Nonmetallic Electrode Materials

  • J. P. Randin
Part of the Comprehensive Treatise of Electrochemistry book series (AN, volume 4)

Abstract

This chapter is devoted to nonmetallic electrode materials, i.e., electrode materials which are neither metallic, nor semiconducting. A large portion of this chapter deals with materials which have proved their worth in actual processes, e.g., carbon and graphite, and another part describes new materials that may prove of much value to the scientist and technologist in the near future.

Keywords

Oxygen Reduction Reaction Oxygen Reduction Tungsten Carbide Graphite Electrode Pyrolytic Graphite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. L. Spain, A. R. Ubbelohde, and D. A. Young, Electronic properties of well oriented graphite, Philos. Trans. R. Soc. London Ser. A. 262, 345–386 (1967).CrossRefGoogle Scholar
  2. 2.
    P. L. Walker, Jr, ed., Chemistry and Physics of Carbon, Vols. 1–7,Marcel Dekker, New York (1965–1971); P. L. Walker, Jr. and P. A. Thrower, eds., Chemistry and Physics of Carbon,Vols. 8–12,Marcel Dekker, New York (1973–1975).Google Scholar
  3. 3.
    A. Pacault, ed., Les Carbones, Vols. 1 and 2,Masson, Paris (1965) Google Scholar
  4. 4.
    L. C. F. Blackman, ed., Modern Aspects of Graphite Technology, Academic Press, London (1970).Google Scholar
  5. 5. C L. Mantell, Carbon and Graphite Handbook,Wiley-Interscience, New York (1968) Google Scholar
  6. 6.
    I. L. Spain, in Chemistry and Physics of Carbon, Vol. 8, P. L. Walker, Jr. and P. A. Thrower, eds., Marcel Dekker, New York (1973), pp. 1–150.Google Scholar
  7. 7.
    C. A. Klein, Electrical properties of pyrolytic graphites, Rev. Mod. Phys. 34, 72–79 (1962); C. A. Klein, Pyrolytic graphites: their description as semimetallic molecular solids, J. Appl. Phys 33, 3338–3357 (1962).CrossRefGoogle Scholar
  8. 8.
    J. P. Randin, inEncyclopedia of Electrochemistry of the Elements Vol. 7A. J. Bard, ed., Marcel Dekker, New York (1976) pp. 1–291.Google Scholar
  9. 9.
    J. van Muylder and M. Pourbaix, in Atlas d’équilibres électrochimiques, M. Pourbaix, ed., Gauthier-Villars, Paris (1963), pp. 449–457.Google Scholar
  10. 10.
    A. W. Moore, in Chemistry and Physics of CarbonVol. 11, P. L. Walker, Jr. and P. A. Thrower, eds., Marcel Dekker, New York (1973) pp. 69–187.Google Scholar
  11. 11.
    G. R. Hennig, in Proceedings of the 5th Conference on Carbon, 1961, Vol. 1, Pergamon Press, Oxford (1962), pp. 143–145.Google Scholar
  12. 12.
    G. L. Montet, in Proceedings of the 5th Conference on Carbon, 1961, Vol. 1, Pergamon Press, Oxford (1962), pp. 116–119.Google Scholar
  13. 13.
    J. J. Lander and J. Morrison, Low-energy electron diffraction study of graphite, J. Appl. Phys 35, 3593–3598 (1964).CrossRefGoogle Scholar
  14. 14.
    J. M. Thomas, E. L. Evans, M. Barber, and P. Swift, Determination of the occupancy of valence bands in graphite, diamond and less-ordered carbons by X-ray photo-electron spectroscopy, Trans. Faraday Soc 67 1875–1886 (1971) Google Scholar
  15. 15.
    M. Barber, R. L. Evans, and J. M. Thomas, Oxygen chemisorption on the basal faces of graphite: an XPS study, Chem. Phys. Lett 18, 423–425 (1973).CrossRefGoogle Scholar
  16. 16.
    H. H. Bauer, M. S. Spritzer, and P. J. Elving, Double-layer capacity at a pyrolytic graphite disk electrode, J. Electroanal. Chem 17, 299–307 (1968).CrossRefGoogle Scholar
  17. 17.
    J. P. Randin and E. Yeager, Differential capacitance study of stress-annealed pyrolytic graphite electrode, J. Electrochem. Soc 118, 711–714 (1971).CrossRefGoogle Scholar
  18. 18.
    J. P. Randin and E. Yeager, Differential capacitance study on the basal plane of stress-annealed pyrolytic graphite, J. Electroanal. Chem 36, 257–276 (1972).CrossRefGoogle Scholar
  19. 19.
    I. Morcos, Electrocapillary phenomena at the stress-annealed pyrolytic graphite electrode, J. Phys. Chem 76, 2750–2753 (1972).CrossRefGoogle Scholar
  20. 20.
    S. Ergun, J. B. Yasinsky, and J. R. Townsend, Transverse and longitudinal optical properties of graphite, Carbon (Oxford) 5, 403–408 (1967).CrossRefGoogle Scholar
  21. 21.
    J. P. Randin and E. Yeager, Effect of boron addition on the differential capacitance of stress-annealed pyrolytic graphite, J. Electroanal. Chem 54, 93–100 (1974).CrossRefGoogle Scholar
  22. 22.
    I. Morcos, Surface tension of stress-annealed pyrolytic graphite, J. Chem. Phys 57, 1801–1802 (1972).CrossRefGoogle Scholar
  23. 23.
    R. N. Smith, The chemistry of carbon-oxygen surface compunds, Q. Rev. Chem. Soc 13, 287–305 (1959).CrossRefGoogle Scholar
  24. 24.
    H. P. Boehm, in Advances in Catalysis, Vol. 16, D. D. Eley, M. Pines, and P. B. Weisz, eds., Academic Press, New York (1966), pp. 179–274.Google Scholar
  25. 25.
    H. P. Boehm, Functional groups on the surfaces of solids, Angew. Chem. Int. Ed 5, 533–544 (1966).CrossRefGoogle Scholar
  26. 26 J. B. Donnet, The chemical reactivity of carbons, Carbon (Oxford) 6, 161–176 (1968) Google Scholar
  27. 27.
    J. B. Donnet, Surface chemical groups, Bull. Soc. Chim. Fr. 1970, 3353–3366.Google Scholar
  28. 28.
    B. R. Puri, in Chemistry and Physics of Carbon, Vol. 6, P. L. Walker, Jr., ed., Marcel Dekker, New York (1970), pp. 191–282.Google Scholar
  29. 29.
    J. S. Mattson and H. B. Mark, Jr., Activated Carbon, Marcel Dekker, New York (1971).Google Scholar
  30. 30.
    V. L. Snoeyink and W. J. Weber, Jr., in Progress in Surface and Membrane Science, Vol. 5, D. F. Danielli, M. D. Rosenberg, and D. A. Cadenhead, eds., Academic Press, New York (1972), pp. 63–119.Google Scholar
  31. 31.
    R. E. Panzer and P. J. Elving, Nature of the surface compounds and reactions observed on graphite electrodes, Electrochim. Acta 20, 635–647 (1975).CrossRefGoogle Scholar
  32. 32.
    H. P. Boehm, E. Diehl, W. Heck, and R. Sappok, Surface oxides of carbon, Angew. Chem. Int. Ed 3, 669–677 (1964).CrossRefGoogle Scholar
  33. 33.
    J. V. Hallum and H. V. Drushel, The organic nature of carbon black surfaces, J. Phys. Chem 62, 110–117 (1958).CrossRefGoogle Scholar
  34. 34.
    K. Kinoshita and J. A. S. Bett, Potentiodynamic analysis of surface oxides on carbon blacks, Carbon (Oxford) 11, 403–411 (1973).CrossRefGoogle Scholar
  35. 35.
    H. P. Boehm, E. Diehl, and W. Heck, Oberflächenoxyde bei Russ und anderen Kohlenstoffen, Rev. Gen. Caoutchouc 41, 461–466 (1964).Google Scholar
  36. 36.
    V. A. Garten, D. E. Weiss, and J. B. Willis, A new interpretation of the acidic and basic structures in carbons—I. Lactone groups of the ordinary and fluorescein types in carbons, Aust. J. Chem 10, 295–328 (1957).CrossRefGoogle Scholar
  37. 37.
    B. Bruns and A. Frumkin, The relation between the ability of activated charcoal to adsorb electrolytes and the kind of gas with which it is charged, I, Z. Phys. Chem. (Leipzig) A141, 141–157 (1929); R. Burshtein and A. Frumkin, II, Z. Phys. Chem. (Leipzig) A141, 158–166 (1929); R. Burshtein and A. Frumkin, The behavior of outgassed activated carbon toward electrolytes, Z. Phys. Chem. (Leipzig) A141, 219–220 (1929); A. Frumkin, Ueber die Adsorption von Elektrolyten durch aktivierte Kohle, Kolloid. Z. 51, 123–129 (1930); E. Kuchinsky, R. Burshtein, and A. Frumkin, Adsorption of electrolytes on charcoal, Acta Phys. Chim. URSS 12, 795–830 (1940); R. Burshtein and A. Frumkin, Hydrogen peroxide formation in the adsorption of acids by activated charcoal, C.R. Acad. Sci. URSS 32, 327–329 (1941); A. N. Frumkin, E. A. Ponomarenko, and R. Kh. Burshtein, The chemisorption of oxygen and the adsorption of electrolytes on activated carbon, Dokl. Akad. Nauk SSSR 149, 1123–1126 (1963); R. Kh. Burshtein and E. A. Ponomarenko, The mechanism of the adsorption of electrolytes on charcoal, Russ. J. Phys. Chem 39, 140–142 (1965).Google Scholar
  38. 38.
    V. A. Garten and D. E. Weiss, A new interpretation of the acidic and basic structures in carbons, II. The chromene–carbonium ion couple in carbon, Aust. J. Chem 10, 309–328 (1957).CrossRefGoogle Scholar
  39. 39.
    A. P. Brown, C. Koval, and F. C. Anson, Illustrative electrochemical behavior of reactants irreversibly adsorbed on graphite electrode surfaces, J. Electroanal. Chem 72, 379–387 (1976).CrossRefGoogle Scholar
  40. 40.
    K. F. Blurton, An electrochemical investigation of graphite surfaces, Electrochim. Acta 18, 869–875 (1973).CrossRefGoogle Scholar
  41. 41.
    J. P. Randin and E. Yeager, Differential capacitance study on the edge orientation of pyrolytic graphite and glassy carbon electrodes, J. Electroanal. Chem 58, 313–322 (1975).CrossRefGoogle Scholar
  42. 42.
    S. Evans, Differential capacity measurements at carbon electrodes, J. Electrochem. Soc 113, 165–168 (1966).CrossRefGoogle Scholar
  43. 43.
    E. G. Gagnon, The triangular voltage sweep method for determining double-layer capacity of porous electrodes, IV, Porous carbon in potassium hydroxide, J. Electrochem. Soc 122, 521–525 (1975).CrossRefGoogle Scholar
  44. 44.
    J. McHardy, J. M. Baris, and P. Stonehart, Investigations of hydrophobic porous electrodes—I. Differential capacitance by a low frequency a.c. impedance technique, J. Appl. Electrochem 6, 371–376 (1976).CrossRefGoogle Scholar
  45. 45.
    L. N. Mokrousov, N. A. Urisson, and G. V. Shteinberg, Hydrophobic properties of carbon materials studied by the charging curve method, Elektrokhimiya 9, 683–685 (1973).Google Scholar
  46. 46.
    A. Softer and M. Folman, The electrical double layer of high surface porous carbon electrode, J. Electroanal. Chem 38, 25–43 (1972).CrossRefGoogle Scholar
  47. 47.
    C. M. Elliott and R. W. Murray, Chemically modified carbon electrodes, Anal. Chem. 48, 1247–1254 (1976); B. F. Watkins, J. R. Behling, E. Kariv, and L. L. Miller, A chiral electrode, J. Am. Chem. Soc. 97, 3549–3550 (1975); B. E. Firth, L. L. Miller, M. Mitani, T. Rogers, J. Lennox, and R. W. Murray, Anodic and cathodic reactions on a chemically modified edge surface of graphite, J. Am. Chem. Soc 98, 8271–8272 (1976).CrossRefGoogle Scholar
  48. 48.
    J. O. Besenhard and H. P. Fritz, On the reversibility of the electrochemical oxidation of graphite in acids, Z. Anorg. Allg. Chem 416, 106–116 (1975).CrossRefGoogle Scholar
  49. 49.
    R. C. Croft, Lamellar compounds of graphite, Q. Rev. Chem. Soc 14, 1–45 (1960).CrossRefGoogle Scholar
  50. 50.
    a) I. Ya. Sirak, Testing graphite anodes used in alkali-chlorine cells, Zh. Prikl. Khim. 6, 808–822 (1933); (b) V. Sihvonen, The primary process in the oxidation of graphite, Z. Elektrochem. 40, 456–460 (1934); (c) V. Sihvonen, The mechanism of oxidation of carbon, Ann. Acad. Sci. Fennicae A51(4), 1–40 (1938); (d) H. Thiele, Ueber die Quellung von Graphit, Z. Anorg. Allg. Chem. 206, 407–415 (1932); (e) H. Thiele, Die Quellung des Graphit an der Anode und die mechanische Zerstörung von Kohlenanoden, Z. Elektrochem. 40, 26–33 (1934); (f) H. Thiele, The oxidation of carbon in electrolytes at normal temperature, Trans. Faraday Soc. 34, 1033–1039 (1938); (g) H. Thiele and E. Weise, Graphit als Anode, Z. Elektrochem 55, 193–199 (1951).Google Scholar
  51. 51.
    G. N. Kokhanov and N. G. Milova, Influence of pH on the process of anodic oxidation of graphite, Elektrokhimiya 5, 93–96 (1969).Google Scholar
  52. 52.
    G. N. Kokhanov and N. G. Milova, Effect of pH on the kinetics of oxygen evolution on a graphite anode, Elektrokhimiya 6, 73–77 (1970).Google Scholar
  53. 53.
    G. N. Kokhanov, Anodic evolution of oxygen on graphite, Elektrokhimiya ‘7, 1606–1609 (1971).Google Scholar
  54. 54.
    N. G. Bardina and L. I. Krishtalik, Kinetics of oxygen generation on graphite at low anode potentials, Elektrokhimiya 2, 216–221 (1966).Google Scholar
  55. 55.
    N. G. Bardina and L. I. Krishtalik, The kinetics of the anodic evolution of oxygen on graphite, Elektrokhimiya 2, 334–339 (1966).Google Scholar
  56. 56.
    Ngo Dai Viet, D. V. Kokoulina, and L. I. Krishtalik, Electrochemical oxidation of a graphite anode—I. Polarization behavior of the anode as a function of solution composition and temperature, Elektrokhimiya 8, 221–224 (1972).Google Scholar
  57. 57.
    Ngo Dai Viet, D. V. Kokoulina, and L. I. Krishtalik, Electrochemical oxidation of a graphite anode—II. State of the anode surface, Elektrokhimiya 8, 225–228 (1972).Google Scholar
  58. 58.
    Ngo Tai Piet, D. V. Kokoulina, and L. I. Krishtalik, Electrochemical oxidation of the graphite anode—III. Composition of the anodic products as a function of the surface state of the anode and of its polarization characteristics, Elektrokhimiya 8, 384–387 (1972).Google Scholar
  59. 59.
    D. Laser and M. Ariel, The anodic behavior of glassy carbon in acid solution. A spectroelectrochemical study, J. Electroanal. Chem 52, 291–303 (1974).CrossRefGoogle Scholar
  60. 60.
    R. G. Erenburg and L. I. Krishtalik, Investigation of the kinetics of the anodic evolution of chlorine on nonporous graphite, Elektrokhimiya 4, 923–929 (1968).Google Scholar
  61. 61.
    M. Franz and A. L. Rotinyan, Overvoltage during chlorine evolution at pyrographite, Elektrokhimiya 5, 925–928 (1969).Google Scholar
  62. 62.
    L. J. J. Janssen and J. G. Hoogland, The electrolysis of an acidic NaCl solution with a graphite anode. III. Mechanism of chlorine evolution, Electrochim. Acta 15, 941–951 (1970).CrossRefGoogle Scholar
  63. 63.
    F. Hine, M. Yasuda, and M. Iwata, Chlorine and oxygen electrode processes on glasslike carbon, pyrolytic graphite, and conventional graphite anodes, J. Electrochem. Soc 121, 749–756 (1974).CrossRefGoogle Scholar
  64. 64.
    F. Hine and M. Yasuda, Studies on the mechanism of the chlorine electrode process, J. Electrochem. Soc 121, 1289–1294 (1974).CrossRefGoogle Scholar
  65. 65.
    L. I. Krishtalik and Z. A. Rotenberg, Overpotential of the anodic evolution of chlorine on graphite. I. Influence of pH, Zh. Fiz. Khim 39, 328–334 (1965).Google Scholar
  66. 66.
    L. I. Krishtalik and Z. A. Rotenberg, Overpotential of the anodic evolution of chlorine on graphite. II. Kinetic relations in various potential ranges, Zh. Fiz. Khim 39, 907–912 (1965).Google Scholar
  67. 67.
    G. N. Kokhanov and L. A. Khanova, Influence of pH on the combustion of a graphite anode in the simultaneous discharge of chlorine and oxygen at 40°C, Elektrokhimiya 6, 1492–1496 (1970).Google Scholar
  68. 68.
    G. N. Kokhanov and L. A. Khanova, Dependence of the wear of a graphite anode in a chlorine electrolysis vessel on the conditions of electrolysis, Elektrokhimiya 8, 1159–1162 (1972).Google Scholar
  69. 69.
    L. J. J. Janssen and J. G. Hoogland, Electrolysis of acidic NaCI solution with a graphite anode—I. The graphite electrode, Electrochim. Acta 14, 1097–1108 (1969); II. Atomic chlorine present in a graphite electrode, Electrochim. Acta 15, 339–351 (1970); IV. Chlorine evolution at a graphite electrode after switching off current, Electrochim. Acta 15, 16671676 (1970).Google Scholar
  70. 70.
    L. J. J. Janssen, The mechanism of the chlorine evolution on different types of graphite anodes during the electrolysis of an acidic NaCI solution, Electrochim. Acta 19, 257–265 (1974).CrossRefGoogle Scholar
  71. 71.
    A. T. Kuhn, in Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971), pp. 89–126.Google Scholar
  72. 72.
    L. E. Vaaler, Graphite-electrolytic anodes, Electrochem. Technol 5, 170–174 (1967).Google Scholar
  73. 73.
    J. H. Entwisle, Consumption of graphite anodes in chlorine manufacture by brine electrolysis, J. Appl. Electrochem 4, 293–303 (1974).CrossRefGoogle Scholar
  74. 74.
    L. I. Krishtalik, G. L. Melikova, and E. G. Kalinina, Investigation of the effect of electrolysis conditions on the stability of graphite electrodes in the chlorine cell, Zh. Prikl. Khim 34, 1543–1547 (1961).Google Scholar
  75. 75.
    M. M. Flisskii, I. E. Veselovskaya, and R. V. Dzhagatspanyan, Breakdown of graphite anodes in electrolysis of sodium chloride in presence of sulfate ions, Zh. Prikl. Khim. 33, 1901–1903 (1960); M. M. Flisskii, I. E. Veselovskaya, R. V. Dzhagatspanyan, and O. V. Chernyayskaya, Investigations of the anode process on graphite in the electrolysis of sodium chloride in presence of sulfate ions, Zh. Prikl. Khim. 34, 2483–2487 (1961); I. E. Veselovskaya, M. M. Flisskii, R. V. Dzhagatspanyan, and L. V. Morochko, An investigation of the adsorption of sulfate ions on a graphite anode during electrolysis involving chlorine production, Zh. Prikl. Khim. 36, 2179–2183 (1963); B. Wallen and G. Wranglen, Influence of pH and sulfate content of the solution on the corrosion of graphite anodes in alkali chloride electrolysis, Electrochim. Acta 10, 43–48 (1965).CrossRefGoogle Scholar
  76. 76.
    A. L. Goldinov, M. A. Gorovits, and G. G. Smirnova, Wear of graphite anodes during electrolysis of sodium chloride solutions with the use of mercury cathodes, Zh. Prikl. Khim 46, 1249–1253 (1973).Google Scholar
  77. 77.
    F. Hine, M. Yasuda, I. Sugiura, and T. Noda, Effects of the active chlorine and the pH on consumption of graphite anode in chlor-alkali cells, J. Electrochem. Soc 121, 220–225 (1974).CrossRefGoogle Scholar
  78. 78.
    A. Tasch, L. E. Vaaler, and J. M. Finn, Jr., A laboratory cell for testing anode materials, J. Electrochem. Soc 117, 219–222 (1970).CrossRefGoogle Scholar
  79. 79.
    A. T. Kuhn and P. M. Wright, in Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971), pp. 525–574.Google Scholar
  80. 80.
    Ngo Tai Piet, D. V. Kokoulina, and L. I. Krishtalik, Wear of graphite anodes in industrial electrolysis, Elektrokhimiya 8, 387–390 (1972).Google Scholar
  81. 81.
    M. M. Jasic, The effect of pH on graphite wear in a chlorate cell process, J. Appl. Electrochem 3, 219–225 (1973).CrossRefGoogle Scholar
  82. 82 B. M. Bulygin, Chemical and mechanical destruction of graphite anodes under various conditions of hydroxyl ion discharge, J. Appl. Chem. USSR 31 1821–1825 (1958); B. M. Bulygin, Influence of electrolyte composition on the distribution of current inside a graphite anode and on its internal wear, J. Appl. Chem. USSR 32 122–128 (1959); B. M. Bulygin, Alteration of the structure of an anode surface in the course of destruction, J. Appl. Chem. USSR 32,521–527 (1959); E. M. Kuchinskii, N. P. Lipikhin, and M. M. Flisskii, A study of the porous structure of graphite electrodes, J. Appl. Chem. USSR 37,468–470 (1964); D. V. Kokoulina and L. I. Krishtalik, Distribution of current and composition of the electrolyte along the depth of a porous graphite electrode in reactions of anodic liberation of oxygen and chlorine, Elektrokhimiya 3,848–855 (1967).Google Scholar
  83. 83.
    M. M. Flisskii, Structure of graphite electrodes used in electrolysis of sodium chloride, J. Appl. Chem. USSR 38, 2738–2740 (1965).Google Scholar
  84. 84.
    V. V. Stender and O. S. Ksenzhek, Graphitized anodes in the electrolysis of aqueous chloride solutions, J. Appl. Chem. USSR 32, 111–121 (1959); W. A. Nystrom, Electrolytic degradation and electrode structure, J. Electrochem. Soc 116, 17–24 (1969).Google Scholar
  85. 85.
    W. G. Berl, A reversible oxygen electrode, Trans. Electrochem. Soc 83, 253–270 (1943).CrossRefGoogle Scholar
  86. 86.
    E. Yeager, P. Krouse, and K. V. Rao, The kinetics of the oxygen-peroxide couple on carbon, Electrochim. Acta 9, 1057–1070 (1964).Google Scholar
  87. 87.
    V. V. Sysoeva, N. N. Storchak, E. N. Smirnova, and V. I. Gants, Cathodic reduction of oxygen on carbon electrodes in KOH solution, Zh. Prikl. Khim 42, 1098–1104 (1969).Google Scholar
  88. 88.
    E. Berl, A new cathodic process for the production of H2O2, Trans. Electrochem. Soc 76, 359–369 (1939).CrossRefGoogle Scholar
  89. 89.
    G. Bianchi, Contribution expérimentale à la connaissance des phénomènes de réduction cathodique de l’oxygène et de l’eau oxygénée, Corros. Anticorros 5, 146–152 (1957).Google Scholar
  90. 90.
    M. O. Davies, M. Clark, E. Yeager, and F. Hovorka, The oxygen electrode—I. Isotopic investigation of electrode mechanisms, J. Electrochem. Soc 106, 56–61 (1959).CrossRefGoogle Scholar
  91. 91.
    M. R. Tarasevich, F. Z. Sabirov, A. P. Mertsalova, and R. Kh. Burshtein, Ionization of oxygen on pyrographite in alkaline solutions, Elektrokhimiya 4, 432–437 (1968).Google Scholar
  92. 92.
    F. Z. Sabirov and M. R. Tarasevich, Kinetics of oxygen ionization on pyrographite and glassy carbon in acid and alkaline solutions, Elektrokhimiya 5, 608–611 (1969).Google Scholar
  93. 93.
    M. R. Tarasevich and F. Z. Sabirov, Kinetics of ionization of oxygen on pyrographite in alkaline solutions, Elektrokhimiya 5, 643–649 (1969).Google Scholar
  94. 94.
    F. Z. Sabirov, M. R. Tarasevich, and R. Kh. Burshtein, Mechanism of oxygen reduction on pyrographite in acidic solutions, Elektrokhimiya 6, 1130–1133 (1970).Google Scholar
  95. 95.
    M. R. Tarasevich, F. Z. Sabirov, and R. Kh. Burshtein, Mechanism of electrochemical reduction of oxygen on pyrographite, Elektrokhimiya 7, 404–407 (1971).Google Scholar
  96. 96.
    I. Morcos and E. Yeager, Kinetic study of the oxygen-peroxide couple on pyrolytic graphite, Electrochim. Acta 15, 953–975 (1970).CrossRefGoogle Scholar
  97. 97.
    M. Brezina and A. Hofmanova, Study of the electrochemical reduction of oxygen on glassy carbon in an alkaline medium, Collect. Czech. Chem. Commun 38, 985–993 (1973).CrossRefGoogle Scholar
  98. 98.
    R. J. Taylor and A. A. Humffray, Electrochemical studies on glassy carbon electrodes. II. Oxygen reduction in solutions of high pH (pH 10), J. Electroanal. Chem. 64, 63–84 (1975); III. Oxygen reduction in solutions of low pH (pH 0 10), J. Electroanal. Chem. 64, 85–94 (1975); IV. Influence of solution pH and buffer capacity on reduction of oxygen, J. Electroanal. Chem 64, 95–105 (1975).CrossRefGoogle Scholar
  99. 99.
    M. Brezina and A. Hofmanova-Matejkova, Electrochemical generation of superoxide ion on carbon paste electrodes, J. Electroanal. Chem 44, 460–462 (1973).CrossRefGoogle Scholar
  100. 100.
    E. Yeager and A. Kozawa, in Sixth AGARD Combustion and Propulsion Colloquium, Cannes, March 16–20, 1964, Pergamon Press, Oxford (1965), pp. 769–793.Google Scholar
  101. 101.
    K. Kordesch, in Fuel Cells, W. Mitchell, ed., Academic Press, New York (1963), pp. 329–370.Google Scholar
  102. 102.
    K. Kordesch, Hydrogen-air/lead battery hybrid system for vehicle propulsion, J. Electrochem. Soc. 118, 812–817 (1971); K. Kordesch, in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Plenum Press, New York (1975), pp. 339–443.Google Scholar
  103. 103.
    K. V. Kordesch, in Handbook of Fuel Cell Technology, C. Berger, ed., Prentice-Hall, Englewood Cliffs, New Jersey (1968), pp. 359–421.Google Scholar
  104. 104.
    J. Mrha, Study of catalysts for fuel cell electrodes, IV. Active carbon electrodes for oxygen in alkaline electrolytes, Collect. Czech. Chem. Commun 32, 708–719 (1967).CrossRefGoogle Scholar
  105. 105.
    H. Böhm, Sauerstroffelektroden für elektrochemische Zellen, Wiss. Ber. AEG-Telefunken 43, 241–245 (1970).Google Scholar
  106. 106.
    A. Schmid, Die Diffusion-Gas-Elektrode, Enke Verlag, Stuttgart (1923); Diffusion Gas Elektrodes, Heiv. Chim. Acta 7, 370–373 (1924).CrossRefGoogle Scholar
  107. 107.
    J. O’M. Bockris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill, New York (1969), Chap. 5, pp. 230–288.Google Scholar
  108. 108.
    V. Vielstich, Fuel Cells, Modern Processes for the Electrochemical Production of Energy, translated by D. J. G. Ives, Wiley, London (1970).Google Scholar
  109. 109.
    J. Thonstad, Double-layer capacity of graphite in cryolite-alumina melts and surface area changes by electrolyte consumption of graphite and baked carbon, J. Appl. Electrochem 2, 315–319 (1973).CrossRefGoogle Scholar
  110. 110.
    S. I. Rempel and L. P. Khodak, The mechanism for origin of overvoltage on the carbon anode in cryolite-alumina melts, J. Appl. Chem. USSR 26, 857–865 (1953).Google Scholar
  111. 111.
    J. Thonstad, The electrode reaction on the C, CO2 electrode in cryolite-alumina melts. II. Impedance measurements, Electrochim. Acta 15, 1581–1595 (1970).CrossRefGoogle Scholar
  112. 112.
    P. Drossbach and T. Hashino, Die Anodenvorgänge bei der Elektrolyse von in Kryolith gelöster Tonerde, II, J. Electrochem. Soc. Jpn 33, 229–246 (1965).Google Scholar
  113. 113.
    M. M. Vetyukov and F. Akgva, Impedance of a carbon anode in a cryolite-alumina melt, Elektrokhimiya 6, 1886–1889 (1970); Relationship of vitreous carbon electric double-layer capacitance to cryolite-alumina melt composition, Tsvet. Metal 43, 27–28 (1970).Google Scholar
  114. 114.
    N. G. Bukun and N. S. Tkacheva, The double-layer capacity of a graphite electrode in molten chlorides, Elektrokhimiya 5, 596–598 (1969).Google Scholar
  115. 115.
    T. Berge and R. Tunold, The chlorine/carbon electrode in a silver chloride melt in the temperature range 475–820°C. II. The double-layer capacitance of a carbon electrode in the silver chloride melt, Electrochim. Acta 19, 483–484 (1974).CrossRefGoogle Scholar
  116. 116.
    A. G. Graves and D. Inman, The electrical double layer in molten salts, Part 2. The double-layer capacitance, J. Electroanal. Chem 25, 357–372 (1970).CrossRefGoogle Scholar
  117. 117.
    T. G. Pearson and J. Waddington, Electrode reactions in the aluminum reduction cell, Discuss. Faraday Soc 1, 307–320 (1947).CrossRefGoogle Scholar
  118. 118.
    T. G. Pearson, The Chemical Background of the Aluminum Industry, The Royal Institute of Chemistry, London (1955).Google Scholar
  119. 119.
    J. Thonstad, On the anode gas reactions in aluminum electrolysis, II, J. Electrochem. Soc 111, 959–965 (1964).CrossRefGoogle Scholar
  120. 120.
    J. Thonstad, The electrode reaction on the C, CO2 electrode in cryolite-alumina melts. I. Steady-state measurements, Electrochim. Acta 15, 1569–1580 (1970).CrossRefGoogle Scholar
  121. 121.
    P. A. Malachesky, in Encyclopedia of Electrochemistry of the Elements, Vol. 6, A. J. Bard, ed., Marcel Dekker, New York (1976), pp. 63–165.Google Scholar
  122. 122.
    E. W. Dewing and E. Th. van der Kouwe, Anodic phenomena in cryolite-alumina melts. I. Overpotentials at graphite and baked carbon electrodes, J. Electrochem. Soc 122, 358–363 (1975).CrossRefGoogle Scholar
  123. 123.
    E. W. Dewing, The chemistry of the alumina reduction cell, Can. Metall. O 13, 607–618 (1974).CrossRefGoogle Scholar
  124. 124.
    M. M. Vetyukov and R. G. Chuvilyaev, Anodic processes during electrolysis of cryolite-alumina melts, Izv. Vyssh. Ucheb. Zaved. Tsvet. Met. 8, 65–71 (1965); P. Drossbach and T. Hashino, Die Anodenvorgänge bei der Elektrolyse von in Kryolith gelöster Tonerde. I, J. Electrochem. Soc. Jpn. 33, 101–130 (1965; N. E. Richards and B. J. Welch, in Proceedings of the First Australian Conference on Electrochemistry, Sydney, February 13–15, 1963, Pergamon Press, Oxford (1964), pp. 901–922; R. G. Chuvilyaev, Mechanism of the anode process during the electrolysis of cryolite-aluminum oxide melts, Tr. Leningrad Politekhn. Inst. 272, 79–84 (1967).Google Scholar
  125. 125.
    J. Thonstad, Critical current densities in cryolite-alumina melts, Electrochim. Acta 12, 1219–1226 (1967).CrossRefGoogle Scholar
  126. 126.
    J. Thonstad, Chronopotentiometric measurements on graphite anodes in cryolite-alumina melts, Electrochim. Acta 14, 127–134 (1969); J. Thonstad, A. Solbu, and A. Larsen, The decomposition voltage of aluminum reduction cells. The influence of the alumina content in the bath, J. Appl. Electrochem. 1, 261–268 (1971); J. Thonstad, F. Nordmo, and K. Vee, On the anode effect in cryolite-alumina melts. I. Electrochim. Acta 18, 27–32 (1973); J. Thonstad, F. Nordmo, and J. K. Rodseth, On the anode effect in cryolite-alumina melts. II. The initiation of the anode effect, Electrochim. Acta 19, 761–769 (1974).CrossRefGoogle Scholar
  127. 127.
    M. L. Kronenberg, Gas depolarized graphite anodes for aluminum electrowinning, J. Electrochem. Soc 116, 1160–1164 (1969).CrossRefGoogle Scholar
  128. 128.
    V. L. Bullough, L. O. Daley, and C. J. McMinn, Aluminum cell cathodes, Electrochem. Technol 5, 182–185 (1967).Google Scholar
  129. 129.
    A. J. Arvia and W. E. Triaca, Electrolysis of molten nitrates on graphite electrodes: kinetics of the anodic reaction, Electrochim. Acta 11, 975–986 (1966); M. G. Sustersic, W. E. Triaca, and A. J. Arvia, Potentiodynamic behavior of graphite and platinum electrodes in molten sodium nitrate—potassium nitrate eutectic, Electrochim. Acta 19, 1–17 (1974).CrossRefGoogle Scholar
  130. 130. A. J. Arvia, W. E. Triaca, and H. A. Videla, Kinetics and mechanism of the electrochemical oxidation of graphite in bisulfate melts Electrochim. Acta 159–24 (1970) Google Scholar
  131. 131.
    A. R. Ubbelohde and F. A. Lewis, Graphite and Its Crystal Compounds, Oxford University Press, London (1960), p. 163.Google Scholar
  132. 132.
    A. J. Rudge, in Industrial Electrochemical Processes, A. T. Kuhn, ed., Elsevier, Amsterdam (1971), pp. 1–69.Google Scholar
  133. 133.
    N. Watanabe, M. Inoue, and S. Yoshizawa, Electrode kinetics on the fluorine evolution, J. Electrochem. Soc. Jpn 31, 168–173 (1963).Google Scholar
  134. 134.
    A. J. Arvia and J. B. de Cusminsky, Kinetics of the electrochemical formation of fluorine at carbon electrodes, Trans. Faraday Soc. 58, 1019–1032 (1962); Galvanostatic studies on fluorine evolution on carbon electrodes, J. Chem. Phys 36, 1089–1090 (1962).CrossRefGoogle Scholar
  135. 135.
    N. Watanabe, M. Ishii, and S. Yoshizawa, Studies on the preparation of fluorine and its compounds. III. Relations between the wettability of anode and the anodic polarization in the electrolytic generation of fluorine, J. Electrochem. Soc. Jpn. 29, E180—E186 (1961); N. Watanabe, Y. Koyama, and S. Yoshizawa, Studies on the preparation of fluorine and its compounds. VIII. The formation reaction of graphite fluoride, J. Electrochem. Soc. Jpn 32, 17–25 (1964).Google Scholar
  136. 136.
    H. Imoto, T. Nakajima, and N. Watanabe, A study of the anode effect in KF-2HF system. I. ESCA spectra of carbon and graphite anode surfaces, Bull. Chem. Soc. Jpn 48, 1633–1634 (1975).CrossRefGoogle Scholar
  137. 137.
    H. Imoto and N. Watanabe, A study of the anode effect in KF-2HF system. II. Difference in anodic behavior between edge plane and layer plane of pyrolytic graphite, Bull. Chem. Soc. Jpn 49, 1736–1739 (1976).CrossRefGoogle Scholar
  138. 138.
    W. Rüdorff, U. Hofmann, G. Rüdorff, J. Endell, and G. Ruess, Ueber die Störungen an Graphitanoden bei der elektrolytischen Fluordarstellung, Z. Anorg. Allg. Chem 256, 125–144 (1948).CrossRefGoogle Scholar
  139. 139.
    N. Watanabe and Y. Kanaya, Anode effect in fused salt electrolysis, Denki Kagaku 39, 139–147 (1971).Google Scholar
  140. 140.
    W. E. Triaca, C. Solomons, and J. O’M. Bockris, The mechanism of the electrolytic evolution and dissolution of chlorine on graphite, Electrochim. Acta 13, 1949–1964 (1968).CrossRefGoogle Scholar
  141. 141.
    P. Dossbach and H. Hoff, Chlorine overvoltage on graphite electrodes during electrolysis of fused chlorides, Electrochim. Acta 14, 89–100 (1969).CrossRefGoogle Scholar
  142. 142.
    R. Tunold, H. M. Boe, K. A. Paulsen, and J. O. Yttredal, Chlorine evolution on graphite anodes in a sodium chloride—silver chloride melt, Electrochim. Acta 16, 2101–2120 (1971).CrossRefGoogle Scholar
  143. 143.
    Yu. I. Aleksandrov and V. P. Mashovets, Wettability of the graphite electrode in molten chlorides, Zh. Prikl. Khim. 39 2591–2596 (1966); V. P. Mashovets and Yu. I. Aleksandrov, Influence of the nature of the gas on the anode effect in molten NaCI, Zh. Prikl. Khim. 43811–815 (1970); Y. Kanaya and N. Watanabe, Theoretical analysis of the anode effect in chloride melts, Denki Kagaku 40, 417–421 (1972); 41, 267–271 (1973).Google Scholar
  144. 144.
    P. Drossbach and P. Krahl, Zur Kenntnis des Anodeneffekts, II, Z. Elektrochem. 62, 178–180 (1958); R. Tunold and T. Berge, The anode effect in a silver chloride/sodium chloride melt, Electrochim. Acta 19, 849–854 (1974).CrossRefGoogle Scholar
  145. 145.
    G. L. Holleck, The reduction of chlorine on carbon in AlC13—KC1—NaC1 melts, J. Electrochem. Soc 119, 1158–1161 (1972).CrossRefGoogle Scholar
  146. 146.
    T. Ya. Kosolapova, Carbides, Properties, Production and Application, Plenum Press, New York (1971); W. S. Williams, in Progress in Solid State Chemistry, Vol. 6, H. Reiss and J. O. McCaldin, eds., Pergamon Press, Oxford (1971), pp. 57–118; H. H. Hausner and M. G. Bowman, eds., Fundamentals of Refractory Compounds, Plenum Press, New York (1968); E. K. Storms, The Refractory Carbides, Academic Press, New York (1967); H. J. Goldschmidt, Interstitial Alloys, Plenum Press, New York (1967); P. T. B. Shaffer, High Temperature Materials, Vol. 1, Materials Index, Plenum Press, New York (1964); G. V. Samsonov, Refractory Transition Metal Compounds, Academic Press, New York (1964); G. V. Samsonov, Handbook of High-Temperature Materials, Plenum Press, New York (1964); R. Kieffer and F. Benesovsky, Hartstoffe, Springer, Vienna (1963); P. Schwarzkopf and R. Kieffer, Refractory Hard Metals, Macmillan, New York (1953).Google Scholar
  147. 147.
    R. Ward, in MTP International Review of Science, Inorganic Chemistry Series One, Vol. 5, Transition Metals, Part 1, D. W. A. Sharp, ed., Butterworths, London (1972), pp. 93–174.Google Scholar
  148. 148.
    B. Aronsson, T. Lundström, and S. Rundqvist, Borides, Silicides and Phosphides, Methuen, London (1965).Google Scholar
  149. 149.
    F. Jellinek, in MTP International Review of Science, Inorganic Chemistry Series One, Vol. 5, Transition Metals, Part 1, D. W. A. Sharp, ed., Butterworths, London (1972), pp. 339–396.Google Scholar
  150. 150.
    A. A. Semenov-Kobzar, V. A. Obolonchik, and Z. S. Akinina, Stability of transition metal carbides under anodic polarization conditions, Porosh. Met 9, 75–78 (1969).Google Scholar
  151. 151.
    I. Paseka and J. Balej, Materials for acceleration of alkali metal amalgams. Chemical stability of TiC, VC, WC, Cr3C2 and TiB2 in sodium hydroxide solutions, Chem. Prum 23, 235–238 (1973).Google Scholar
  152. 152.
    H. Yoneyama, Y. Ishikawa, and H. Tamura, Electrochemical properties of titanium carbide, Denki Kagaku 39, 816–820 (1971).Google Scholar
  153. 153.
    R. D. Cowling and H. E. Hintermann, The anodic oxidation of titanium carbide, J. Electrochem. Soc 118, 1912–1916 (1971).CrossRefGoogle Scholar
  154. 154.
    R. D. Cowling and H. E. Hintermann, The corrosion of titanium carbide, J. Electrochem. Soc 117, 1447–1449 (1970).CrossRefGoogle Scholar
  155. 155.
    V. Cihal, A. Desestret, M. Froment, and G. H. Wagner, Anode dissolution characteristics of titanium, niobium and chromium carbides, Collect. Czech. Chem. Commun 38, 827–832 (1973).CrossRefGoogle Scholar
  156. 156.
    H. E. Hintermann, A. C. Riddiford, R. D. Cowling, and J. Malyszko, The anodic behavior of titanium carbide in sulfuric acid solutions, Electrodepos. Surf. Treat 1, 59–69 (1972).CrossRefGoogle Scholar
  157. 157.
    I.E. Veselovskaya, S.D. Khodkevich, L. G. Khromenkov, V.A. Sokolov, and S. G. Shagina, Anodic behavior of titanium carbide, Elektrokhimiya 6, 954–960 (1970).Google Scholar
  158. 158.
    I. Paseka, Impedance of titanium carbide electrode, Collect. Czech. Chem. Commun 39, 1974–1979 (1974).CrossRefGoogle Scholar
  159. 159.
    A. Tvarusko and H. E. Hintermann, in Proceedings of the 9th International Congress of Chronometry, Stuttgart, 16–20 September 1974, Deutsche Gesellschaft für Chronometrie, Stuttgart (1974), pp. 691–695.Google Scholar
  160. 160.
    V. P. Pancheshnaya, Ya. M. Kolotrykin, V. M. Knyazheva, and Ya. B. Skuratnik, Reaction of titanium carbide with hydrogen during cathodic polarization, Elektron. Str. Fiz. Svoistva Tverd. Tela 1972, 98–105; I. Paseka and J. Balej, Electrochemical properties of titanium carbide, Collect. Czech. Chem. Commun 38, 3600–3609 (1973).CrossRefGoogle Scholar
  161. 161.
    H. Yoneyama, M. Kaneda, and H. Tamura, Electrochemical properties of tungsten carbide in aqueous solutions, Denki Kagaku 41, 719–723 (1973).Google Scholar
  162. 162.
    J. D. Voorhies, Electrochemical and chemical corrosion of tungsten carbide (WC), J. Electrochem. Soc 119, 219–222 (1972).CrossRefGoogle Scholar
  163. 163.
    H. Yoneyama, S. Marakami, and H. Tamura, Corrosion of tungsten carbide in aqueous alkaline solutions containing dissolved air, Denki Kagaku 42, 178–180 (1974).Google Scholar
  164. 164. M. Morita, C. Iwakura, H. Yoneyama, and H. Tamura, Electrode characteristics of tantalum carbide Denki Kagaku 43 740–745 (1975) Google Scholar
  165. 165.
    L. E. Ivanovskii and A. F. Plekhanov, Behavior of niobium carbide anodes during electrolysis of chloride melts, Electrochem. Molten Solid Electrolytes 6 82–86 (1968).Google Scholar
  166. 166.
    P. Brennet, S. Jafferali, J. M. Vanseveren, J. Vereecken, and R. Winand, Study of the mechanism of anodic dissolution of Cu2S, Met. Trans 5, 127–134 (1974).Google Scholar
  167. 167.
    T. Kato and T. Oki, Anodic dissolution of metal sulfides. 5—Anodic reaction of nickel sulfide and pyrrhotite in acid solutions, Nippon Kinzoku Gakkaishi 38, 663–668 (1974).Google Scholar
  168. 168.
    A. K. M. S. Huq and A. J. Rosenberg, Electrochemical behavior of nickel compounds, I. The hydrogen evolution reaction on NiSi, NiAs, NiSb, NiS, NiTe2 and their constituent elements, J. Electrochem. Soc. 111, 270–278 (1964); A. K. M. S. Huq, A. J. Rosenberg, and A. C. Makrides, Electrochemical behavior of nickel compounds, II. Anodic dissolution and oxygen reduction in perchlorate solutions, J. Electrochem. Soc 111, 278–286 (1964).CrossRefGoogle Scholar
  169. 169.
    G. Bianchi, F. Mazza, and S. Trasatti, Anodic behavior and passivity of some interstitial niobium, tantalum, titanium and tungsten compounds, Z. Phys. Chem. (Leipzig) 226, 40–58 (1964).Google Scholar
  170. 170.
    H. Böhm and F. A. Pohl, Wolframcarbid, ein Elektrokatalysator für saure Brennstoffzellen, Wiss. Ber. AEG-Telefunken 41, 46–49 (1968).Google Scholar
  171. 171.
    F. A. Pohl and H. Böhm, in Comptes Rendus, Troisièmes Journées Internationales d’Etude des Piles à Combustible, 16 June 1969, Brussels, Presses Academiques Européennes, Brussels (1969), pp. 180–182.Google Scholar
  172. 172.
    H. Böhm and F. A. Pohl, in Comptes Rendus, Troisièmes Journées Internationales d’Etude des Piles à Combustible, 16 June 1969, Brussels, Presses Academiques Européennes, Brussels (1969), pp. 183–186.Google Scholar
  173. 173.
    H. Böhm, Adsorption und anodische Oxydation von Wasserstoff an Wolframcarbid, Electrochim. Acta 15, 1273–1280 (1970).CrossRefGoogle Scholar
  174. 174.
    H. Böhm and F. A. Pohl, Anode catalysts for acid fuel cells, Battelle Frankfurt Inform. Bull 11, 44–46 (1971).Google Scholar
  175. 175.
    H. Binder, A. Köhling, W. Kuhn, W. Linder, and G. Sandstede, Tungsten carbide electrodes for fuel cells with acid electrolyte, Nature 224, 1299–1300 (1969).CrossRefGoogle Scholar
  176. H. Binder, A. Köhling, W. Kuhn, W. Linder, and G. Sandstede, Das Verhalten von Wolframcarbid in Elektroden für Brennstoffzellen mit sauren Elektrolyten, Energy Convers 10 25–28 (1970); J. von Benda, H. Binder, W. Faul, and G. Sandstede, Ueber das elektrochemische Verhalten von Wolframcarbid in Kalilauge, Chem.-Ing.-Tech 43 12231227 (1971).Google Scholar
  177. 177.
    J. Heidemeyer, D. Baresel, W. Gellert, and P. Scharner, Electrocatalytic oxidation and reduction of hydrogen on carbides, silicides, and nitrides of various transition metals, Collect. Czech. Chem. Commun 36, 944–947 (1971).CrossRefGoogle Scholar
  178. 178.
    R. D. Armstrong, A. F. Douglas, and D. E. Keene, The anodic oxidation of hydrogen in aqueous acids by conducting compounds of the transition elements, J. Electrochem. Soc 118, 568–571 (1971).CrossRefGoogle Scholar
  179. 179. K. von Benda, H. Binder, A. Köhling, and G. Sandstede, in From Electrocatalysis to Fuel CellsG. Sandstede, ed., University of Washington Press, Seattle (1972), pp. 87–100 Google Scholar
  180. 180.
    V. Sh. Palanker, E. N. Baybatyrov, and D. V. Sokolsky, A thermodesorption method for the investigation of hydrogen adsorption on electrodes; its application to tungsten carbide, along with electrochemical methods, Electrochim. Acta 20, 51–55 (1975).CrossRefGoogle Scholar
  181. 181.
    D. V. Sokolsky, V. Sh. Palanker, and E. N. Baybatyrov, Electrochemical hydrogen reactions on tungsten carbide, Electrochim. Acta 20, 71–77 (1975); V. Sh. Palanker and R. A. Gadzhiev, Mechanism of the ionization of hydrogen on tungsten carbides, Elektrokhimiya 11, 503–504 (1975).Google Scholar
  182. 182.
    R. A. Radzhiev, V. Sh. Palanker, and D. V. Sokolskii, Adsorption and electrooxidation of the simplest carbon compounds on tungsten carbides, Elektrokhimiya 11, 1340–1343 (1975).Google Scholar
  183. 183.
    V. Sh. Palanker and R. A. Gadzhiev, Adsorption of hydrogen sulfide on tungsten carbide and its effect on electrolytic oxidation of hydrogen, Elektrokhimiya 11, 1075–1076 (1975).Google Scholar
  184. 184.
    D. Baresel, W. Gellert, W. Sarholz, and G. Schulz-Ekloff, Adsorptionsverhalten und katalytische Aktivität von Uebergangsmetallcarbiden, Chem.-Ing-Tech 46, 573 (1974).CrossRefGoogle Scholar
  185. 185.
    R. B. Levy and M. Boudart, Platinum-like behavior of tungsten carbide in surface catalysis, Science 181, 547–549 (1973).CrossRefGoogle Scholar
  186. 186.
    R. J. Colton, J. T. J. Huang, and J. W. Rabalais, Electronic structure of tungsten carbide and its catalytic behavior, Chem. Phys. Len 34, 337–339 (1975).CrossRefGoogle Scholar
  187. 187.
    P. N. Ross, Jr. and P. Stonehart, Surface characterization of catalytically active tungsten carbide (WC), J. Catal 39, 298–301 (1975).CrossRefGoogle Scholar
  188. 188.
    P. N. Ross, Jr., J. Macdonald, and P. Stonehart, Surface composition of catalytically active tungsten carbide (WC), J. Electroanal. Chem 63, 450–455 (1975).CrossRefGoogle Scholar
  189. 189.
    G. Richter, F. von Sturm, and K. Mund, Anode catalysts, Battelle Frankfurt Inform. Bull 11, 43–44 (1971).Google Scholar
  190. 190.
    R. D. Armstrong, A. F. Douglas, and D. E. Williams, A study of the sodium tungsten bronzes for use as electrocatalysts in acid electrolyte fuel cells, Energy Convers. 11, 7–10 (1971).CrossRefGoogle Scholar
  191. 191.
    J. P. Randin and A. K. Vijh, Hydrogen evolution reaction on sodium-tungsten bronzes, Electrochim. Acta 20, 37–43 (1975).CrossRefGoogle Scholar
  192. 192.
    M. Svata and Z. Zabransky, Preparation of WC catalysts with carbon deficient crystal lattice, Collect. Czech. Chem. Commun 39, 1015–1019 (1973).CrossRefGoogle Scholar
  193. 193.
    V. Sh. Palanker, D. V. Sokolsky, E. A. Mazulevsky, and E. N. Baybatyrov, Highly dispersed tungsten carbide for fuel cells with an acidic electrolyte, J. Power Sources 1, 169–176 (1976).CrossRefGoogle Scholar
  194. 194.
    K. Mund, G. Richter, and F. von Sturm, Aktivitätvergleich an Katalysatoren für saure Brennstoffzellen und Entwicklung einer Ag-WC-Elektrode für die H2-Oxydation, Collect. Czech. Chem. Commun 36, 439–453 (1971).CrossRefGoogle Scholar
  195. 195.
    H. Böhm, Fuel cell assemblies with acidic electrolytes, J. Power Sources 1, 177–192 (1976).CrossRefGoogle Scholar
  196. 196.
    H. Böhm, W. Diemer, J. Heftier, F. A. Pohl, and W. Sigmund, Molybdändisulfid und Wolframdisulfid, Katalysatoren für Brennstoffzellen, Energy Convers. 10, 119–122 (1970).CrossRefGoogle Scholar
  197. 197.
    H. Böhm, New non-noble metal anode catalysts for acid fuel cells, Nature 227, 483–484 (1970).CrossRefGoogle Scholar
  198. 198.
    W. R. Wolfe, Jr., K. B. Keating, V. Mehra, and L. H. Cutler, A new class of fuel cell anode catalysts, 8th Intersociety Energy Conversion Engineering Conference, Conference Proceedings, American Institute of Aeronautics and Astronautics, New York, pp. 91–95 (1973).Google Scholar
  199. 199.
    W. R. Wolfe, Jr., Fuel cell electrode, U.S. Pat. 3, 492, 164 (1970).Google Scholar
  200. 200.
    R. J. Jasinski, A new fuel cell anode catalyst, Adv. Chem. Ser 47, 95–105 (1965).CrossRefGoogle Scholar
  201. 201.
    K. Mund, G. Richter, R. Schulte, and F. von Sturm, Elektrokatalyse an Phosphiden der Eisengruppe und einigen ternären Verbindungen, Ber. Bunsenges. Phys. Chem 77, 839–842 (1973).Google Scholar
  202. 202.
    G. Luft, K. Mund, G. Richter, R. Schulte, and F. von Sturm, New electrocatalysts for acid fuel cells, Siemens Forsch. Entwicklungsber 3, 177–184 (1974).Google Scholar
  203. 203.
    D. T. Sawyer and E. T. Seo, Reduction of dissolved oxygen at boron carbide electrodes, J. Electroanal. Chem. 3, 410–412 (1962); S. G. Meibuhr, Performance of oxygen fuel cell cathodes catalyzed with boron carbide, Nature 210, 409–410 (1966).CrossRefGoogle Scholar
  204. 204.
    F. Mazza and S. Trassatti, Tungsten, titanium and tantalum carbides and titanium nitride as electrodes in redox systems, J. Electrochem. Soc 110, 847–849 (1963).CrossRefGoogle Scholar
  205. 205.
    M. Voïnov, D. Bühler, and H. Tannenberger, Oxygen reduction on tungsten carbide, J. Electrochem. Soc 118, 1137–1138 (1971).CrossRefGoogle Scholar
  206. 206.
    J. R. Gardner, D. A. J. Rand, and R. Woods, Electrochemistry of sulfide flotation, in International Symposium on Characterization of Adsorbed Species in Catalytic Reactions,Ottawa, Canada, 17–20 June 1974, Abstract No. 39.Google Scholar
  207. 207.
    T. Biegler, D. A. J. Rand, and R. Woods, Oxygen reduction on sulfide minerals, I. Kinetics and mechanism at rotated pyrite electrode, J. Electroanal. Chem 60, 151–162 (1975).CrossRefGoogle Scholar
  208. 208.
    D. Baresel, W. Sarholz, P. Scharner, and J. Schmitz, Uebergangs-Metallchalkogenide als Sauerstoff-Katalysatoren für Brennstoffzellen, Ber. Bunsenges. Phys. Chem 78, 608–611 (1974).Google Scholar
  209. 209.
    H. Behret, H. Binder, and G. Sandstede, Electrocatalytic oxygen reduction with thiospinels and other sulfides of transition metals, Electrochim. Acta 20, 111–117 (1975).CrossRefGoogle Scholar
  210. 210.
    J. Giner and L. Swette, Oxygen reduction on titanium nitride in alkaline electrolyte, Nature 211, 1291–1292 (1966).CrossRefGoogle Scholar
  211. 211.
    H. Binder, A. Köhling, W. Kuhn, and G. Sandstede, Electrochemical oxidation of aldehydes, formic acid and carbon monoxide at tungsten carbide electrodes in 2 N sulfuric acid, Angew. Chem. Int. Ed. 8, 757–758 (1969); J. Jindra, On the catalytic activity of tungsten carbide in anodic oxidation of CHO compounds in acid electrolyte, Chem. Zvesti 27, 766–769 (1973).Google Scholar
  212. 212.
    I. A. Kedrinskii and A. J. Avgustinik, Effect of carbon on the electrochemical reduction of nitric acid, Zh. Prikl. Khim 38, 2443–2448 (1965).Google Scholar
  213. 213.
    G. Horanyi and G. Vertes, Experimental study of the electrocatalytic behavior of tungsten carbide. Reduction of perchlorate ions, J. Electroanal. Chem 63, 359–364 (1975).CrossRefGoogle Scholar
  214. 214.
    G. Horanyi and E. M. Rizmayer, Catalytic reduction of sulfuric acid by molecular hydrogen in the presence of tungsten carbide and platinum catalysts, J. Electroanal. Chem 70, 377–379 (1976).CrossRefGoogle Scholar
  215. 215.
    W. Wiesener, Untersuchung zur anodischen Hydrazin-Oxidation an porösen Kohleelektroden unter Verwendung von Nickel-and Nickelboridkatalysatoren, Electrochim. Acta 15, 1065–1077 (1970).CrossRefGoogle Scholar
  216. 216.
    J. Jindra, M. Svata, and J. Mrha, in Power Sources 2, D. H. Collins, ed., Pergamon Press, Oxford (1970), pp. 503–509.Google Scholar
  217. 217.
    R. Jasinski, The anodic oxidation of CO on nickel sulfide in base, J. Electrochem. Soc 116, 452–453 (1969).CrossRefGoogle Scholar
  218. 218.
    T. R. Mueller and R. N. Adams, Voltammetry at inert electrodes. I. Analytical applications of boron carbide electrodes, Anal. Chim. Acta 23, 467–479 (1960); II. Correlation of experimental results with theory for voltage and controlled potential scanning, controlled potential electrolysis, and chronopotentiometric techniques. Oxidation of ferrocyanide and o-dianisidine at boron carbide electrodes, Anal. Chim. Acta 25, 482–497 (1961).Google Scholar
  219. 219.
    W. R. Mountcastle, Jr., Voltammetry and controlled-potential coulometry with boron carbide electrodes, Anal. Chim. Acta 32, 332–338 (1965).CrossRefGoogle Scholar
  220. 220.
    A. M. Hartley and H. D. Axelrod, Observations of a boron carbide electrode, J. Electroanal. Chem 18, 115–121 (1968).CrossRefGoogle Scholar
  221. 221.
    E. Jackson and D. A. Pantony, Electrochemical performance of boron carbide electrodes, J. Appl. Electrochem 2, 353–354 (1972).CrossRefGoogle Scholar
  222. 222.
    J. F. Alder, B. Fleet, and P. O. Kane, Evaluation of a range of electrode materials for solid electrode voltammetry, J. Electroanal. Chem 30, 427–431 (1971).CrossRefGoogle Scholar
  223. 223.
    E. Pungor and A. Weser, Suitability of borides, carbides, and nitrides as indicator electrodes for potentiometric measurements, Acta Chim. Acad. Sci. Hung. 61, 241–255 (1969); Criteria for the suitability of chemical compounds as indicator electrodes for potentiometric methods based on simple redox systems, Anal. Chim. Acta 47, 145–148 (1969).CrossRefGoogle Scholar
  224. 224.
    J. W. Ross, Jr., in Ion-Selective Electrodes, R. A. Durst, ed., N.B.S. Special Publication 314, U.S. Government Printing Office, Washington, D.C. (1969).Google Scholar
  225. 225.
    J. Koryta, Ion-Selective Electrodes, Cambridge Monographs in Physical Chemistry, No. 2, Cambridge University Press, Cambridge (1975); Theory and applications of ion-selective electrodes, Anal. Chim. Acta 61, 329–411 (1972).CrossRefGoogle Scholar
  226. 226.
    R. P. Buck, Ion-selective electrodes, Anal. Chim 48, 23R - 39R (1976).CrossRefGoogle Scholar
  227. 227.
    L. Heyne, in Fast Ion Transport in Solids, W. van Gool, ed., North-Holland, Amsterdam (1973), pp. 123–139.Google Scholar
  228. 228.
    M. S. Whittingham, Mechanism of fast ion transport in solids, Electrochim. Acta 20, 575–583 (1975).CrossRefGoogle Scholar
  229. 229.
    R. M. Dell, in Electrode Processes in Solid State Ionics, M. Kleitz and J. Dupuy, eds., Reidel, Dordrecht (1976), pp. 387–410.Google Scholar
  230. 230.
    B. C. H. Steele, in Mass Transport Phenomena in Ceramics, A. R. Cooper and A. H. Heuer, eds., Plenum Press, New York (1975), pp. 269–283.Google Scholar
  231. 231.
    W. Tiedemann, Electrochemical behavior of the fluorographite electrode in nonaqueous media, J. Electrochem. Soc 121, 1308–1311 (1974).CrossRefGoogle Scholar
  232. 232.
    J. Broadhead, in Power Sources 4, D. H. Collins, ed., Oriel Press, Newcastle-upon-Tyne, England (1973), pp. 469–482.Google Scholar
  233. 233.
    M. S. Whittingham, Electrical energy storage and intercalation chemistry, Science 192, 1126–1127 (1976).CrossRefGoogle Scholar
  234. 234.
    D. A. Winn, J. M. Shemilt, and B. C. H. Steele, Titanium disulfide: a solid solution electrode for sodium and lithium, Mat. Res. Bull 11, 559–566 (1976).CrossRefGoogle Scholar
  235. 235.
    M. S. Whittingham, Batterie à base de chalcogénures, Belg. Pat. 819, 672 (1973).Google Scholar
  236. 236.
    M. Lazzari, G. Razzini, and B. Scrosati, An investigation on various cathodic materials in copper solid-state power sources, J. Power Sources 1, 57–63 (1976).CrossRefGoogle Scholar
  237. 237.
    M. S. Whittingham, Electrointeraction in transition-metal disulfides, J. Chem. Soc. Chem. Commun. 1974, 328–329.Google Scholar
  238. 238.
    M. S. Whittingham, The role of ternary phases in cathodic reactions, J. Electrochem. Soc 123, 315–320 (1976).CrossRefGoogle Scholar
  239. 239.
    D. R. Vissers, Z. Tomczuk, and R. K. Steunenberg, A preliminary investigation of high temperature lithium/iron sulfide secondary cell, J. Electrochem. Soc. 121, 665–667 (1974); L. Heredy and L. R. McCoy, L.thium-molten salt cell with transition metal chalcogenide positive electrode, U.S. Pat. 3,898,096 (August 5, 1975 ).Google Scholar
  240. 240.
    J. B. Goodenough, in Progress in Solid State Chemistry, Vol. 5, H. Reiss, ed., Pergamon Press, Oxford (1971), pp. 145–399.Google Scholar
  241. 241.
    C. N. R. Rao and G. V. Subba-Rao, Electrical conduction in metal oxides, Phys. Stat. Sol. Al, 597–652 (1970).Google Scholar
  242. 242.
    J. M. Honig, in Fast Ion Transport in Solids, W. van Gool, ed., North-Holland, Amsterdam (1973), pp. 311–329.Google Scholar
  243. 243.
    K. V. Kordesch, ed., Batteries, Vol. 1: Manganese Dioxide and Vol. 2: Lead Acid Batteries and Electrical Vehicles, Marcel Dekker, New York (1974–1977); J. P. Carr and N. A. Hampson, The lead dioxide electrode, Chem. Rev. 72, 679–703 (1972); T. F. Sharpe, in Encyclopedia of Electrochemistry of the Elements, Vol. 1, A. J. Bard, ed., Marcel Dekker, New York (1973), pp. 235–347; C. C. Liang, in Encyclopedia of Electrochemistry of the Elements, Vol. 1, A. J. Bard, ed., Marcel Dekker, New York (1973), pp. 349–403.Google Scholar
  244. 244.
    W. F. Libby, Promising catalyst for auto exhaust, Science 171, 499–500 (1971); L. A. Pedersen and W. F. L.bby, Unseparated rare-earth cobalt oxides as auto exhaust catalysts, Science 176, 1355–1356 (1972); R. J. H. Voorhoeve, J. P. Remeika, P. E. Freeland, and B. T. Matthias, Rare-earth oxides of manganese and cobalt rival platinum for the treatment of carbon monoxide in auto exhaust, Science 177, 353–354 (1972); R. J. H. Voorhoeve, J. P. Remeika, and D. W. Johnson, Jr., Rare-earth manganites: catalysts with low ammonia yield in the reduction of nitrogen oxides, Science 180, 62–64 (1973); R. J. H. Voorhoeve, J. P. Remeika, L. E. Trimble, A. S. Cooper, F. J. Disalvo, and J. K. Gallagher, Perovskite-like Lal_xKMnO3 and related compounds: solid state chemistry and the catalysis of the reduction of NO by CO and H2, J. Solid State Chem.14, 395–406 (1975); Y. F. Yu Yao, The oxidation of hydrocarbons and CO over metal oxides, J. Catal. 36, 266–275 (1975).Google Scholar
  245. 245.
    T. Wolfram and F. J. Morin, A conceptual model for surface states and catalysis on d-band perovskites, Appl. Phys 8, 125–141 (1975).CrossRefGoogle Scholar
  246. 246.
    F. G. Galasso, Structure, Properties and Preparation of Perovskite-type Compounds, Pergamon Press, Oxford (1969).Google Scholar
  247. 247.
    P. G. Dickens and M. S. Whittingham, The tungsten bronzes and related compounds, Q. Rev. Chem. Soc. 22, 30–44 (1968); P. Hagenmuller, in Progress in Solid-State Chemistry, Vol. 5, H. Reiss, ed., Pergamon Press, Oxford (1971), pp. 71–144.Google Scholar
  248. 248.
    E. Banks and A. Wold, in Preparative Inorganic Reactions, Vol. 4, W. L. Jolly, ed., Interscience, New York (1968), pp. 237–268.Google Scholar
  249. 249.
    A. Magnéli, in The Chemistry of Extended Defects in Non-metallic Solids, L. Eyring and M. O’Keeffe, eds., North-Holland, Amsterdam (1970), pp. 148–163; A. D. Wadsley, in Non Stoichiometric Compounds, L. Mandelcorn, ed., Academic Press, New York (1964), pp. 98–209.Google Scholar
  250. 250.
    M. J. Sienko, in Nonstoichiometric Compounds, Advances in Chemistry Series, Vol. 39, R. F. Gould, ed., American Chemical Society, Washington, D.C. (1963), pp. 224–236.Google Scholar
  251. 251.
    J. McHardy and P. Stonehart, in MTP International Review of Science, Physical Chemistry Series Two, Vol. 6, Electrochemistry, J. O’M. Bockris, ed., Butterworths, London (1976), pp. 171–229.Google Scholar
  252. 252.
    M. E. Straumanis, The sodium tungsten bronzes. I. Chemical properties and structure, J. Am. Chem. Soc 71, 679–683 (1949).CrossRefGoogle Scholar
  253. 253.
    R. A. Fredlein and A. Damjanovic, Electrochemical deposition and dissolution of tungsten oxide bronzes, J. Solid State Chem. 4, 94–102 (1972); H. R. Shanks, Growth of tungsten bronze crystals by fused salt electrolysis, J. Crystal Growth 13/14, 433–437 (1972); J. P. Randin, Electrochemical deposition of sodium tungsten bronzes, J. Electrochem. Soc. 120, 1325–1330 (1973); J. P. Randin, Kinetics of the electrochemical deposition and dissolution of sodium tungsten bronzes, Electrochim. Acta 19, 745–751 (1974).CrossRefGoogle Scholar
  254. 254.
    A. Damjanovic, D. Sepa, and J. O’M. Bockris, Electrocatalysis by the bronzes of the electrodic reduction of oxygen to water, J. Res. Inst. Catalysis, Hokkaido Univ. 16, 1–17 (1968).Google Scholar
  255. 255.
    J. P. Randin, A. K. Vijh, and A. B. Chughtai, Electrochemical behavior of sodium tungsten bronze electrodes in acidic media, J. Electrochem. Soc 120, 1174–1184 (1973).CrossRefGoogle Scholar
  256. 256.
    J. McHardy and J. O’M. Bockris, in From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University of Washington Press, Seattle, Washington (1972), pp. 109–112.Google Scholar
  257. 257.
    M. V. Vojnovic, D. B. Sepa, and D. S. Ovcin, The surface of sodium tungsten bronze electrodes in acid solutions, Croat. Chem. Acta 44, 89–102 (1972).Google Scholar
  258. 258.
    J. McHardy and J. O’M. Bockris, Electrocatalysis of oxygen reduction by sodium tungsten bronze. I. Surface characteristics of a bronze electrode, J. Electrochem. Soc 120, 53–60 (1973).CrossRefGoogle Scholar
  259. 259.
    J. P. Randin, Kinetics of anodic oxide growth on sodium tungsten bronzes, J. Electrochem. Soc 120, 378–381 (1973).CrossRefGoogle Scholar
  260. 260.
    J. P. Randin, Alternating current impedance characteristics of reduced and oxidized sodium-tungsten bronze electrodes, Electrochim. Acta 19, 87–98 (1974).CrossRefGoogle Scholar
  261. 261.
    H. Azuma, M. Saito, T. Kishi, and T. Nagai, Surface layer on sodium tungsten bronzes in acid solutions, Denki Kagaku 43, 51–56 (1975).Google Scholar
  262. 262.
    A. M. Baticle, P. Lemasson, F. Perdu, P. Vannereau, and J. Vernière, Contribution à l’étude du mode de conduction dans l’oxyde de tungstène WO3 monocristallin, C.R. Acad. Sci. Paris 268B, 1203–1206 (1969).Google Scholar
  263. 263.
    J. M. Berak and M. J. Sienko, Effect of oxygen deficiency on electrical transport properties of tungsten trioxide crystals, J. Solid State Chem 2, 109–133 (1970).CrossRefGoogle Scholar
  264. 264.
    J. Vondrak and J. Balej, Formation of peroxy compounds on anodically polarized sodium tungsten bronze electrodes, Collect. Czech. Chem. Commun 39, 3030–3035 (1975).CrossRefGoogle Scholar
  265. 265.
    B. Broyde, Tungsten bronze fuel cell catalysts, J. Catal 10, 13–18 (1968).CrossRefGoogle Scholar
  266. 266.
    J. H. Fishman, J. F. Henry, and S. Tessore, Activation of sodium tungsten bronzes with noble metals, Electrochim. Acta 14, 1314–1317 (1969).CrossRefGoogle Scholar
  267. 267.
    D. B. Sepa, M. V. Vojnovic, D. S. Ovcin, and N. P. Pavlovic, Behavior of sodium tungsten bronze electrode in alkaline solutions, J. Electroanal. Chem. 51, 99–106 (1974); J. Vondrak and J. Balej, Electrochemical behavior of sodium tungsten bronzes in solutions of sodium hydroxide, Collect. Czech. Chem. Commun 41, 825–833 (1976).CrossRefGoogle Scholar
  268. E. O. Brimm, J. C. Brantley, J. H. Lorenz, and M. H. Jellinek, Sodium and potassium tungsten bronzes, J. Am. Chem. Soc. 73 5427–5432 (1951); A. A. Balandin and N. P. Sokolova, Catalytic properties of tungsten bronzes, Bull. Acad. Sci. USSR Div. Chem. Sci. 1959 198–206; S. S. Moody and D. Taylor, Catalytic decomposition of formic acid on sodium tungsten bronzes, J. Chem. Soc. Faraday Trans. 1 69 289–294 (1973).Google Scholar
  269. 269.
    P. G. Dickens and M. S. Whittingham, Recombination of oxygen atoms on oxide surfaces, Part 2, Catalytic activities of the alkali metal tungsten bronzes, Trans. Faraday Soc 61, 1226–1231 (1965).CrossRefGoogle Scholar
  270. 270.
    F. T. Jones and E. M. Loebl, The orthohydrogen—parahydrogen conversion and hydrogen—deuterium equilibration on sodium tungsten bronzes, J. Phys. Chem 73, 894–899 (1969).CrossRefGoogle Scholar
  271. 271.
    D. B. Sepa, A. Damjanovic, and J. O’M. Bockris, Sodium tungsten bronzes as electrodes for oxygen reduction, Electrochim. Acta 12, 746–747 (1967).Google Scholar
  272. 272.
    J. O’M. Bockris, A. Damjanovic, and J. McHardy, The mechanism and catalysis of the oxygen dissolution reaction, Proceedings, Third International Symposium on Fuel Cells, 16 June 1969, Brussels, Presses Academiques Européennes, Brussels (1969), pp. 15–28.Google Scholar
  273. 273.
    M. Voïnov and H. Tannenberger, in From Electrocatalysis to Fuel Cells, G. Sandstede, ed., University of Washington Press, Seattle, Washington (1972), pp. 101–108.Google Scholar
  274. 274.
    J. O’M. Bockris and J. McHardy, Electrocatalysis of oxygen reduction by sodium tungsten bronze. II. The influence of traces of platinum, J. Electrochem. Soc 120, 61–66 (1973).CrossRefGoogle Scholar
  275. 275.
    J. Heffler and H. Böhm, Electrocatalytic properties of sodium tungsten bronzes in the reduction of oxygen in 2 N sulfuric acid, Metalloberfíaeche Angew. Elektrochem 27, 77–79 (1973).Google Scholar
  276. 276.
    J. P. Randin, The electroreduction of oxygen and hydrogen peroxide on sodium—tungsten bronzes, J. Electrochem. Soc. 121, 1029–1033 (1974); 122, 742–743 (1975).Google Scholar
  277. 277.
    J. P. Randin, Comparison of the electrocatalytic activity of some tungsten bronzes and tungsten trioxide, J. Electroanal. Chem 51, 471–476 (1974).CrossRefGoogle Scholar
  278. 278.
    J. Vondrak and J. Balej, Electrolytic reduction of oxygen on electrodes containing tungsten bronzes, Collect. Czech. Chem. Commun 40, 3298–3305 (1975).CrossRefGoogle Scholar
  279. 279.
    A. J. Appleby and C. van Drunen, Behavior of pure and platinum-doped sodium tungsten bronze electrodes in oxygen-saturated phosphoric acid, J. Electrochem. Soc 123, 200–203 (1976).CrossRefGoogle Scholar
  280. 280.
    L. W. Niedrach and H. I. Zeliger, Catalytic enhancement of carbon monoxide and reformer gas oxidation in fuel cells by sodium tungsten bronzes, J. Electrochem. Soc 116, 152–153 (1969).CrossRefGoogle Scholar
  281. 281.
    J. P. Randin, Inhibition effects in the electrochemical reduction of hydrogen peroxide on sodium tungsten bronzes, Can. J. Chem 52, 2542–2545 (1974).CrossRefGoogle Scholar
  282. 282.
    D. Gilroy and B. E. Conway, Kinetic theory of inhibition and passivation in electrochemical reactions, J. Phys. Chem 69, 1259–1267 (1965).CrossRefGoogle Scholar
  283. 283.
    J. O’M. Bockris, A. Damjanovic, and R. J. Mannan, Catalysis of the electrode hydrogen evolution and dissolution on rationally chosen substrates, J. Electroanal. Chem. 18, 349–361 (1968); D. B. Sepa, D. S. Ovcin, and M. V. Vojnovic, Hydrogen evolution reaction at sodium tungsted bronzes in acid solutions, J. Electrochem. Soc. 119, 1285–1288 (1972); J. Vondrak and J. Balej, Electrochemical properties of tungsten bronzes. I. Hydrogen absorption in sodium tungsten bronzes, Electrochim. Acta 18, 1017–1023 (1973).CrossRefGoogle Scholar
  284. 284.
    J. Vondrak and J. Balej, Electrochemical properties of tungsten bronzes. II. Hydrogen evolution on sodium tungsten bronzes, Electrochim. Acta 20, 283–287 (1975).CrossRefGoogle Scholar
  285. 285.
    B. S. Hobbs and A. C. C. Tseung, High performance, platinum activated tungsten oxide fuel cell electrodes, Nature 222, 556–558 (1969).CrossRefGoogle Scholar
  286. 286.
    B. S. Hobbs and A. C. C. Tseung, The anodic oxidation of hydrogen on platinized tungsten oxides. II. Mechanism of H2 oxidation on platinized WO3 electrodes, J. Electrochem. Soc 120, 766–769 (1973).CrossRefGoogle Scholar
  287. 287.
    W. Vogel, J. Lundquist, P. Ross, and P. Stonehart, Reaction pathways and poisons. II. The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO, Electrochim. Acta 20, 79–93 (1975).CrossRefGoogle Scholar
  288. 288.
    L. W. Niedrach and I. B. Weinstock, Performance of carbon monoxide in low-temperature fuel cells containing oxide catalysts, Electrochem. Technol 3, 270–275 (1965).Google Scholar
  289. 289.
    M. V. Vojnovic and D. B. Sepa, Effect of electrode materials on the kinetics of electron exchange reactions, J. Chem. Phys 51, 5344–5351 (1969).CrossRefGoogle Scholar
  290. 290.
    M. Amjad and D. Pletcher, Simple redox processes at tungsten bronze electrodes, J. Electroanal. Chem 59, 61–67 (1975).CrossRefGoogle Scholar
  291. 291.
    A. Weser and E. Pungor, Die Eignung von Perowskitphasen als Redoxindikator-elektroden, Acta. Chim. Acad. Sci. Hung 59, 319–322 (1969).Google Scholar
  292. 292.
    M. A. Wechter, H. R. Shanks, G. Carter, G. M. Ebert, R. Guglielmina, and A. F. Voigt, Use of metal tungsten bronze electrodes in chemical analysis, Anal. Chem 44, 850–853 (1972).CrossRefGoogle Scholar
  293. 293.
    M. A. Wechter, P. B. Hahn, G. M. Ebert, P. R. Montoya, and A. F. Voigt, Chelometric titration of metal cations using the tungsten bronze electrode, Anal. Chem 45, 1267–1269 (1973).CrossRefGoogle Scholar
  294. 294.
    P. B. Hahn. M. A. Wechter, D. C. Johnson, and A. F. Voigt, Sodium tungsten bronze as a potentiometric indicating electrode for dissolved oxygen in aqueous solutions, Anal. Chem 45, 1016–1021 ( 1973.CrossRefGoogle Scholar
  295. 295.
    P. B. Hahn, D. C. Johnson, M. A. Wechter, and A. F. Voigt, Mixed-potential mechanism for the potentiometric response of the sodium tungsten bronze electrode to dissolved oxygen and in chelometric titrations, Anal. Chem 46, 553–558 (1974).CrossRefGoogle Scholar
  296. 296.
    S. K. Deb, A novel electrophotographic system, Appl. Opt. Suppl. Electrophotography, No. 3, 192–195 (1969).Google Scholar
  297. 297.
    B. W. Faughnan, R. S. Crandall, and P. M. Heyman, Electrochromism in WO3 amorphous films, RCA Rev. 36, 177–197 (1975).Google Scholar
  298. 298.
    I. F. Chang, in Nonemissive Electrooptic Displays, A. R. Kmetz and F. K. von Willisen, eds., Plenum Press, New York (1975), pp. 155–196.Google Scholar
  299. 299.
    H. N. Hersh, W. E. Kramer, and J. H. McGee, Mechanism of electrochromism in WO3, Appl. Phys. Lett 27, 646–648 (1975).CrossRefGoogle Scholar
  300. 300.
    M. Green, W. C. Smith, and J. A. Weiner, A thin film electrochromic display based on the tungsten bronzes, Thin Solid Films 38, 89–100 (1976).CrossRefGoogle Scholar
  301. 301.
    R. S. Crandall and B. W. Faughnan, Dynamics of coloration of amorphous electrochromic films of WO3 at low voltages, Appl. Phys. Lett 28, 95–97 (1976).CrossRefGoogle Scholar
  302. 302.
    B. W. Faughnan, R. S. Crandall, and M. A. Lampert, Model for the bleaching of WO3 electrochromic films by an electric field, Appl. Phys. Lett 27, 275–277 (1975).CrossRefGoogle Scholar
  303. 303.
    D. B. Meadowcroft, Low-cost oxygen electrode material, Nature 226, 847–848 (1970).CrossRefGoogle Scholar
  304. 304.
    A. C. C. Tseung and H. L. Bevan, A reversible oxygen electrode, J. Electroanal. Chem 45, 429–438 (1973).CrossRefGoogle Scholar
  305. 305.
    Y. Matumoto, H. Yoneyama, and H. Tamura, A new catalyst for cathodic reduction of oxygen: lanthanum nickel oxide, Chem. Lett. 1975, 661–662.Google Scholar
  306. 306.
    C. E. Heath, H. H. Horowitz, B. L. Tarmy, C. E. Morrell, J. A. Wilson, W. J. Asher, M. Beltzer, B. Broyde, G. Ciprios, I. M. Feng, M. Lieberman, J. M. Matsen, E. H. Okrent, J. A. Shropshire, H. H. Vickers, E. A. Vogelfanger, and A. A. Zimmermann, Hydrocarbon—air fuel cell, Report No. 8, Contract No. DA 36–039 AMC-03743 (E) ARPA Order No. 247 (1965).Google Scholar
  307. 307.
    C. Pinnington, An assessment of some mixed-oxide systems as low-cost electrocatalysts for oxygen electrodes, in Fourth International Symposium on Fuel Cells, Antwerp, Belgium, 2–3 October 1972.Google Scholar
  308. 308.
    J. P. Randin, Unpublished results (1974).Google Scholar
  309. 309.
    T. Kudo, H. Obayashi, and M. Yoshida, Rare earth cobaltites as oxygen electrode materials for alkaline solution, J. Electrochem. Soc 124, 321–325 (1977).CrossRefGoogle Scholar
  310. J. M. Thomas and W. J. Thomas, Introduction to the Principles of Heterogeneous Catalysis,Academic Press, New York (1967), pp. 131–134; P. W. Selwood, in Advances in Catalysis and Related Subjects,Vol. 3, W. G. Frankenburg, V. I. Komarewsky, and E. K. Rideal, eds., Academic Press, New York (1951), pp. 27–105; E. R. S. Winter, Adsorption upon pure and lithium-doped nickel oxide, J. Catal. 6,35–49 (1966).Google Scholar
  311. 311.
    J. R. Goldenstein and A. C. C. Tseung, A joint pseudo-splitting/peroxide mechanism for oxygen reduction at fuel cell cathodes, Nature 222, 869–870 (1969).CrossRefGoogle Scholar
  312. 312.
    U. R. Evans, Cathodic reduction of oxygen in fuel cells and corrosion cells, Nature 218, 602–603 (1968); U. R. Evans, Active centres in the cathodic reduction of oxygen with special reference to fuel cells, Electrochim. Acta 14, 197–201 (1969).CrossRefGoogle Scholar
  313. 313.
    J. B. Goodenough, Magnetism and the Chemical Bond, Interscience, New York (1963), p. 236.Google Scholar
  314. 314.
    G. H. Jonker and J. H. von Santen, Magnetic compounds with perovskite structure. III. Ferromagnetic compounds of cobalt, Physica (Amsterdam) 19, 120–130 (1953).Google Scholar
  315. 315.
    K. I. Portnoi and N. I. Timofeeva, The preparation and properties of chromites of the rare earth elements, Izv. Akad Nauk SSSR Neorg. Mat 1, 1593–1597 (1965).Google Scholar
  316. 316.
    T. Kudo, H. Obayashi, and T. Gejo, Electrochemical behavior of the perovskite-type Ndi_xSrxCoO3 in an aqueous alkaline solution, J. Electrochem. Soc 122, 159–163 (1975).CrossRefGoogle Scholar
  317. 317.
    H. Nguyen Cong, J. Brenet, and P. Chartier, Kinetics of redox couples at solid electrodes, III. Ferro-ferricyanide system in alkaline media on rotating disk electrode of polycrystalline perovskite cobaltites Lal_xSr,CoO3, with x = 0.2 and O, Ber. Bunsenges. Phys. Chem 79, 323–326 (1975).CrossRefGoogle Scholar
  318. 318.
    C. S. Tedmon, Jr., H. S. Spacil, and S. P. Mitoff, Cathode materials and performance in high-temperature zirconia electrolyte fuel cells, J. Electrochem. Soc 116, 1170–1175 (1969).CrossRefGoogle Scholar
  319. 319.
    K. Kordesch and A. Marko, A new carbon oxygen electrode process, Oesterr. Chem. Ztg. 52, 125–131 (1951); K. Wiesener, Oxygen electrodes made of carbon in acid electrolytes, Abh. Saechs. Akad. Wiss. Leipzig Math. Naturwiss. KI. 49, 85–95 (1968); J. E. Wynn and H. Knapp, in Proceedings of the 24th Annual Power Sources Conference, P. S. C. Publications Committee, Red Bank, New Jersey (1970), pp. 88–91; G. S. Zenin, N. N. Storchak and V. V. Sysoeva, Oscillographic determination of the kinetic parameters of oxygen ionization at carbon electrodes, Zh. Prikl. Khim. 44, 2114–2116 (1971).Google Scholar
  320. 320.
    J. R. Goldstein and A. C. C. Tseung, Kinetics of oxygen reduction on graphite/cobalt-iron oxide electrodes with coupled heterogeneous chemical decomposition of H202, J. Phys. Chem 76, 3646–3656 (1972).CrossRefGoogle Scholar
  321. 321.
    G. Feuillade, R. Coffre, and R. Outhier, Emploi des oxydes métalliques 3d et 4d comme catalyseurs dans les piles oxygène-hydrogène, Ann. Radioélectr 21, 105–121 (1966).Google Scholar
  322. 322.
    W. J. King and A. C. C. Tseung, The reduction of oxygen on nickel—cobalt oxides. I. The influence of composition and preparation method on the activity of nickel—cobalt oxides, Electrochim. Acta 19, 485–491 (1974).Google Scholar
  323. 323.
    A. M. Trunov, V. A. Presnov, M. V. Uminskii, O. F. Rakityanskaya, T. S. Bakutina, and A. I. Kotseruba, Oxygen electroreduction at semiconductor catalysts. V. Investigation of the physical and electrochemical properties of mixed nickel—cobalt oxides, Elektrokhimiya 11, 552–559 (1975).Google Scholar
  324. 324.
    V. S. Bagotzky, N. A. Shumilova, and E. I. Krushcheva, Electrochemical oxygen reduction on oxide catalysts, Electrochim. Acta 21, 919–924 (1976).CrossRefGoogle Scholar
  325. 325.
    R. Kh. Burshtein, M. R. Tarasevich, V. S. Vilinskaya, F. Z. Sabirov, and A. M. Khutornoi, Mechanism of the promoting action of oxide electrochemical catalysts, Elektrokhimiya 9, 725 (1973); R. Kh. Burshtein, M. R. Tarasevich, A. M. Khutornoi, V. S. Vilinskaya, F. Z. Sabirov, I.I. Astakhor, and G. G. Teplitskaya, Adsorption and electroreduction of molecular oxygen on oxide catalysts. I. Mechanism of the cathodic reduction of oxygen on cobalt cobaltite, Elektrokhimiya 11, 1064–1068 (1975).Google Scholar
  326. 326.
    M. Savy, Oxygen reduction in alkaline solution on semiconducting cobalt oxide electrodes, Electrochim. Acta 13, 1359–1376 (1968).Google Scholar
  327. 327.
    A. G. Voloshin and N. I. Kramarenko, Electrode reactions in the presence of molecular oxygen on lithium-substituted cobalt cobaltite. Electrokhimiya 11, 1902–1903 (1975).Google Scholar
  328. 328.
    H. G. Oswin, A reversible medium-temperature oxygen electrode, in Comptes Rendus 2ème Journées Internationales d’Etude des Piles à Combustible, Société d’Etudes de Recherches et Applications pour l’Industrie, Brussels (1967), pp. 321–325.Google Scholar
  329. 329.
    W. J. King and A. C. C. Tseung, The reduction of oxygen on nickel-cobalt oxides. II. Correlation between crystal structure and activity of Co2NiO4 and related oxides, Electrochim. Acta 19, 493–498 (1974).CrossRefGoogle Scholar
  330. 330.
    M. R. Tarasevich, V. S. Vilinskaya, A. M. Khutornoi, R. Kh. Burshtein, F. V. Makordei, and Yu. A. Tkach, Adsorption and electrolytic reduction of molecular oxygen on oxide catalysts. II. Mechanism of the cathodic reduction of oxygen on NiCo2O4, Elektrokhimiya 12, 504–507 (1976).Google Scholar
  331. 331.
    M. R. Tarasevich, A. M. Khutornoi, F. Z. Sabirov, G. I. Zakharkin, and V. N. Storozhenko, Adsorption and electroreduction of molecular oxygen on oxide catalysts. III. Chemical and electrochemical reactions of hydrogen peroxide on Co3O4 in alkaline solution, Elektrokhimiya 12, 265–269 (1976).Google Scholar
  332. 332.
    A. M. Trunov and V. A. Presnov, Oxygen electroreduction on semiconductor catalysts, II. Processes at the oxide semiconductor/electrolyte interface, Elektrokhimiya 11, 77–84 (1975).Google Scholar
  333. 333.
    G. Magner and M. Savy, Study of the oxygen reduction on cobalt oxides in alkaline media, C.R. Acad. Sci. Paris 267C, 944–947, 1545–1547 (1968).Google Scholar
  334. 334.
    A. C. C. Tseung and S. Jasem, Oxygen evolution on semiconducting oxides, Electrochim. Acta 22, 31–34 (1977).CrossRefGoogle Scholar
  335. 335.
    M. Beley, J. Brenet, and P. Chartier, Kinetics of redox couples at solid electrodes: I. Ferro-ferricyanide system in nearly neutral media on polycrystalline spinel magnetites McMn2O4 (Me = Cu, Ni and Al) thermally deposited on platinum grids, Ber. Bunsenges. Phys. Chem 78, 455–461 (1974).Google Scholar
  336. 336.
    M. Beley, J. Brenet, and P. Chartier, Kinetics of redox couples at solid electrodes: II. Ferro-ferricyanide system in nearly neutral media on rotating disk electrodes of polycrystalline spinel manganites Cu,Mn3_x04, with x = 1.2, Ber. Bunsenges. Phys. Chem 79, 317–322 (1975).CrossRefGoogle Scholar
  337. 337.
    J. Ruch, J. F. Konig, and J. Brenet, in Power Sources 4, D. H. Collins, ed., Oriel Press, Newcastle-upon-Tyne, England (1973), pp. 437–451;Google Scholar
  338. J. Brenet and J. F. Konig, The influence of the preparation and composition of spinel structure cobaltites (Co, Ni, Zn, Mn and Cu) on their electrochemical reduction, Z. Phys. Chem. N.F. 98, 351–364 (1975);.Google Scholar
  339. J. P. Brenet, A. K. Mehrotra, and K. Traore, Study of the physicochemical behavior and electrochemical reactivity of nickel manganese spinet oxides and their possible inter-relation, J. Electroanal. Chem. 65, 245–261 (1975).Google Scholar
  340. 338.
    J. Brenet, Electrochemical reactivity of some mixed oxides of transition metals, in 27th Meeting of the International Society of Electrochemistry, Zürich, September 1976, Abstract No. 222 (1976).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • J. P. Randin
    • 1
  1. 1.ASULAB SANeuchâtelSwitzerland

Personalised recommendations