What Can We Learn from Marine Invertebrates to be Used as Complementary Antibiotics?

  • Philippe Roch
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 546)


Several biotechnology start-ups are engaged in developing novel antibiotics using antimicrobial peptides as templates. The pioneer was Magainin Pharmaceuticals from Philadelphia (PA USA) in the early 1990s with Pexiganan®, derived from frog skin magainin, but with little success. Another North-American company, Intrabiotics Pharmaceuticals from Mountain View (CA) developed Iseganan®, a synthetic analogue to pig protegrin. Micrologix Biotech from Vancouver (BC Canada) developed several linear antimicrobial peptides, particularly against resistant Staphylococcus aureus. EntoMed from Strasbourg (France) was the first company to use insect (a non revealed tropical butterfly) antimicrobial peptides to fight fungal infections due to Candida and Aspergillus in immunologically compromised patients. Anti Gram+ bacterial activity, particularly Staphylococcus, have also been analyzed. Recently, SelectBiotics from Montpellier (France) has become interested in the peptides produced by several bacterial species to protect themselves from other microorganisms.


Minimum Inhibitory Concentration Antimicrobial Peptide Marine Invertebrate White Spot Syndrome Virus Mediterranean Mussel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bulet, P., 1999, Les peptides antimicrobiens de la drosophile, Medecine/Sciences 15:23–29.CrossRefGoogle Scholar
  2. Bulet, P., Cociancich, S., Dimarq, J-L., Lambert, J., Reichhart, J-M., Hoffmann, D., Hétru, C., and Hoffmann, J.A., 1991, Isolation from a coleopteran insect of a novel inducible antibacterial peptide and of new members of the insect defensin family, J. Biol. Chem. 266:24520–24525.PubMedGoogle Scholar
  3. Bulet, P., Dimarcq, J-L., Hétru, C., Lagueux, M., Charlet, M., Hegy, G., Van Dorsselaer, A., and Hoffmann, J.A., 1993, A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution, J. Biol. Chem. 268:14893–14897.PubMedGoogle Scholar
  4. Bulet, P., Hétru, C., Dimarcq, J-L., and Hoffmann, D., 1999, Antimicrobial peptides in insects: structure and function, Develop. Comp. Immunol. 23:329–344.CrossRefGoogle Scholar
  5. Chalk, R., Townson, H., Natori, S., Desmond, H., and Ham, P.J., 1994, Purification of an insect defensin from the mosquito, Aedes aegypti, Insect Biochem. Molec. Biol. 24:403–410.CrossRefGoogle Scholar
  6. Charlet, M., Chernysh, S., Philippe, H., Hétru, C., Hoffmann, J.A., and Bulet, P., 1996, Innate immunity: Isolation of several cysteine-rich antimicrobial peptides from the blodd of a mollusk, Mytilus edulis. J. Biol. Chem. 271:21808–21813.Google Scholar
  7. Cole, A.M., and Ganz T., 2000, Human antimicrobial peptides: analysis and application, Biotechniques 29:822–831.PubMedGoogle Scholar
  8. Cornet, B., Bonmatin, J-M., Hétru, C., Hoffmann, J.A., Ptak, M., and Vovelle F., 1995, Refined three-dimensional solution structure of insect defensin A, Structure 3:435–448.PubMedCrossRefGoogle Scholar
  9. Desnottes, J-F., 1996, New targets and strategies for the development of antibacterial agents, TIBTECH. 14:134–140.CrossRefGoogle Scholar
  10. Dietrich, J., Schmitt, P., Zeiger, M., Preve, B., Rolland, J-L., Chaabihi, H., and Gueguen, Y., 2002, PCR performance of the highly thermostable proof-reading B-type DNA polymerase from Pyrococcus abyssi, FEMS Microbiol. Letters 217:89–94.CrossRefGoogle Scholar
  11. Distel, D.L., Baco, A.R., Chuang, E., Morill, W., Cavanaugh, C., and Smith, C.R., 2000, Do mussels take wooden steps to deep-sea vents, Nature 403:725–726.PubMedCrossRefGoogle Scholar
  12. Eisenhauer, P.B., and Lehrer, R.I., 1992, Mouse neutrophils lack defensins, Infect. Immun. 60:3446–3447.PubMedGoogle Scholar
  13. Engström, Y., 1999, Induction and regulation of antimicrobial peptides in Drosophila, Develop. Comp. Immunol. 23:345–358.CrossRefGoogle Scholar
  14. Erauso, G., Reysenbach, A.L., Godfroy, A., Meunier, J.R., Crump, B., Partensky, F., Baross, J.A., Marteisson, V., Barbier, G., Pace, N.R., and Prieur, D., 1993, Pyrococcus abyssi sp. nov., a new hyperthermophilic archeon isolated from a deep-sea hydrothermal vent, Arch. Microbiol. 160:338–349.CrossRefGoogle Scholar
  15. Evans, E.W., Beach, G.G., Wunderlich, J., and Harmon, B.G., 1994, Isolation of antimicrobial peptides from avian heterophils, J. Leuk. Biol. 56:661–667.Google Scholar
  16. Gaill, F., 1993, Aspects of life development at deep sea hydrothermal vents, FASEB J. 6:558–65.Google Scholar
  17. Ganz, T., 1987, Extracellular release of antimicrobial defensins by human polymorphonuclear leukocytes, Infect. Immun. 55:568–571.PubMedGoogle Scholar
  18. Ganz, T., Oren, A., and Lehrer, R.I., 1992, Defensins: microbicidal and cytotoxic peptides of mammalian host defense cells, Med. Microbiol. Immunol. 181:99–105.PubMedCrossRefGoogle Scholar
  19. Hamilton, S.C., Farchaus, J.W., and Davis, M.C., 2001, DNA polymerases as engines for biotechnology, Biotechniques 31:370–383.PubMedGoogle Scholar
  20. Hancock, R.E., and Scott, M.G., 2000, The role of antimicrobial peptides in animal defenses, Proc. Nat. Acad. Sci. USA, 97:8856–8861.PubMedCrossRefGoogle Scholar
  21. Hancock, R.E., and Lehrer, R., 1998, Cationic peptides: a new source of antibiotics, Trends Biotech. 16:82–88.CrossRefGoogle Scholar
  22. Hoffmann, J.A., and Riechhart, J-M., 1997, Drosophila immunity, Tr. Cell Biol. 7:309–316.Google Scholar
  23. Hubert, F., Noël, T., and Roch, Ph., 1996, A member of the arthropod defensin family from edible Mediterranean mussels, Mytilus galloprovincialis, Eur. J. Biochem. 240:302–306.CrossRefGoogle Scholar
  24. Innis, M.A., Myambo, K.B., Gelfand, D.H., and Brow, M.A., 1988, DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA, Proc. Nat. Acad. Sci. USA, 85:9436–9440.PubMedCrossRefGoogle Scholar
  25. Kohashi, O., Ono, T., Ohki, K., Soejima, T., Moriya, T., Umeda, A., Meno, Y., Amako, K., Funakosi, S., Masuda, M., and Fujii, N., 1992, Bactericidal activities of rat defensins and synthetic rabbit defensins on Staphylococci, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium and Escherichia coli, Microbiol. Immunol. 36:369–380.Google Scholar
  26. Lehane, M.J., Wu, D., and Lehane, S.M., 1997, Midgut-specific immune molecules are produced by the bloodsucking insect Stomoxys calcitrans, Proc. Nat. Acad. Sci. USA, 94:11502–11507.PubMedCrossRefGoogle Scholar
  27. Lemaitre, B., 1999, La drosophile: un modèle pour l’étude de la réponse immunitaire innée, Médecine/Sciences 15:15–22.CrossRefGoogle Scholar
  28. Lemaitre, B., Reichhart, J-M., and Hoffmann, J.A., 1997, Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms, Proc. Nat. Acad. Sci. USA, 94:14614–14619.PubMedCrossRefGoogle Scholar
  29. Levashina, E.A., Ohresser, S., Lemaitre, B., and Imler J-L., 1998, Two distinct pathways can control expression of the gene encoding the Drosophila antimicrobial peptide metchnikowin, J. Mol. Biol. 278:515–527.PubMedCrossRefGoogle Scholar
  30. Levy, O., 1996, Antibiotic proteins of polymorphonuclear leukocytes, Eur. J. Haematol. 56:263–277.PubMedCrossRefGoogle Scholar
  31. Matsuzaki, K., Nakamura, A., Murase, O., Sugishita, K-I., Fujii, N., and Miyajima, K., 1997, Modulation of magainin 2-lipid bilayer interactions by peptide charges., Biochemistry-USA, 36:2104–2111.CrossRefGoogle Scholar
  32. Mitta, G., Hubert, F., Dyrynda, E.A., Boudry, P., and Roch, Ph., 2000b, Mytilin B and MGD2, two antimicrobial peptides of marine mussels: gene structure and expression analysis, Develop. Comp. Immunol. 24:381–393.CrossRefGoogle Scholar
  33. Mitta, G., Hubert, F., Noël, T., and Roch, Ph., 1999a, Myticin, a novel cysteine-rich antimicrobial peptide isolated from hemocytes and plasma of the mussel, Mytilus galloprovincialis, Eur. J. Biochem. 265:71–78.CrossRefGoogle Scholar
  34. Mitta, G., Vandenbulcke, F., Hubert, F., and Roch, Ph., 1999b, Mussel defensins are synthesised and processed in granulocytes then released into plasma after bacterial challenge, J. Cell Sci. 112:4233–4242.Google Scholar
  35. Mitta, G., Vandenbulcke, F., Hubert, F., Salzet, M., and Roch, Ph., 2000a, Involvement of mytilins in mussel antimicrobial defense, J. Biol. Chem. 275:12954–12962.CrossRefGoogle Scholar
  36. Mitta, G., Vandenbulcke, F., and Roch, Ph., 2000b, Original involvement of antimicrobial peptides in mussel innate immunity, FEBS Letters 486:185–190.CrossRefGoogle Scholar
  37. Mitta, G., Vandenbulcke, F., Noël, T., Romestand, B., Beauvillain, J-C., Salzet, M., and Roch, Ph., 2000c, Differential distribution and defence involvement of antimicrobial peptides in mussel, J. Cell Sci. 113: 2759–2769.Google Scholar
  38. Moore, A.J., Beazley, W.D., Bibby, M.C., and Devine, D.A., 1996, Antimicrobial activity of cecropins, J. Antimicrob. Chemother. 37:1077–1089.PubMedCrossRefGoogle Scholar
  39. Morishima, I., Horiba, T., Iketani, M. Nishioka, E., and Yamano, Y., 1995, Parallel induction of cecropin and lysozyme in larvae of the silkworm, Bombyx mori, Develop. Comp. Immunol. 19:357–363.CrossRefGoogle Scholar
  40. Osborn, R.W., De Samblanx, G.W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S.B., and Broekaert, W.F., 1995, Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae, FEBS Letters 368:257–262.PubMedCrossRefGoogle Scholar
  41. Ouellette, A.J., and Selsted, M.E., 1996, Paneth cell defensins: Endogenous peptide components of intestinal host defense, FASEB J. 10:1280–1289.PubMedGoogle Scholar
  42. Steinberg, D.A., Hurst, M.A., Fujii, C.A., Kung, A.H.C., Ho, J.F., Cheng, F.C., Loury, D.J., and Fiddes, J.C., 1997, Protegrin-1: a broad-spectrum, rapidly microbicidal peptide with in vivo activity, Antimicrob. Agents Chemother. 41:1738–1742.PubMedGoogle Scholar
  43. Steiner, H., Hultmark, D., Engstrom, A., Bennich, H., and Boman, H.G., 1981, Sequence and specificity of two antibacterial proteins involved in insect immunity, Nature 292:246–248.PubMedCrossRefGoogle Scholar
  44. Terras, F.R.G., Torrekens, S., Van Leuven, F., Osborn, R.W., Vanderleyden, J., Cammue, B.P.A., and Broekaert, W.F., 1993, A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species, FEBS Letters 316:233–240.PubMedCrossRefGoogle Scholar
  45. Williams, M.J., Rodriguez, A., Kimbrell, D.A., and Eldon, E.D., 1997, The 18-wheeler mutation reveals complex antibacterial gene regulation in Drosophila host defense, EMBO J. 16:6120–6130.PubMedCrossRefGoogle Scholar
  46. Wu, M., Maier, E., Benz, R., and Hancock, R.E.W., 1999, Mechanism of interaction of different classes of cationic antimicrobial peptides with planar bilayers and with the cytoplasmic membrane of Escherichia coli, Biochemistry-USA 38:7235–7242.CrossRefGoogle Scholar
  47. Yamano, Y., Matsumoto, M., Sasahara, K., Sakamoto, E., and Morishima, I., 1998, Structures of genes for cecropin A and an inducible nuclear protein that binds to the promoter region of the genes from the silkworm, Bombyx mori, Biosci. Biotechnol. Biochem. 62:237–241.CrossRefGoogle Scholar
  48. Yang, Y-S., Mitta, G., Chavanieu, A., Calas, B., Sanchez, J-F., Roch, Ph., and Aumelas, A., 2000, Solution structure and activity of the synthetic four disulfide bond Mediterranean mussel defensin, MGD-1, Biochemistry-USA 39:14436–14447.CrossRefGoogle Scholar
  49. Zhang, L., Benz, R., and Hancock, R.E.W., 1999, Influence of proline residues on the antibacterial and synergistic activities of alpha-helical peptides, Biochemistry-USA 38:8102–8111.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Philippe Roch
    • 1
  1. 1.Laboratoire DRIMUniversité de Montpellier 2Montpellier cedex 5France

Personalised recommendations