714.PubMedGoogle Scholar
  202. 202.
    Young, J.B., Mullen, D., and Landsberg, L., 1978, Sodium-independent changes in nutrient intake alter BP in the spontaneously hypertensive rat, Clin. Res. 26: 632A.Google Scholar
  203. 203.
    Guyton, A.C., 1977, Personal views on mechanisms of hypertension, in: Hypertension (J. Genest, E. Koiw, and O. Kuchel, eds.), pp. 566–575, McGraw-Hill, New York.Google Scholar
  204. 204.
    Katholi, R.E., Carey, R.M., Ayers, C.R., Vaughan, E.D., Jr., Yancey, M.R., and Morton, C.L., 1977, Production of sustained hypertension by chronic intrarenal norepinephrine infusion in conscious dogs, Circ. Res. 40(Suppl.1):I–118–1–126.Google Scholar
  205. 205.
    Schaal, S.F., Wallace, A.G., and Sealy, W.C., 1969, Protective influence of cardiac denervation against arrhythmias of myocardial infarction, Cardiovasc. Res. 3: 241–244.PubMedGoogle Scholar
  206. 206.
    Gillis, R.A., Raines, A., Sohn, Y.J., Levitt, B., and Standaert, F.G., 1972, Neuroexcitatory effects of digitalis and their role in the development of cardiac arrhythmias, J. Pharmacol. Exp. Ther. 183: 154–168.PubMedGoogle Scholar
  207. 207.
    Lown, B., and Verrier, R.L., 1976, Neural activity and ventricular fibrillation, N. Engl. J. Med. 294: 1165–1170.PubMedGoogle Scholar
  208. 208.
    Roberts, J., Kelliher, G.J., and Lathers, C.M., 1976, Role of adrenergic influences in digitalis-induced ventricular arrhythmia, Life Sci. 18: 665–677.PubMedGoogle Scholar
  209. 209.
    Schwartz, P.J., Foreman, R.D., Stone, H.L., and Brown, A.M., 1976, Effect of dorsal root section on the arrhythmias associated with coronary occlusion, Am. J. Physiol. 231: 923–928.PubMedGoogle Scholar
  210. 210.
    D’Agrosa, L.S., 1977, Cardiac arrhythmias of sympathetic origin in the dog, Am. J. Physiol. 233: H535–H540.PubMedGoogle Scholar
  211. 211.
    Garnett, E.S., Barnard, D.L., Ford, J., Goodbody, R.A., and Woodehouse, M.A., 1969, Gross fragmentation of cardiac myofibrils after therapeutic starvation for obesity, Lancet 1: 914–916.PubMedGoogle Scholar
  212. 212.
    Gutstein, W.H., Harrison, J., Parl, F., Kiu, G., and Avitable, M., 1978, Neural factors contribute to atherogenesis, Science 199: 449–451.PubMedGoogle Scholar
  213. 213.
    Shafrir, E., Sussman, K.E., and Steinberg, D., 1959, The nature of epinephrine-induced hyperlipidemia in dogs and its modification by glucose, J. Lipid Res. 1: 109–117.Google Scholar
  214. 214.
    George, R., and Ramasarma, T., 1977, Nature of the stimulation of biogenesis of cholesterol in the liver by noradrenaline, Biochem. J. 162: 493–499.PubMedGoogle Scholar
  215. 215.
    Yamori, Y., Horie, R., Handa, H., Ohtaka, M., and Nara, Y., 1977, Effect of cervical sympathectomy on cerebrovascular atherogenesis in SHR, Jpn. Heart J. 18: 544–546.PubMedGoogle Scholar
  216. 216.
    Reiniš, A., Lojda, Z., Heyrovský, A., Horáková, D., and Reisenauer, R., 1976, Effect of beta-blocking agents in experimental atherosclerosis of cocks, Rev. Czech. Med. 22: 117–126.PubMedGoogle Scholar
  217. 217.
    Lemann, J., Jr., Piering, W.F., and Lennon, E.J., 1969, Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation, N. Engl. J. Med. 280: 232–237.PubMedGoogle Scholar
  218. 218.
    Djahanguiri, B., Taubin, H.L., and Landsberg, L., 1973, Increased sympathetic activity in the pathogenesis of restraint ulcer in rats, J. Pharmacol. Exp. Ther. 184: 163–168.PubMedGoogle Scholar
  219. 219.
    Brandsborg, O., Brandsborg, M., and Christensen, N.J., 1976, The role of the beta-adrenergic receptor in the secretion of gastrin: Studies in normal subjects and in patients with duodenal ulcers, Eur. J. Clin. Invest. 6: 395–401.PubMedGoogle Scholar
  220. 220.
    Stadil, F., and Rehfeld, J.F., 1974, Effect of insulin injection on serum gastrin concentrations in duodenal ulcer patients and normal subjects, Scand. J. Gastroenterol. 9: 143–147.PubMedGoogle Scholar
  221. 221.
    Yudkin, J., 1972, Sugar and disease, Nature (London) 239: 197–199.Google Scholar
  222. 222.
    Editorial, 1978, Necrotizing enterocolitis, Br. Med. J. 1: 132.Google Scholar
  223. 223.
    Grylack, L., and Scanlon, J.W., 1977, Prevention of necrotising enterocolitis with gentamicin, Lancet 2: 506.PubMedGoogle Scholar
  224. 224.
    Rowley, M.P., and Dahlensburg, G.W., 1978, Gentamicin in prophylaxis of neonatal necrotising enterocolitis, Lancet 2: 532.PubMedGoogle Scholar
  225. 225.
    Ferris, T.F., and Gorden, P., 1968, Effect of angiotensin and norepinephrine upon urate clearance in man, Am. J. Med. 44: 359–365.PubMedGoogle Scholar
  226. 226.
    Obenshain, S.S., Adam, P.A.J., King, K.C., Teramo, K., Raivio, K.O., Räihä, N., and Schwartz, R., 1970, Human fetal insulin response to sustained maternal hyperglycemia, N. Engl. J. Med. 283: 566–570.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • James B. Young
    • 1
    • 2
  • Lewis Landsberg
    • 1
    • 2
  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Department of MedicineBeth Israel HospitalBostonUSA

Personalised recommendations