Testing Efficacy of Natural Anxiolytic Compounds

  • A. A. Roberts
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 546)


Anxiety disorders are a group of mental disorders that range in their severity from occasional, brief episodes of relatively benign nervous tension to severe, recurrent and disabling panic attacks that interfere with activities of daily living. In addition to the suffering of the affected individual, anxiety disorders have larger social and economic ramifications, such as loss of workplace productivity.1 Treatment approaches to anxiety disorders include psychoanalytic, cognitive, and pharmacologic therapies. At present, state of the art Western medical therapies for anxiety rely heavily on anxiolytic (anti-anxiety) pharmaceuticals, some of which have sedative and cognitive side effects. Since the 1960’s, when the prototypic anxiolytic drug diazepam (valium) was discovered serendipitously by L. Sternbach and E. Reeder2, antianxiety drugs have undergone refinement with the goal of reducing undesirable sedative and amnestic side effects. Advances in the fields of neurobiology and psychology have yielded insights into the neurotransmitter systems involved in fear and anxiety responses that have facilitated the development of more selective anxiolytic drugs.3–5


Anxiety Disorder GABAA Receptor Anxiolytic Effect Anxiolytic Drug Herbal Medicinal Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Lepine, The epidemiology of anxiety disorders: prevalence and societal costs. J Clin Psychiatry, 2002.63(Suppl 14): p. 4–8.PubMedGoogle Scholar
  2. 2.
    L. Sternbach, et al., Quinazolines and 1,4-benzodiazepines. XXV. Structure-activity relationships of aminoalkyl-subsituted 1,4-benzodiazepin-2-ones. J Med Chem, 1965.8(6): p. 815–821.PubMedCrossRefGoogle Scholar
  3. 3.
    P. Sah, et al., The amygdaloid complex: anatomy and physiology. Physiol Rev, 2003.83(3): p. 803–834.PubMedGoogle Scholar
  4. 4.
    A. Shekhar, L. Sims, and R. Bowsher, GABA receptors in the region of the dorsomedial hypothalamus of rats regulate anxiety in the elevated plus-maze test. II. Physiological measures. Brain Res, 1993.627(1): p. 17–24.PubMedCrossRefGoogle Scholar
  5. 5.
    A. Shekhar and J. Katner, Dorsomedial hypothalamic GABA regulates anxiety in the social interaction test. Pharmacol Biochem Behav, 1995.50(2): p. 253–258.PubMedCrossRefGoogle Scholar
  6. 6.
    E. Ernst, Safety concerns about kava. Lancet, 2002.359(9320): p. 1865.PubMedCrossRefGoogle Scholar
  7. 7.
    M.B. First, Diagnostic and Statistical Manual-Text Revision (DSM-IV-TR TM , 2000). 2000, Washington, D.C.: American Psychiatric Association.Google Scholar
  8. 8.
    S. Lee, Socio-cultural and global health perspectives for the development of future psychiatric diagnostic systems. Psychopathology. 2002 Mar-Jun; 35(2–3):152–7., 2002. 35((2–3)): p. 152–157.PubMedCrossRefGoogle Scholar
  9. 9.
    L. Y, The burden of depression and anxiety in general medicine. J Clin Psychiatry, 2001.62(8): p. 4–9.Google Scholar
  10. 10.
    J. Chen, L. Reich, and H. Chung, Anxiety disorders. West J Med, 2002.176(4): p. 249–253.PubMedGoogle Scholar
  11. 11.
    E. De Souza, Neuroendocrine effects of benzodiazepines. J Psychiatr Res, 1990.24(Suppl 2): p. 111–119.PubMedCrossRefGoogle Scholar
  12. 12.
    R. Lydiard, The role of GABA in anxiety disorders. J Clin Psychiatry, 2003.64(Suppl 3): p. 21–27.PubMedGoogle Scholar
  13. 13.
    P. Dodd, Excited to death: different ways to lose your neurones. Biogerontology, 2002. 3(1–2): p. 51–56.PubMedCrossRefGoogle Scholar
  14. 14.
    P. Whiting, et al., Molecular and functional diversity of the expanding GABA-A receptor gene family. Ann N YAcad Sci, 1999.868: p. 645–653.CrossRefGoogle Scholar
  15. 15.
    D. Pritchett, H. Luddens, and P. Seeburg, Type I and type II GABAA-benzodiazepine receptors produced in transfected cells. Science. 1989 Sep 22;245(4924):1389–92, 1989.245(4924): p. 1389–1392.PubMedCrossRefGoogle Scholar
  16. 16.
    G. Smith and R. Olsen, Functional domains of GABAA receptors. Trends Pharmacol Sci, 1995.16(5): p. 162–168.PubMedCrossRefGoogle Scholar
  17. 17.
    R. McKernan and P. Whiting, Which GABAA-receptor subtypes really occur in the brain? Trends Neurosci, 1996.19(4): p. 139–143.PubMedCrossRefGoogle Scholar
  18. 18.
    E. Korpi, et al., GABA(A)-receptor subtypes: clinical efficacy and selectivity of benzodiazepine site ligands. Ann Med., 1997.29(4): p. 275–282.PubMedCrossRefGoogle Scholar
  19. 19.
    S. Stahl, Selective actions on sleep or anxiety by exploiting GABA-A/benzodiazepine receptor subtypes. J Clin Psychiatry, 2002.63(3): p. 179–180.PubMedCrossRefGoogle Scholar
  20. 20.
    J. Atack, Anxioselective Compounds Acting at the GABAA Receptor Benzodiazepine Binding Site. Curr Drug Target CNS Neurol Disord, 2003.2(4): p. 213–232.CrossRefGoogle Scholar
  21. 21.
    G. Griebel, et al., SL651498: an anxioselective compound with functional selectivity for alpha2- and alpha3-containing gamma-aminobutyric acid(A) (GABA(A)) receptors. J Pharmacol Exp Ther, 2001.298(2): p. 753–768.PubMedGoogle Scholar
  22. 22.
    J. Crawley and F. Goodwin, Preliminary report of a simple animal behavior model for the anxiolytic effects of benzodiazepines. Pharmacol Biochem Behav, 1980.13(2): p. 167–170.PubMedCrossRefGoogle Scholar
  23. 23.
    R. Young and D. Johnson, A fully automated light/dark apparatus useful for comparing anxiolytic agents. Pharmacol Biochem Behav, 1991.40(4): p. 739–743.PubMedCrossRefGoogle Scholar
  24. 24.
    E. Lepicard, et al., Differences in anxiety-related behavior and response to diazepam in BALB/cByJ and C57BL/6J strains of mice. Pharmacol Biochem Behav, 2000.67(4): p. 739–748.PubMedCrossRefGoogle Scholar
  25. 25.
    S. Pellow, et al., Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods, 1985.14(3): p. 149–167.PubMedCrossRefGoogle Scholar
  26. 26.
    J. Simiand, P. Keane, and M. Morre, The staircase test in mice: a simple and efficient procedure for primary screening of anxiolytic agents. Psychopharmacology, 1984.84(1): p. 48–53.PubMedCrossRefGoogle Scholar
  27. 27.
    L. Steru, et al., Comparing benzodiazepines using the staircase test in mice. Neurosci Biobehav Rev, 1985.9: p. 45–54.CrossRefGoogle Scholar
  28. 28.
    S. File, What can be learned from the effects of benzodiazepines on exploratory behavior? Neurosci Biobehav Rev, 1985.9: p. 45–54.PubMedCrossRefGoogle Scholar
  29. 29.
    R. Soulimani, et al., Behavioral effects of passiflora incarnata and its indole alkaloid and flavenoid derivatives and maltol in the mouse. J. Ethnopharmacol, 1997.57: p. 11–20.PubMedCrossRefGoogle Scholar
  30. 30.
    S. Akhondzadeh, et al., Passionflower in the treatment of opiates withdrawal: a double-blind randomized controlled trial. J Clinical Pharmacy and Therapeutics, 2001.26: p. 369–373.CrossRefGoogle Scholar
  31. 31.
    T. Field, D. Lee, and N. Holbrook, Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol, 2001. 127: p. 566–574.CrossRefGoogle Scholar
  32. 32.
    B. Winkel-Shirley, Biosynthesis of flavonoids and effects of stress. Curr Opin Plant Biol, 2002.5: p. 218–223.PubMedCrossRefGoogle Scholar
  33. 33.
    H. Ha, et al., Quercetin attenuates oxygen-glucose deprivation- and excitotoxin-induced neurotoxicity in primary cortical cell cultures. Biol Pharm Bull, 2003.26(4): p. 544–546.PubMedCrossRefGoogle Scholar
  34. 34.
    a.M.A. Speroni E, Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med, 1988.54: p. 488–491.PubMedCrossRefGoogle Scholar
  35. 35.
    C.S. Picq M, Prigent AF, Effect of two flavonoid compounds on central nervous system. Analgesic activity. Life Sci, 1991.49(26): p. 1979–1988.PubMedCrossRefGoogle Scholar
  36. 36.
    J. Medina, et al., Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem Pharmacol, 1990.40(10): p. 2227–2231.PubMedCrossRefGoogle Scholar
  37. 37.
    E. Nogueira and V. Vassilieff, Hypnotic, anticonvulsant and muscle relaxant effects of Rubus brasiliensis. Involvement of GABA(A)-system. J Ethnopharmacol, 2000.70(3): p. 275–280.PubMedCrossRefGoogle Scholar
  38. 38.
    A. Paladini, et al., Flavonoids and the central nervous system: from forgotten factors to potent anxiolytic compounds. J Pharm Pharmacol, 1999.51(5): p. 519–526.PubMedCrossRefGoogle Scholar
  39. 39.
    M. Marder and A. Paladini, GABA(A)-receptor ligands of flavonoid structure. Curr Top Med Chem, 2002.2(8): p. 853–867.PubMedCrossRefGoogle Scholar
  40. 40.
    C. Wolfman, et al., Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol Biochem Behav, 1994.47(1): p. 1–4.PubMedCrossRefGoogle Scholar
  41. 41.
    J. Medina, et al., Overview-flavonoids: a new family of benzodiazepine receptor ligands. Neurochem Res, 1997.22(4): p. 419–425.PubMedCrossRefGoogle Scholar
  42. 42.
    R.F. Petry RD, de-Paris F, Gosmann G, Salgueiro JB, Quevedo J, Kapczinski F, Ortega GG, Schenkel EP, Comparative pharmacological study of hydroethanol extracts of Passiflora alata and Passiflora edulis leaves. Phytother Res, 2001.15(2): p. 162–164.PubMedCrossRefGoogle Scholar
  43. 43.
    K. Dhawan, S. Kumar, and A. Sharma, Comparative anxiolytic activity profile of various preparations of Passiflora incarnata linneaus: a comment on medicinal plants’ standardization. J Altern Complement Med, 2002.8(3): p. 283–291.PubMedCrossRefGoogle Scholar
  44. 44.
    K. Dhawan, S. Kumar, and A. Sharma, Anxiolytic activity of aerial and underground parts of Passiflora incarnata. Fitoterapia, 2001.72(8): p. 922–926.PubMedCrossRefGoogle Scholar
  45. 45.
    D. Loew and M. Kaszkin, Approaching the problem of bioequivalence of herbal medicinal products. Phytotherapy research, 2002.16: p. 705–711.PubMedCrossRefGoogle Scholar
  46. 46.
    K. Hui, X. Wang, and H. Xue, Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med.2000 Feb;66(1): 91–3, 2000.PubMedCrossRefGoogle Scholar
  47. 47.
    J. Goutman, et al., Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. Eur J Pharmacol, 2003. 461((2–3)): p. 79–87.PubMedCrossRefGoogle Scholar
  48. 48.
    K. Hui, et al., Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol, 2002.64(9): p. 1415–1424.PubMedCrossRefGoogle Scholar
  49. 49.
    H. Viola, et al., 6-Chloro-3′-nitroflavone is a potent ligand for the benzodiazepine binding site of the GABA(A) receptor devoid of intrinsic activity. Pharmacol Biochem Behav, 2000.65(2): p. 313–320.PubMedCrossRefGoogle Scholar
  50. 50.
    M. Huen, et al., 5,7-Dihydroxy-6-methoxyflavone, a benzodiazepine site ligand isolated from Scutellaria baicalensis Georgi, with selective antagonistic properties. Biochem Pharmacol, 2003.66(1): p. 125–132.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • A. A. Roberts
    • 1
  1. 1.Department of Pathology and Laboratory MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations