Skip to main content

The Product form Tool for Queueing Networks

  • Chapter
Computational Probability

Abstract

Queueing networks are used widely as modelling and evaluation tools in manufacturing, telecommunications, computer networking, and related areas. Much of the research effort has been devoted to so-called Jackson networks, that is, networks with Poisson arrivals, exponential service times and routing independent of the state of the system and the history of the customer. The steady-state distribution of Jackson networks can be expressed in a so-called product form. This computationally attractive form will be shown to be directly related to the principle of balance per station. This principle will be used to provide practical insights concerning the following questions

  1. 1.

    When can a product form be expected?

  2. 2.

    Why is this product form often violated in practice?

  3. 3.

    How can one restore a product form to obtain simple bounds?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basket, F., Chandy, K. M., Muntz, R. R., and Palacios, F. (1975). Open, closed and mixed networks with queues with different classes of customers. Journal of the ACM, 22: 248–260.

    Article  Google Scholar 

  2. de Souza e Silva, E. and Muntz, R. R. (1990). Queueing networks: Solutions and applications. In Takagi, H., editor, Stochastic Analysis of Computer and Communication Systems, pages 319–399. North-Holland, Amsterdam.

    Google Scholar 

  3. Guiasu, S. (1986). Maximum entropy condition in queueing theory. J. Opl. Res. Soc., 37: 293–301.

    Google Scholar 

  4. Heyman, D. P. and Sobel, M. J. (1982). Stochastic Models in Operations Research, volume 1. McGraw-Hill, New York.

    Google Scholar 

  5. Hordijk, A. and Van Dijk, N. M. (1982). Stationary probabilities for networks of queues. In Applied Probability, Computer Science, Vol II, The Interface, pages 423–451. Birkhäuser, Boston.

    Chapter  Google Scholar 

  6. Hordijk, A. and Van Dijk, N. M. (1983a). Adjoint processes, job local balance and insensitivity for stochastic networks. Bull 44th Session Int. Stat. Inst., 50: 776–788.

    Google Scholar 

  7. Hordijk, A. and Van Dijk, N. M. (1983b). Networkds of Queues: Part I: Job-Balance and the Adjoint Process; Part II: General Routing and Service Characteristics. Lecture Notes in Control and Informations Sciences, ( Eds Baccelli F. and Fayelle, G.). Springer Verlag.

    Google Scholar 

  8. Jackson, J. R. (1957). Networks of waiting lines. Operations Research, 5: 518–521.

    Article  Google Scholar 

  9. Jackson, J. R. (1964). Job shop like queueing systems. Management Science, 10 (1): 131–142.

    Article  Google Scholar 

  10. Kelly, F. P. (1979). Reversibility and Stochastic Networks. John Wiley and Sons, New York.

    Google Scholar 

  11. Reiser, M. (1980). Mean-value analysis of closed multichain queuing networks. JACM, 27 (2): 313–322.

    Article  Google Scholar 

  12. Robertazzi, T. G. (1990). Computer Networks and Systems. Springer-Verlag, New York, NY.

    Google Scholar 

  13. COMPUTATIONAL PROBABILITY

    Google Scholar 

  14. Schassberger, R. (1978). Insensitivity of steady-state distributions of generalized semi-Markov processes with speeds. Adv. Appl. Probability, 10:836–851.

    Google Scholar 

  15. van Dijk, N. M. (1989a). A simple throughput bound for large closed queueing networks with finite capacities. Performance Evaluation, 10: 153–167.

    Article  Google Scholar 

  16. van Dijk, N. M. (1989b). “Stop = Recirculate” for exponential product form queueing networks with departure blocking. Oper. Res. Letters.

    Google Scholar 

  17. van Dijk, N. M. (1990a). A discrete-time product form for random access protocols. In Proceedings of IEEE INFOCOM’90, pages 10711077, San Francisco, California.

    Google Scholar 

  18. van Dijk, N. M. (1990b). Mixed parallel processors with interdependent blocking. Applied Stochastic Models and Data Analysis, 6: 85100.

    Google Scholar 

  19. van Dijk, N. M. (1990c). Queueing systems with restricted workload: an explicit solution. J. Appl. Prob., 27: 393–400.

    Article  Google Scholar 

  20. van Dijk, N. M. (1991). On “stop = repeat” servicing for non- exponential queueing networks with blocking. J. Appl. Prob., 28: 159–173.

    Article  Google Scholar 

  21. Van Dijk, N. M. (1993). Queuing Networks and Product Forms. Wiley, New York, NY.

    Google Scholar 

  22. Van Dijk, N. M. and Akylildiz, I. F. (1990). Networks with mixed processor sharing parallel queues and common pools. In Performance 90, Amsterdam. North Holland.

    Google Scholar 

  23. van Dijk, N. M. and Lamond, B. F. (1988). Simple bounds for finite single-server exponential tandem queues. Operations Research, 36: 470–477.

    Article  Google Scholar 

  24. Van Dijk, N. M. and Tijms, H. C. (1986). Intensitivity in two-mode blocking models with applications. In Boxma, O. J. and Cohen, W. J., editors, Teletraffic Analysis and Computer Performance Evaluation. North Holland, Amsterdam.

    Google Scholar 

  25. van Dijk, N. M., Tsoucas, P., and Walrand, J. (1988). Simple bounds and monotonicity of the call congestion of finite multiserver delay systems. Probability in the Engineering and Informational Sciences, 2: 129–138.

    Article  Google Scholar 

  26. van Dijk, N. M. and van der Wal, J. (1989). Simple bounds and monotonicity results for finite multi-server exponential tandem queues. Queueing Systems, 4: 1–16.

    Article  Google Scholar 

  27. Walrand, J. (1988). An Introduction to Queueing Theory. Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  28. Woodside, C. M. (1988). Throughput calculations for basic stochastic rendezvous networks. Performance Evaluation, 9 (9): 143–160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

van Dijk, N.M., Grassmann, W. (2000). The Product form Tool for Queueing Networks. In: Grassmann, W.K. (eds) Computational Probability. International Series in Operations Research & Management Science, vol 24. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4828-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4828-4_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-5100-7

  • Online ISBN: 978-1-4757-4828-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics