Stress Corrosion Cracking

  • Genady P. Cherepanov
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)


“Environment—construction” systems are comparable to biological and economic systems in their complexity. Indeed, let us try to classify the processes occurring in such systems. The main factors which may prove to be decisive for the optimal projecting of a certain construction should naturally be divided into three groups: material properties, technological factors, and operational factors.


Stress Intensity Factor Crack Growth Rate Fatigue Crack Growth Stress Corrosion Stress Corrosion Crack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. L. Logan, The Stress Corrosion of Metals, John Wiley and Sons, New York (1967).Google Scholar
  2. 2.
    N. D. Tomashov, The Theory of Corrosion and Protection of Metals, USSR Academy of Science Publishing, Moscow (1959) (in Russian).Google Scholar
  3. 3.
    G. V. Akimov, The Theory and Methods of Study of Metal Corrosion, USSR Academy of Science Publishing, Moscow (1959) (in Russian).Google Scholar
  4. 4.
    M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York (1967).Google Scholar
  5. 5.
    T. P. Hoar, Electrode processes, in Modern Aspects of Electrochemistry, Vol. 3, J. O’M. Bockris, ed., Butterworths, London (1961).Google Scholar
  6. 6.
    G. P. Cherepanov, Mechanics of Brittle Fracture, McGraw-Hill, New York (1978).Google Scholar
  7. 7.
    H. H. Johnson and P. C. Paris, Sub-critical flaw growth, Eng. Fract. Mech. I, 3 (1968).CrossRefGoogle Scholar
  8. 8.
    B. F. Brown, The application of fracture mechanics to stress corrosion cracking, Metall. Rev. 13, 171 (1968).CrossRefGoogle Scholar
  9. 9.
    H. H. Johnson, Environmental cracking in high-strength materials, in Fracture, Vol. 3, H. Liebowitz, ed., Academic Press, New York (1971).Google Scholar
  10. 10.
    H. Uhlig, Stress corrosion cracking, in Fracture, Vol. 3, H. Liebowitz, ed., Academic Press, New York (1971).Google Scholar
  11. 11.
    V. A. Marichev, Environment-enhanced crack growth of high-strength materials, Zashch. Met. 11, 139 (1975) (in Russian).Google Scholar
  12. 12.
    G. P. Cherepanov, Mechanics of corrosive fracture, Physico-chem. Mech. Mater., No. 1 (1974) (in Russian).Google Scholar
  13. 13.
    R. N. Parkins, F. Mazza, J. J. Royuela, and J. G. Scully, Stress corrosion test methods, Brit. Corrosion J. 7, 154 (1972).Google Scholar
  14. 14.
    R. P. Wei, Some aspects of environment enhanced fatigue crack growth. Eng. Fract. Mech. I, 633 (1970).CrossRefGoogle Scholar
  15. 15.
    R. W. Staehle, B. F. Brown, J. Kruger, and A. Agrawal, eds., Localized Corrosion, NACE, Houston (1974).Google Scholar
  16. 16.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford, England (1966).Google Scholar
  17. 17.
    V. V. Romanov, Corrosion Cracking of Metals, Mashgiz, Moscow (1980) (in Russian).Google Scholar
  18. 18.
    Passivity and Its Breakdown on Iron and Iron Base Alloys, Japan-USA Seminar, Honolulu, Hawaii, 1975.Google Scholar
  19. 19.
    J. A. Smith, M. H. Peterson, and B. F. Brown, Corrosion (Houston) 26, 539 (1970).CrossRefGoogle Scholar
  20. 20.
    M. Pourbaix, Corrosion (Houston) 26, 431 (1970).CrossRefGoogle Scholar
  21. 21.
    K. J. Vetter and H. H. Strehblow, in Localized Corrosion, R. W. Staehle, ed., NACE, Houston (1974).Google Scholar
  22. 22.
    H. W. Pickering and P. R. Fra“kenthal, J. Electrochem. Soc. 119, 1297 (1972).CrossRefGoogle Scholar
  23. 23.
    J. R. Galvele, Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc. 123, 464 (1976).CrossRefGoogle Scholar
  24. 24.
    V. G. Levich, Physico-chemical Hydrodynamics, Fizmatgiz, Moscow (1959) (in Russian).Google Scholar
  25. 25.
    P. C. Paris and G. C. Sih, Stress analysis of cracks, in Fracture Toughness Testing and Its Applications, ASTM, Philadelphia (1965).Google Scholar
  26. 26.
    M. L. Williams, Stress singularities resulting from various boundary conditions in angular corners of plates in extension, J. Appl. Mech. 19 (4), 526 (1952).Google Scholar
  27. 27.
    I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid, Proc. R. Soc. London Ser. A 187, 229–260 (1946).CrossRefGoogle Scholar
  28. 28.
    G. R. Irwin, Fracture, in Handbuch der Physik, Vol. 6, Springer-Verlag, Berlin (1958), pp. 551–590.Google Scholar
  29. 29.
    G. P. Cherepanov, Singular solutions in the theory of elasticity, in Mechanics of Solids, Sudostroenie, Leningrad (1970) (in Russian).Google Scholar
  30. 30.
    H. Liebowitz, ed., Fracture, An Advanced Treatise,in 7 volumes, Academic Press, New York (1968–1974).Google Scholar
  31. 31.
    G. C. Sih, ed., Mechanics of Fracture Series, Vol. I, Lehigh University Press, Bethlehem, Pennsylvania (1973).Google Scholar
  32. 32.
    H. Tada, P. Paris, and G. Irwin, The Stress Analysis of Cracks Handbook, DEL Research Corporation, Hellertown, Pennsylvania 1973.Google Scholar
  33. 33.
    Fracture toughness testing and its applications, ASTM Special Technical Publication No. 381, Chicago, 1965.Google Scholar
  34. 34.
    W. F. Brown and J. E. Srawley, Plane strain crack toughness testing of high strength metallic materials, ASTM Special Technical Publication No. 410, 1969.Google Scholar
  35. 35.
    R. S. Sharpe, ed., Research Techniques in Nondestructive Testing, Academic Press, London (1970).Google Scholar
  36. 36.
    Fracture toughness, ASTM Special Technical Publication No. 514, 1972.Google Scholar
  37. 37.
    Cracks and fracture, ASTM Special Technical Publication No. 601, 1976.Google Scholar
  38. 38.
    G. P. Cherepanov, Cracks in solids, Int. J. Solids Structures, 4, 811–831 (1968).CrossRefGoogle Scholar
  39. 39.
    G. R. Irwin, Analysis of stresses and strains near the end of a crack traversing a plate, J. Appl. Mech. 24 (3), 361 (1957).Google Scholar
  40. 40.
    A. A. Griffith, The phenomenon of rupture and flow in solids, Philos. Trans. R. Soc. London Ser. A 221, 163–198 (1920).Google Scholar
  41. 41.
    M. E. Shank, C. E. Spaeth, V. W. Cooke, and J. E. Coyne, Solid-fuel rocket chambers for operation at 240.000 psi and above, Met. Prog. 76, 74 (1959).Google Scholar
  42. 42.
    G. R. Irwin and J. A. Kies, Fracture theory applied to high strength steels, Met. Prog. 78, 73 (1960).Google Scholar
  43. 43.
    H. Bernstein and J. A. Kies, Crack growth during static tests of rocket motor cases, Met. Prog. 78, 79 (1960).Google Scholar
  44. 44.
    E. A. Steigerwald, Delayed failure of high-strength steel in liquid environments, Proc. ASTM 60, 750 (1960).Google Scholar
  45. 45.
    H. H. Johnson and A. M. Willner, Moisture and stable crack growth in a high strength steel, Appl. Mater. Res. 4, 34 (1965).Google Scholar
  46. 46.
    B. F. Brown and C. D. Beachem, A study of the stress factor in corrosion cracking, Corros. Sci. 5, 745 (1965).CrossRefGoogle Scholar
  47. 47.
    G. L. Hanna, A. R. Troiano, and E. A. Steigerwald, A mechanism for the embrittlement of high strength steels by aqueous environments, ASM Trans. O. 57, 658 (1964).Google Scholar
  48. 48.
    G. G. Hancock and H. H. Johnson, Hydrogen, oxygen and subcritical crack growth in a high-strength steel, Trans. Metall. Soc. A.IME. 236, 513 (1966).Google Scholar
  49. 49.
    S. Wiederhorn, The influence of water vapor on crack propagation in soda-lime glass, Natl. Bur. Stand. Rep. No. 9442 (1966).Google Scholar
  50. 50.
    G. R. Irwin, Moisture assisted slow crack extension in glass plates, Naval. Res. Lab. Memo. Rep. No. 1678 (1966).Google Scholar
  51. 51.
    J. H. Mulherin, Stress corrosion susceptibility of high strength steel, in relation to fracture toughness, Trans. A.S.M.E. Ser. D 88, 777 (1966).Google Scholar
  52. 52.
    M. H. Peterson, B. F. Brown, R. L. Newbegin, and R. E. Groover, Stress corrosion cracking of high strength steels and titanium alloys in chloride solutions at ambient temperature, Corrosion (Houston) 23, 142 (1967).CrossRefGoogle Scholar
  53. 53.
    W. A. Van der Sluys, Effects of repeated loading and moisture on the fracture toughness of SAE 4340 steel, J. Basic. Eng. Trans. A.S.M.E. Ser. D 87, 363 (1965).CrossRefGoogle Scholar
  54. 54.
    H. R. Smith, D. E. Piper, and F. K. Downey, A study of stess-corrosion cracking by wedge-force loading, Eng. Fracture Mech. I, 123 (1968).CrossRefGoogle Scholar
  55. 55.
    G. P. Cherepanov, Invariant F-integrals and some of their applications in mechanics, Appl. Math. Mech. 41 (3), (1977) (in Russian).Google Scholar
  56. 56.
    J. D. Eshelby, Philos. Trans. R. Soc. A244, 87 (1951).CrossRefGoogle Scholar
  57. 57.
    G. P. Cherepanov, Crack propagation in continuous media, J. Appl. Math. Mech. 31 (3), 504 (1967).CrossRefGoogle Scholar
  58. 58.
    J. R. Rice, A path independent integral and the approximate analysis of strain concentration by notches and cracks, Trans. ASME J. Appl. Mech. 379 (1968).Google Scholar
  59. 59.
    J. R. Rice, Mathematical analysis in the mechanics of fracture, in Treatise on Fracture, Vol. 2, Academic Press, New York (1968), p. 191.Google Scholar
  60. 60.
    G. P. Cherepanov, L. V. Ershov, and G. G. Kuzmin, On the growth of corrosion cracks, Corrosion (Houston) 27 (12) (1972).Google Scholar
  61. 61.
    G. P. Cherepanov, On the theory of electrochemical stress corrosion cracking, in Proceedings of the Third Congress on Fracture, Munich, 1973.Google Scholar
  62. 62.
    G. N. Nikiforchin, Study of crack resistance of high-strength steels under static loadings in liquids, thesis, Lvov, 1977.Google Scholar
  63. 63.
    Hideo Kitagawa, Ryoji Yuuki, and Toshiaki Ohira, Crack-morphological aspects in fracture mechanics, Eng. Fracture Mech. 7 (3), 515 (1975).CrossRefGoogle Scholar
  64. 64.
    M. O. Speidel, Branching of stress corrosion cracks in aluminum alloys, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 289.Google Scholar
  65. 65.
    C. S. Carter, Stress corrosion crack branching in high strength steels, Eng. Fracture Mech. 3, I (1971).Google Scholar
  66. 66.
    S. Mostovoy, H. R. Smith, R. G. Lingwall, and E. I. Rippling, A note on stress corrosion cracking rates, Eng. Fracture Mech. 3, 291 (1971).CrossRefGoogle Scholar
  67. 67.
    C. S. Carter, The effect of silicon on the stress corrosion resistance of low alloy high strength steel, Corrosion (Houston) 25, 423 (1969).CrossRefGoogle Scholar
  68. 68.
    C. S. Carter, The effect of heat treatment on the fracture toughness and subcritical crack growth characteristics of a 350-grade maraging steel, Metall. Trans. I, 1551 (1970).Google Scholar
  69. 69.
    J. A. Feeney and M. J. Blackburn, Effect of microstructure on the strength, toughness, and SCC susceptibility of a metastable beta titanium alloy (Ti-11.5Mo-6Zr-4.5Sn), Metall. Trans. I, 3309 (1970).Google Scholar
  70. 70.
    R. J. Bucci and P. C. Paris, Observations on sustained load environmental crack growth of a titanium 8A1-IMo-IV alloy, Corrosion (Houston) 27, 525 (1971).CrossRefGoogle Scholar
  71. 71.
    J. M. Krafft and J. H. Mulherin, Trans. ASM 62, 64 (1969).Google Scholar
  72. 72.
    G. P. Cherepanov, On the theory of crack growth due to hydrogen embrittlement, Corrosion (Houston) 28 (8), 305 (1973).CrossRefGoogle Scholar
  73. 73.
    J. T. Ryder and J. P. Gallagher, Environmentally controlled fatigue crack-growth rates in SAE 4340 steel-temperature effects, J. Basic Eng. Trans. ASME 92, 133 (1970).CrossRefGoogle Scholar
  74. 74.
    W. W. Gerberich and C. E. Hartbower, Monitoring crack growth of hydrogen embrittlement and stress corrosion cracking by acoustic emission, in Proceedings of the Conference on the Fundamental Aspects SCC, September 11–15, 1967, The Ohio State University, Department of Metallurgical Engineering (1969).Google Scholar
  75. 75.
    A. J. McEvily, J. B. Clark, and A. P. Bond, Effect of thermal-mechanical processings on the fatigue and stress-corrosion properties of an Al-Zn-Mg alloy, Trans. Metal. Soc. AIME 60, 661 (1967).Google Scholar
  76. 76.
    A. Hartman and J. Schijve, The effect of environment and load frequence on the crack propagation low for macro-fatigue crack growth in aluminium alloys, Eng. Fracture Mech. 1, 615 (1970).CrossRefGoogle Scholar
  77. 77.
    R. P. Wei and J. D. Landes, The effect of DZO on fatigue crack propagation in a high-strength aluminum alloy, Int. J. Fract. Mech. 5(1), (1969).Google Scholar
  78. 78.
    T. W. Crocker and E. A. Lange, Corrosion-fatigue crack propagation studies of some new high-strength structural steels, Trans. ASME D, J. Basic Eng. 91, 570 (1969).CrossRefGoogle Scholar
  79. 79.
    R. J. Dunahe, McI. H. Clark, P. Atanmo, R. Kumble, and A. J. McEvily, Crack opening displacement and the rate of fatigue crack growth, Int. J. Fracture Mech. 8, 209 (1972).CrossRefGoogle Scholar
  80. 80.
    H. H. Smith and P. Shahinian, presented at the International Conference on Corrosion Fatigue, 14–18 June 1971, Storrs, Connecticut.Google Scholar
  81. 81.
    P. Furrer and H. Warlimont, Gefüge und Eigenschaften von Aluminiumlegierungen nach rascher Erstarrung, Z. Metallkd. 62 (I), 12 (1971).Google Scholar
  82. 82.
    M. J. Owen, Fatigue of carbon-fiber-reinforced plastics, in Composite Materials, Vol. 5, Fracture and Fatigue, L. J. Broutman and R. H. Krock, eds., Academic Press, New York (1974), p. 342.Google Scholar
  83. 83.
    G. P. Cherepanov, On crack growth under cyclic loading, Appl. Mech. Eng. Phys. 6 (1968) (in Russian).Google Scholar
  84. 84.
    G. P. Cherepanov and H. Halmanov, On the theory of fatigue crack growth, Eng. Fracture Mech. 4, 219 (1972).CrossRefGoogle Scholar
  85. 85.
    R. G. Forman, V. E. Kearney, and R. M. Engle, Numerical analysis of crack propagation in cycle loaded structures, Trans. ASME Ser. D 89 (3) (1967).Google Scholar
  86. 86.
    G. P. Cherepanov and H. Halmanov, On the crack growth below Krscc, Eng. Fracture Mech. 6 (3), 551 (1974).CrossRefGoogle Scholar
  87. .1. M. Barsom, E. J. Imhof, and S. T. Rolfe, Fatigue crack propagation in high yield strength steels, Eng. Fracture Mech. 2, 301 (1971).CrossRefGoogle Scholar
  88. 88.
    G. F. Pittinato, Hydrogen enhanced fatigue crack growth in Ti-6A1–4V EU weldments, Metall. Trans. 3 (I) (1972).Google Scholar
  89. 89.
    G. P. Cherepanov and V. D. Kuliev, Effect of loading frequence and inactive environment to the fatigue crack growth, Strength Problems, No. 1 (1972) (in Russian).Google Scholar
  90. 90.
    B. F. Brown, G. T. Fujü, and E. P. Dahlberg, J. Electrochem. Soc. 116, 218 (1969).CrossRefGoogle Scholar
  91. 91.
    B. F. Brown, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 186.Google Scholar
  92. 92.
    T. R. Beck, NATO Conference on the Theory of Stress Corrosion Cracking in Alloys, Brussels, 1971, p. 68.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Genady P. Cherepanov
    • 1
  1. 1.Tomilino (Moscow Region)USSR

Personalised recommendations