Skip to main content

The Kinetics of the Growth of Oxides

  • Chapter
Electrochemical Materials Science

Part of the book series: Comprehensive Treatise of Electrochemistry ((AN,volume 4))

Abstract

The growth of an oxide film on a metal surface involves the transport of matter and/or charge in at least three phases, the metal, the oxide film, and the oxidizing medium. Many metals form more than one stable oxide, and some oxides exist in both amorphous and crystalline forms. The oxides may possess pores or fissures complicating the transport processes, while grain boundaries and dislocations can provide short-circuit transport paths. To this potpourri must be added surface and space charges and the ever-elusive properties of at least two interfaces and their attendant processes. The result is an overwhelming range of possible—and no doubt actual—kinetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. P. Hoar, The anodic behavior of metals, in Modern Aspects of Electrochemistry, Vol. 2, J. O’M. Bockris, ed., Academic Press, New York (1959).

    Google Scholar 

  2. U. R. Evans, The Corrosion and Oxidation of Metals, St. Martins, New York (1960).

    Google Scholar 

  3. L. Young, Anodic Oxide Films, Academic Press, New York (1961).

    Google Scholar 

  4. F. J. Burger and L. Young, Electrolytic capacitors, in Progress in Dielectrics, Vol. 5, Heywood, London (1962).

    Google Scholar 

  5. M. Fleischmann and H. R. T. Thirsk, Metal deposition and electrocrystallization, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 3, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1963).

    Google Scholar 

  6. D. A. Vermilyea, Anodic films, in Advances in Electrochemistry and Electrochemical Engineering, Vol. 3, P. Delahay and C. W. Tobias, Eds., Interscience, New York (1963).

    Google Scholar 

  7. N. G. Bardina, Anodic oxide films, Russ. Chem. Rev 33, 286 (1964).

    Article  Google Scholar 

  8. T. P. Hoar, in Encyclopedia of Electrochemistry, C. A. Hampel, ed., Reinhold, New York (1964).

    Google Scholar 

  9. L. Young, W. S. Goruk, and F. G. R. Zobel, Ionic and electronic currents at high fields in anodic oxide films, in Modern Aspects of Electrochemistry, Vol. 4, J. O’M. Bockris, ed., Butterworths, London (1966).

    Google Scholar 

  10. J. W. Diggle, T. C. Downie, and C. W. Goulding, Anodic oxide films on aluminum, Chem. Rev 69, 365 (1969).

    Article  CAS  Google Scholar 

  11. F. Fehlner and N. F. Mott, Low-temperature oxidation, Oxid. Met 2, 59 (1970).

    Article  CAS  Google Scholar 

  12. C. J. Dell’Oca, D. J. Pulfrey, and L. Young, Anodic oxide films, in Physics of Thin Films, Vol. 6, Academic Press, London (1971).

    Google Scholar 

  13. U. R. Evans, Inhibition, passivity and resistance: a review of acceptable mechanisms, Electrochim. Acta 16, 1825 (1971).

    Article  CAS  Google Scholar 

  14. S. M. Ahmed, Electrocal double layer at metal oxide-solution interfaces, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).

    Google Scholar 

  15. V. Brusic, Passivation phenomena, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).

    Google Scholar 

  16. M. J. Dignam, Mechanisms of ionic transport through oxide films, in Oxides and Oxide Films, Vol. 1, J. W. Diggle, ed., Marcel Dekker, New York (1973).

    Google Scholar 

  17. A. K. Vijh, Electrochemistry of Metals and Semiconductors, Marcel Dekker, New York (1973).

    Google Scholar 

  18. G. C. Wood, Porous anodic films on aluminum, in Oxides and Oxide Films, Vol. 2, J. W. Diggle, ed., Marcel Dekker, New York (1974).

    Google Scholar 

  19. A. T. Fromhold, Jr., Space-charge effects on anodic film formation, in Oxides and Oxide FilmsVol. 3, J. W. Diggle and A. K. Vijh, Eds., Marcel Dekker, New York (1976)

    Google Scholar 

  20. G. Belanger and A. K. Vijh, Anodic oxides on noble metals, in Oxides and Oxide Films, Vol. 5, A. K. Vijh, ed., Marcel Dekker, New York (1977).

    Google Scholar 

  21. L. Young, Trans. Faraday Soc 53, 841 (1957).

    Article  CAS  Google Scholar 

  22. M. R. Arora and R. Kelly, J. Electrochem. Soc 124, 1493 (1977).

    Article  CAS  Google Scholar 

  23. J. L. Ord, D. J. DeSmet, and M. A. Hopper, J. Electrochem. Soc 123, 1352 (1976).

    Article  CAS  Google Scholar 

  24. J. L. Ord, J. C. Clayton, and D. J. DeSmet, J. Electrochem. Soc 124, 1714 (1977).

    Article  CAS  Google Scholar 

  25. G. C. Wood and A. J. Brock, Nature 209, 773 (1966).

    Article  CAS  Google Scholar 

  26. G. Parsons and G. C. Wood, Corros. Sci 9, 367 (1969).

    Article  Google Scholar 

  27. G. C. Wood and S. W. Khoo, J. Appl. Electrochem 1, 189 (1971).

    Article  CAS  Google Scholar 

  28. M. J. Dignam and P. J. Ryan, Can. J. Chem 41, 3108 (1963).

    Article  CAS  Google Scholar 

  29. M. J. Dignam, unpublished data.

    Google Scholar 

  30. M. J. Dignam and D. Goad, J. Electrochem. Soc 113, 381 (1966).

    Article  CAS  Google Scholar 

  31. D. J. Young and M. J. Dignam, Oxid. Met 5, 241 (1972).

    Article  CAS  Google Scholar 

  32. N. Cabrera and N. F. Mott, Rep. Prog. Phys 12, 163 (1948).

    Article  Google Scholar 

  33. D. J. Young and M. J. Dignam, J. Phys. Chem. Solids, 34, 1235 (1973).

    Article  Google Scholar 

  34. M. J. Dignam and R. K. Kalia, Surface Sci. 100, 154 (1980).

    Article  CAS  Google Scholar 

  35. M. J. Dignam, H. M. Barrett, and G. D. Nagy, Can. J. Chem 47, 4253 (1969).

    Article  CAS  Google Scholar 

  36. M. J. Dignam, D. J. Young, and D. G. W. Goad, J. Phys. Chem. Solids 34, 1227 (1973); M. J. Dignam, Can. J. Chem 57, 1329 (1979).

    Article  Google Scholar 

  37. E. J. W. Verwey, Physica (The Hague) 2, 1059 (1935).

    Article  Google Scholar 

  38. J. F. Dewald, J. Electrochem. Soc 102, 1 (1955).

    Article  Google Scholar 

  39. L. Young, Can. J. Chem 37, 276 (1959).

    Article  CAS  Google Scholar 

  40. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd ed., Oxford University Press, London (1957).

    Google Scholar 

  41. C. P. Bean, J. C. Fisher, and D. A. Vermilyea, Phys. Rev 101, 551 (1956).

    Article  CAS  Google Scholar 

  42. J. F Dewald, J. Phys. Chem. Solids 2 55 (1957).

    Google Scholar 

  43. M. J Dignam and D. F. Taylor, Can. J. Chem 49 416 (1971).

    Google Scholar 

  44. M. J. Dignam, J. Electrochem. Soc 126, 2188 (1979).

    Article  Google Scholar 

  45. L. Young, Proc. R. Soc. (London) Ser. A 258, 496 (1960).

    Article  Google Scholar 

  46. M. J. Dignam, Can. J. Chem 42, 1155 (1964).

    Article  Google Scholar 

  47. L. Young, J. Electrochem. Soc 110, 589 (1963).

    Article  CAS  Google Scholar 

  48. N. Ibl, Electrochim. Acta 14, 1043 (1967).

    Article  Google Scholar 

  49. M. J. Dignam and D. B. Gibbs, J. Phys. Chem. Solids 30, 375 (1969).

    Article  CAS  Google Scholar 

  50. J. L. Ord, M. A. Hopper, and W. P. Wang, J. Electrochem. Soc 119, 439 (1972).

    Article  CAS  Google Scholar 

  51. J. C. Polanyi and J. L. Schreiber, in Physical Chemistry, An Advanced Treatise, Vol. VIA, Kinetics of Gas Reactions, W. Jost, ed., Academic Press, New York (1974).

    Google Scholar 

  52. G. W. Morey, The Property of Glass, Reinhold, New York (1954).

    Google Scholar 

  53. K. Otto, Phys. Chem. Glasses 7, 29 (1966).

    CAS  Google Scholar 

  54. J. P. S. Pringle, Electrochim. Acta 25, 1403, 1423 (1979).

    Google Scholar 

  55. M. J. Dignam, J. Phys. Chem. Solids 29, 249 (1968).

    Article  Google Scholar 

  56. A. R. Von Hippel, Dielectrics and Waves, Wiley, London (1954).

    Google Scholar 

  57. F. S. Stone, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).

    Google Scholar 

  58. A. G. Ritchie, J. Chem. Soc. Faraday Trans. 1 10, 1650 (1977).

    Google Scholar 

  59. S. M. Ahmed, in Symposium on Oxide—Electrolyte Interfaces, R. S. Alwitt, ed., The Electrochemical Society, Princeton, New Jersey (1973).

    Google Scholar 

  60. M. J. Dignam, Can. J. Chem 56, 595 (1978).

    Google Scholar 

  61. S. Levine and A. L. Smith, Discuss. Faraday Soc 52, 290 (1971).

    Article  Google Scholar 

  62. L. Young, Proc. R. Soc. London Ser. A 244, 41 (1958).

    Google Scholar 

  63. J. Siejka, J. P. Nadai, and G. Amsel, J. Electrochem. Soc 118, 727 (1971).

    Article  CAS  Google Scholar 

  64. D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1299 (1973).

    Article  CAS  Google Scholar 

  65. D. A. Vermilyea, J. Electrochem. Soc 103, 690 (1956).

    Article  Google Scholar 

  66. S. J. Basinska, J. J. Polling, and A. Charlesbry, Acta Metall. 2, 313 (1954).

    Article  CAS  Google Scholar 

  67. A. L. Bacerella and A. L. Sutton, Electrochem. Technol 4, 117 (1966).

    Google Scholar 

  68. D. A. Vermilyea, Acta Metall. 2, 482 (1954).

    Article  Google Scholar 

  69. P. H. G. Draper, Electrochim. Acta 8, 847 (1963).

    Article  Google Scholar 

  70. C. J. Dell’Oca and L. Young, J. Electrochem. Soc 117, 1545, 1548 (1970).

    Article  Google Scholar 

  71. R. J. Maurer, J. Chem. Phys 9, 579 (1941).

    Article  Google Scholar 

  72. J. J. Randall, W. J. Bernard, and R. R. Wilkinson, Electrochim. Acta 10, 183 (1965).

    Article  CAS  Google Scholar 

  73. G. Amsel and D. Samuel, J. Phys. Chem. Solids 23, 1707 (1962).

    Article  Google Scholar 

  74. J. P. S. Pringle, J. Electrochem. Soc 120, 1931 (1973).

    Google Scholar 

  75. J. P. S. Pringle, Electrochemical Society, Extended Abstracts, Vol. 78–1, Abstract No. 195, Seattle, Washington (May 1978).

    Google Scholar 

  76. J. A. Davies, J. P. S. Pringle, R. L. Graham, and F. Brown, J. Electrochem. Soc. 109, 999 (1962); R. L. Graham, F. Brown, J. A. Davies, and J. P. S. Pringle, Can. J. Chem. 41, 1686 (1963); J. A. Davies and B. Domeij, J. Electrochem. Soc. 110, 85 (1963); J. A. Davies, B. Domeij, J. P. S. Pringle, and F. J. Brown, J. Electrochem. Soc 112, 675 (1965).

    CAS  Google Scholar 

  77. J. W. Whitton, J. Electrochem. Soc 115, 58 (1968).

    Article  Google Scholar 

  78. J. Perriere, S. Rigo, and S. Siejka, J. Electrochem. Soc 125, 1549 (1978).

    Article  CAS  Google Scholar 

  79. M. J. Dignam and P. J. Ryan, Can. J. Chem 46, 535 (1968).

    Article  CAS  Google Scholar 

  80. D. G. W. Goad and M. J. Dignam, Can. J. Chem 50, 3250 (1972).

    Google Scholar 

  81. D. A. Vermilyea, J. Electrochem. Soc 104, 427 (1957).

    Article  Google Scholar 

  82. L. Young, Proc. R. Soc. (London) A263, 395 (1961).

    Article  CAS  Google Scholar 

  83. L. Masing and L. Young, Can. J. Chem 40, 903 (1962).

    Article  CAS  Google Scholar 

  84. M. J. Dignam and P. J. Ryan, Can. J. Chem 46, 549 (1968).

    Article  CAS  Google Scholar 

  85. D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1306 (1973).

    Article  CAS  Google Scholar 

  86. J. L. Ord and J. H. Bartlett, J. Electrochem. Soc 112, 160 (1965).

    Article  Google Scholar 

  87. J. L. Ord, J. Electrochem. Soc 113, 213 (1966).

    Article  Google Scholar 

  88. J. L. Ord and D. J. DeSmet, J. Electrochem. Soc. 113, 1876 (1966); 116, 762 (1969); 123, 1876 (1976).

    Article  CAS  Google Scholar 

  89. D. J. DeSmet and M. A. Hopper, J. Electrochem. Soc 116, 1184 (1969).

    Article  Google Scholar 

  90. B. H. Ellis, M. A. Hopper, and D. J. DeSmet, J. Electrochem. Soc 118, 860 (1971).

    Article  CAS  Google Scholar 

  91. M. A. Hopper, T. A. Wright, and D. J. DeSmet, J. Electrochem. Soc 124, 44 (1977).

    Article  CAS  Google Scholar 

  92. J. L. Ord and F. C. Ho, J. Electrochem. Soc 118, 46 (1971).

    Article  CAS  Google Scholar 

  93. J. L. Ord, J. C. Clayton, and K. Brudzewski, J. Electrochem. Soc 125 (6), 908 (1978).

    Article  CAS  Google Scholar 

  94. J. L. Ord, J. C. Clayton, and W. P. Wang, J. Electrochem. Soc 124, 1671 (1977).

    Article  CAS  Google Scholar 

  95. L. Young and P. J. Smith, J. Electrochem. Soc 126, 1972 (1979).

    Article  CAS  Google Scholar 

  96. L. Young, Can. J. Chem 50, 574 (1972).

    Article  CAS  Google Scholar 

  97. L. Young and D. J. Smith, J. Electrochem. Soc 126, 765 (1979).

    Article  CAS  Google Scholar 

  98. H. J. de Wit, C. Wijenberg, and C. Crevecoeur, J. Electrochem. Soc. 126, 779 (1979).

    Article  Google Scholar 

  99. M. J. Dignam and D. F. Taylor, Can. J. Chem. 48, 1971 (1970); D. F. Taylor and M. J. Dignam, J. Electrochem. Soc 120, 1306 (1973).

    Article  Google Scholar 

  100. G. Schwartz, J. Phys. Chem 71, 4021 (1967).

    Article  Google Scholar 

  101. M. J. Dignam, J. Electrochem. Soc. 109, 184 (1962).

    Google Scholar 

  102. L. Young, J. Electrochem. Soc 111, 1289 (1964).

    Article  CAS  Google Scholar 

  103. C. Crevecoeur and H. J. de Wit, J. Electrochem. Soc 121, 1465 (1974).

    Article  CAS  Google Scholar 

  104. J. P. O’Sullivan and G. C. Wood, Proc. R. Soc. London Ser. A 317, 511 (1970).

    Article  Google Scholar 

  105. C. J. Dell’Oca and P. J. Fleming, J. Electrochem. Soc 123, 1487 (1976).

    Article  Google Scholar 

  106. A. Dekker and A. Middelhoek, J. Electrochem. Soc 117, 440 (1970).

    Article  CAS  Google Scholar 

  107. D. B. Gibbs, B. Rao, R. A. Griffin, and M. J. Dignam, J. Electrochem. Soc 122, 1167 (1975).

    Article  CAS  Google Scholar 

  108. J. A. McMillan, Chem. Rev 62, 65 (1962).

    Article  Google Scholar 

  109. J. A. Allen, in Proceedings of the First Australian Conference on Electrochemistry, Pergamon, London (1965).

    Google Scholar 

  110. K. J. Vetter, Electrochemical Kinetics, Academic Press, New York, (1967), pp. 317–325.

    Google Scholar 

  111. L. L. Bircumshaw and A. C. Reddiford, Quart. Rev. (London) 6, 157 (1952).

    Article  CAS  Google Scholar 

  112. W. J. Dunning, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).

    Google Scholar 

  113. J. W. Mitchell, in Chemistry of the Solid State, W. E. Garner, ed., Butterworths, London (1955).

    Google Scholar 

  114. G. T. Wright, Solid State Electron. 2, 165 (1961).

    Article  Google Scholar 

  115. R. G. Barradas and G. H. Fraser, Can. J. Chem 42, 2488 (1964).

    Article  CAS  Google Scholar 

  116. H. Angerstein-Kozlowska, B. E. Conway, and W. B. A. Sharp, J. Electroanal. Chem 43, 9 (1973).

    Article  CAS  Google Scholar 

  117. T. Biegler, Aust. J. Chem 26, 2571 (1973).

    Article  CAS  Google Scholar 

  118. M. D. Goldstein, T. I. Zalkind, and V. I. Veselovskii, Elektrokhim. 10, 1533 (1974).

    Google Scholar 

  119. B. V. Tilak, B. E. Conway, and H. Angerstein-Kozlowska, J. Electronanal. Chem 48, 1 (1973).

    Article  CAS  Google Scholar 

  120. K. J. Vetter and J. W. Schultze, J. Electroanal. Chem 34, 131 (1972).

    Article  CAS  Google Scholar 

  121. D. Gilroy and B. E. Conway, Can. J. Chem 46, 875 (1968).

    Article  CAS  Google Scholar 

  122. K. J. Vetter and J. W. Schultze, J. Electroanal. Chem 34, 141 (1972).

    Article  CAS  Google Scholar 

  123. W. Visscher and M. A. V. Devanathan, J. Electroanal. Chem 8, 127 (1964).

    CAS  Google Scholar 

  124. T. Biegler, D. A. J. Rand, and R. Woods, J. Electroanal. Chem 29, 269 (1971).

    Article  CAS  Google Scholar 

  125. J. Balej and O. Spalek, Collect. Czecho. Chem. Commun 47, 499 (1972).

    Article  Google Scholar 

  126. T. P. Hoare, The Electrochemistry of Oxygen, Interscience, New York (1968).

    Google Scholar 

  127. P. W. Jacobs and F. C. Tompkins, in Chemistry of the Solid State, W. E. Garner, Eds., Butterworths, London (1955).

    Google Scholar 

  128. M. J. Dignam and D. B. Gibbs, Can. J. Chem 48, 1242 (1970).

    Article  CAS  Google Scholar 

  129. V. Ashworth and D. Fairhurst, J. Electrochem. Soc 124, 506 (1977).

    Article  CAS  Google Scholar 

  130. S. Fletcher, R. G. Barradas, and J. D. Porter, J. Electrochem. Soc 125, 1960 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dignam, M.J. (1981). The Kinetics of the Growth of Oxides. In: Bockris, J.O., Conway, B.E., Yeager, E., White, R.E. (eds) Electrochemical Materials Science. Comprehensive Treatise of Electrochemistry, vol 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4825-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4825-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4827-7

  • Online ISBN: 978-1-4757-4825-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics