Skip to main content

Use of Characteristic Roots for Solving Infinite State Markov Chains

  • Chapter
Computational Probability

Abstract

In this chapter, our interest is in determining the stationary distribution of an irreducible positive recurrent Markov chain with an infinite state space. In particular, we consider the solution of such chains using roots or zeros. A root of an equation f (z) = 0 is a zero of the function f (z),and so for notational convenience we use the terms root and zero interchangeably. A natural class of chains that can be solved using roots are those with a transition matrix that has an almost Toeplitz structure. Specifically, the classes of M/G/1 type chains and G/M/1 type chains lend themselves to solution methods that utilize roots. In the M/G/1 case, it is natural to transform the stationary equations and solve for the stationary distribution using generating functions. However, in the G/M/1 case the stationary probability vector itself is given directly in terms of roots or zeros. Although our focus in this chapter is on the discrete-time case, we will show how the continuous-time case can be handled by the same techniques. The M/G/1 and G/M/1 classes can be solved using the matrix analytic method [Neuts, 1981, Neuts, 1989], and we will also discuss the relationship between the approach using roots and this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akar, N. and Sohraby, K. (1997a). An invariant subspace approach in M/G/1 and G/M/1 type Markov chains. Communications in Statistics-Stochastic Models, 13: 381–416.

    Article  Google Scholar 

  2. Akar, N. and Sohraby, K. (1997b). Matrix geometric solutions in M/G/1 type Markov chains with multiple boundaries: A generalized state-space approach. In Ramaswami, V. and Wirth, P. E., editors, Teletraf c Contributions for the Information Age,pages 487–496. Elsevier.

    Google Scholar 

  3. Andrew, A. L., Chu, K.-W. E., and Lancaster, P. (1993). Derivatives of eigenvalues and eigenvectors of matrix functions. SIAM Journal on Matrix Analysis and Applications, 14 (4): 903–926.

    Article  Google Scholar 

  4. Bailey, N. T. J. (1954). On queueing processes with bulk service. Journal of the Royal Statistical Society, Series B, 16: 80–87.

    Google Scholar 

  5. Ball, J. A., Gohberg, I., and Rodman, L. (1990). Interpolation of Rational Matrix Functions. Birkhäuser.

    Google Scholar 

  6. Berenstein, C. A. and Gay, R. (1991). Complex Variables: An Introduction. Springer-Verlag.

    Google Scholar 

  7. Bini, D. and Meini, B. (1996). On the solution of a nonlinear matrix equation arising in queueing problems. SIAM Journal on Matrix Analysis and Applications, 17: 906–926.

    Article  Google Scholar 

  8. Bini, D. and Meini, B. (1998). Using displacement structure for solving non-skip-free M/G/1 type Markov chains. In Alfa, A. S. and Chakravarthy, S. R., editors, Advances in Matrix Analytic Methods for Stochastic Models, pages 17–37. Notable Publications.

    Google Scholar 

  9. Coffman, Jr., E. G., Fayolle, G., and Mitrani, I. (1983). Two queues with alternating service periods. In Courtois, P. J. and Latouche, G., editors, Performance 87,pages 227–237. North-Holland.

    Google Scholar 

  10. Cohen, J. W. and Down, D. G. (1996). On the role of Rouché’s theorem in queueing analysis. Queueing Systems, 23: 281–291.

    Article  Google Scholar 

  11. Daigle, J. N. and Lucantoni, D. M. (1991). Queueing systems having phase-dependent arrival and service rates. In Stewart, W. J., editor, Numerical Solution of Markov Chains,pages 161–202. Marcel Dekker.

    Google Scholar 

  12. Dukhovny, A. (1994). Multiple roots in some equations of queueing theory. Communications in Statistics-Stochastic Models, 10 (2): 519–524.

    Article  Google Scholar 

  13. Dukhovny, A. (1998). Multiple roots in queueing equations: How realistic must examples get? Communications in Statistics-Stochastic Models, 14 (3): 763–765.

    Article  Google Scholar 

  14. Feller, W. (1968). An Introduction to Probability Theory and its Applications,volume I. John Wiley und Sons, 3rd edition.

    Google Scholar 

  15. Feller, W. (1971). An Introduction to Probability Theory and its Applications,volume II. John Wiley Sc Sons, 2nd edition.

    Google Scholar 

  16. Franklin, J. N. (1968). Matrix Theory. Prentice-Hall.

    Google Scholar 

  17. Friedberg, S. H., Insel, A. J., and Spence, L. E. (1989). Linear Algebra. Prentice-Hall, 2nd edition.

    Google Scholar 

  18. Gail, H. R., Hantler, S. L., Konheim, A. G., and Taylor, B. A. (1994). An analysis of a class of telecommunications models. Performance Evaluation, 21: 151–161.

    Article  Google Scholar 

  19. Gail, H. R., Hantler, S. L., Sidi, M., and Taylor, B. A. (1995). Linear independence of root equations for M/G/1 type Markov chains Queueing Systems, 20: 321–339.

    Article  Google Scholar 

  20. Gail, H. R., Hantler, S. L., and Taylor, B. A. (1992). On a preemptive Markovian queue with multiple servers and two priority classes. Mathematics of Operations Research, 17 (2): 365–391.

    Article  Google Scholar 

  21. Gail, H. R., Hantler, S. L., and Taylor, B. A. (1996). Spectral analysis of M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability, 28: 114–165.

    Article  Google Scholar 

  22. Gail, H. R., Hantler, S. L., and Taylor, B. A. (1997). Nonskip-free M/G/1 and G/M/1 type Markov chains. Advances in Applied Probability, 29: 733–758.

    Article  Google Scholar 

  23. Gail, H. R., Hantler, S. L., and Taylor, B. A. (1998). Matrix-geometric invariant measures for G/M/1 type Markov chains. Communications in Statistics-Stochastic Models, 14 (3): 537–569.

    Article  Google Scholar 

  24. Gantmacher, F. R. (1959). Applications of the Theory of Matrices. Interscience.

    Google Scholar 

  25. Glicksberg, I. (1976). A remark on Rouché’s theorem. The American Mathematical Monthly, 83: 186–187.

    Article  Google Scholar 

  26. Gohberg, I., Lancaster, P., and Rodman, L. (1982). Matrix Polynomials. Academic Press.

    Google Scholar 

  27. Gohberg, I. C. and Fel’dman, I. A. (1974). Convolution Equations and Projection Methods for their Solution. American Mathematical Society.

    Google Scholar 

  28. Goldberg, S. (1958). Introduction to Difference Equations. John Wiley und Sons.

    Google Scholar 

  29. Grassmann, W. K. (1977a). Transient solutions in Markovian queueing systems. Computers und Operations Research, 4: 47–53.

    Article  Google Scholar 

  30. Grassmann, W. K. (1977b). Transient solutions in Marko-vian queues. European Journal of Operational Research, 1: 396–402.

    Article  Google Scholar 

  31. Grassmann, W. K. (1991). Finding transient solutions in Markovian event systems through randomization. In Stewart, W. J., editor, Numerical Solution of Markov Chains,pages 357–371. Marcel Dekker.

    Google Scholar 

  32. Grassmann, W. K. (1998). Finding test data for solving the equilibrium equations of Markov chains with repeating columns. In Alfa, A. S. and Chakravarthy, S. R., editors, Advances in Matrix Analytic Methods for Stochastic Models, pages 261–278. Notable Publications.

    Google Scholar 

  33. Grassmann, W. K. and Heyman, D. P. (1990). Equilibrium distribution of block-structured Markov chains with repeating rows. Journal of Applied Probability, 27: 557–576.

    Article  Google Scholar 

  34. Grassmann, W. K. and Heyman, D. P. (1993). Computation of steady-state probabilities for infinite-state Markov chains with repeating rows. ORSA Journal on Computing, 5: 292–303.

    Article  Google Scholar 

  35. H. R. Gail, S. L. H. and Taylor, B. A. (1998). M/G/1 type Markov chains with rational generating functions. In Alfa, A. S. and Chakravarthy, S. R., editors, Advances in Matrix Analytic Methods for Stochastic Models, pages 1–16. Notable Publications.

    Google Scholar 

  36. Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis. Cambridge University Press.

    Google Scholar 

  37. Jensen, A. (1953). Markoff chains as an aid in the study of markoff processes. Skandinaysk Aktuarietidskrift, 36: 87–91.

    Google Scholar 

  38. Keilson, J. and Wishart, D. M. G. (1964). A central limit theorem for processes defined on a finite Markov chains. In Proceedings of the Cambridge Philosophical Society, volume 60, pages 547–567.

    Google Scholar 

  39. Kemeny, J. G., Snell, J. L., and Knapp, A. W. (1966). Denumerable Markov Chains. Van Nostrand.

    Google Scholar 

  40. Kingman, J. F. C. (1961). A convexity property of positive matrices. Quarterly Journal of Mathematics, 12: 283–284.

    Article  Google Scholar 

  41. Kleinrock, L. (1975). Queueing Systems Volume I: Theory. John Wiley und Sons.

    Google Scholar 

  42. Konheim, A. G. and Reiser, M. (1976). A queueing model with finite waiting room and blocking. Journal of the ACM,23(2):328341.

    Google Scholar 

  43. Konheim, A. G. and Reiser, M. (1978). Finite capacity queueing systems with applications in computer modeling. SIAM Journal on Computing, 7 (2): 210–229.

    Article  Google Scholar 

  44. Latouche, G. and Ramaswami, V. (1993). A logarithmic reduction algorithm for quasi-birth-death processes. Journal of Applied Probability, 30: 650–674.

    Article  Google Scholar 

  45. Meini, B. (1997). An improved FFT-based version of Ramaswami’s formula. Communications in Statistics—Stochastic Models, 13: 23238.

    Google Scholar 

  46. Meyer, C. D. (1989). Stochastic complementation, uncoupling Markov chains, and the theory of nearly reducible systems. SIAM Review, 31 (2): 40–272.

    Article  Google Scholar 

  47. Mitrani, I. and Chakka, R. (1995). Spectral expansion solution for a class of Markov models: Application and comparison with the matrix-geometric method. Performance Evaluation, 23 (3): 241–260.

    Article  Google Scholar 

  48. Mitrani, I. and Mitra, D. (1992). A spectral expansion method for random walks on semi-infinite strips. In Iterative Methods in Linear Algebra,pages 141–149. North-Holland.

    Google Scholar 

  49. Mitrany, I. L. and Avi-Itzhak, B. (1968). A many-server queue with service interruptions. Operations Research, 16 (3): 628–638.

    Article  Google Scholar 

  50. Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. Johns Hopkins University Press.

    Google Scholar 

  51. Neuts, M. F. (1989). Structured Stochastic Matrices of M/G/1 Type and Their Applications. Marcel Dekker.

    Google Scholar 

  52. Ramaswami, V. (1988). A stable recursion for the steady state vector in Markov chains of M/G/1 type. Communications in Statistics—Stochastic Models, 4: 183–188.

    Article  Google Scholar 

  53. Takács, L. (1962). Introduction to the Theory of Queues. Oxford University Press.

    Google Scholar 

  54. Wuyts, K. and Boel, R. K. (1998). Efficient matrix geometric methods for B-ISDN by using the spectral decomposition of the rate matrices. In Alfa, A. S. and Chakravarthy, S. R., editors, Advances in Matrix Analytic Methods for Stochastic Models,pages 341–359. Notable Publications.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gail, H.R., Hantler, S.L., Taylor, B.A. (2000). Use of Characteristic Roots for Solving Infinite State Markov Chains. In: Grassmann, W.K. (eds) Computational Probability. International Series in Operations Research & Management Science, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4828-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4828-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5100-7

  • Online ISBN: 978-1-4757-4828-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics