Anticancer Therapeutic Potential of Soy Isoflavone, Genistein
Abstract
Genistein (4′5, 7-trihydroxyisoflavone) occurs as a glycoside (genistin) in the plant family Leguminosae, which includes the soybean (Glycine max). A significant correlation between the serum/plasma level of genistein and the incidence of gender-based cancers in Asian, European and American populations suggests that genistein may reduce the risk of tumor formation. Other evidence includes the mechanism of action of genistein in normal and cancer cells. Genistein inhibits protein tyrosine kinase (PTK), which is involved in phosphorylation of tyrosyl residues of membrane-bound receptors leading to signal transduction, and it inhibits topoisomerase II, which participates in DNA replication, transcription and repair. By blocking the activities of PTK, topoisomerase II and matrix metalloprotein (MMP9) and by down-regulating the expression of about 11 genes, including that of vascular endothelial growth factor (VEGF), genistein can arrest cell growth and proliferation, cell cycle at G2/M, invasion and angiogenesis. Furthermore, genistein can alter the expression of gangliosides and other carbohydrate antigens to facilitate their immune recognition. Genistein acts synergistically with drugs such as tamoxifen, cisplatin, 1,3bis 2-chloroethyl-1-nitrosourea (BCNU), dexamethasone, daunorubicin and tiazofurin, and with bioflavonoid food supplements such as quercetin, green-tea catechins and black-tea thearubigins. Genistein can augment the efficacy of radiation for breast and prostate carcinomas. Because it increases melanin production and tyrosinase activity, genistein can protect melanocytes of the skin of Caucasians from UV-B radiation-induced melanoma.
Keywords
Vascular Endothelial Growth Factor Breast Cancer Cell Prostate Cancer Cell Focal Adhesion Kinase Tyrosine PhosphorylationPreview
Unable to display preview. Download preview PDF.
References
- Adlercreutz H., Markkanen H., and Watanabe S., 1993, Plasma concentrations of phyto-oestrogens in Japanese men, Lancet. 342:1209–1210.PubMedCrossRefGoogle Scholar
- Adelcreutz H., and Mazur W., 1997, Phytoestrogens and western diseases, Ann. Med. 29:95–120.Google Scholar
- Agarwal R., 2000, Cell Signaling and Regulators of Cell Cycle as Molecular Targets for Prostate Cancer Prevention by Dietary Agents, J Biochem Pharm. 60:1051–1059.CrossRefGoogle Scholar
- Ahmed N., Pansino F., Baker M., Rice G., and Quinn M., 2002, Association between alphavbeta6 integrin expression, elevated p42/44 kDa MAPK, and plasminogen-dependent matrix degradation in ovarian cancer, J Cell Biochem. 84:675–686.PubMedCrossRefGoogle Scholar
- Akaza H., Miyanaga N., Takashima N., Naito S., Hirao Y., Tsukamoto T., and Mori M., 2002. Is daidzein nonmetabolizer a high risk for prostate cancer? A case-controlled study of serum soybean isoflavone concentration, Jpn J Clin Oncol. 32:296–300.PubMedCrossRefGoogle Scholar
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Wantanabe S., Itoh N., Shibuya M., and Fukami Y., 1987, Genistein, a specific inhibitor of tyrosine-specific protein kinases, J Biol Chem. 262:5592–5595.PubMedGoogle Scholar
- Allred C.D., Allred K.F., Ju Y.H., Virant S.M., and Helferich W.G., 2001a, Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumors in a dose-dependent manner, Cancer Res. 61:5045–5050.PubMedGoogle Scholar
- Allred C.D., Ju Y.H., Allred K.F., Chang J., and Helferich W.G., 2001b, Dietary genistein stimulates growth of estrogen-dependent breast cancer tumors similar to that observed with genistein, Carcinogenesis. 22:1667–1673.PubMedCrossRefGoogle Scholar
- Ando S., Nojima K., Majima H., Ishihara H., Suzuki M., Furusawa Y., Yamaguchi H., Koike S., Ando K., Yamauchi M., and Kuriyama T., 1998, Evidence for mRNA expression of vascular endothelial growth factor by X-ray irradiation in a lung squamous carcinoma cell line, Cancer Lett. 132:75–80.PubMedCrossRefGoogle Scholar
- Andrew D.P., Yoshino T., Guh L., Martin-Simonet M.T., and Butcher E.C., 1995, TABS, a T cell activation antigen that induces LFA-1-dependent aggregation, JImmunol. 155:1671–1684.Google Scholar
- Arai N., Strom A., Rafter J.J., and Gustafsson J.A., 2000, Estrogen receptor beta mRNA in colon cancer cells: growth effects of estrogen and genistein, Biochem Biophys Res Commun. 270:425–431.PubMedCrossRefGoogle Scholar
- Arts J., Grimbergen J., Toet K., and Kooistra T., 1999, On the role of c-Jun in the induction of PAI-1 gene expression by phorbol ester, serum, and IL- 1 alpha in HepG2 cells, Anterioscler Thromb Vasc Biol. 19:39–46.CrossRefGoogle Scholar
- Bagnato A., Tecce R., Di Castro V., and Catt K.J., 1997, Activation of mitogenic signaling by endothelin 1 in ovarian carcinoma cells, Cancer Res. 57:1306–1311.PubMedGoogle Scholar
- Balabhadrapathruni S., Thomas T.J., Yurkow E.J., Amenta P.S., and Thomas T., 2000, Effects of genistein and structurally related phytoestrogens on cell cycle kinetics and apoptosis in MDA-MB-468 human breast cancer cells, Oncol Rep. 7:3–12.PubMedGoogle Scholar
- Barnes S., Peterson T., and Coward L., 1995, Rationale for the use of Genistein-containing soy matrices in chemoprevention trials for breast and prostate cancer, J Cell Biochem Suppl. 22:181–187.PubMedCrossRefGoogle Scholar
- Barnes S., Sfakianos J., Coward L., and Kirk M., 1996, Soy isoflavonoids and cancer prevention. Underlying biochemical and pharmacological issues, Adv Exp Med Biol. 401:87–100.PubMedCrossRefGoogle Scholar
- Belka C., Ahlers A., Sott C., Gaestel M., Herrmann F., and Brach M.A., 1995, Interleukin (IL)-6 signaling leads to phosphorylation of the small heat shock protein (Hsp) 27 through activation of the MAPKAP kinase 2 pathway in monocytes and monocytic leukemia cells, Leukemia. 9:288–294.PubMedGoogle Scholar
- Bergaamaschi G., Rosti V., Danova M., Ponchio L., Lucotti C., and Cazzola M., 1993, Inhibitors of tyrosine phosphorylation induce apoptosis in human leukemic cell lines, Leukemia. 7:2012–2018.Google Scholar
- Bergan R., Kyle E., Nguyen P., Trepel J., Ingui C., and Neckers L., 1996, Genistein-stimulated adherence of prostate cancer cells is associated with the binding of focal adhesion kinase to beta-1-integrin, Clin Exp Metastasis. 14:389–398.PubMedCrossRefGoogle Scholar
- Bhatia N., and Agarwal R., 2001, Detrimental effect of cancer preventive phytochemicals silymarin, Genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells, Prostate. 46:98–107.PubMedCrossRefGoogle Scholar
- Bishop J. M., 1983, Oncogenes and proto-oncogenes, Hosp Pract. 18:67–74.Google Scholar
- Boros L.G., B. S., Lim S., and Lee W.N., 2001, Genistein inhibits nonoxidative ribose synthesis in MIA pancreatic adenocarcinoma cells: a new mechanism of controlling tumor growth, Pancreas. 22:1–7.PubMedCrossRefGoogle Scholar
- Borradaile N.M., de Dreu L.E., Wilcox L.J., Edwards J.Y., and Huff M.W., 2002, Soya phytoestrogens, genistein and daidzein, decrease apolipoprotein B secretion from HebG2 cells through multiple mechanisms, Biochem J. 366:531–539.PubMedCrossRefGoogle Scholar
- Borsellino N., Bonavida B., Ciliberto G., Toniatti C., Travali S., and D’Alessandro N., 1999, Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity, Cancer. 85:134–144.PubMedCrossRefGoogle Scholar
- Bronte V., Macino B., Zambon A., Rosato A., Mandruzzato S., Zanovello P., and Collavo D., 1996, Protein tyrosine kinases and phosphatases control apoptosis induced by extracellular adenosine 5′ triphosphate, Biochem Biophys Res Commun. 218:344–351.PubMedCrossRefGoogle Scholar
- Burgener D., Bonjour J.P., and Caverzasio J. 1995, Fluoride increases tyrosine kinase activity in osteoblast-like cells: regulatory role for the stimulation of cell proliferation and Pi transport across the plasma membrane, J Bone Miner Res. 10:64–171.Google Scholar
- Cafferata E.G., Gonzalez-Guerrico A.M., Giordano L., Pivetta O.H., and Santa-Coloma T.A., 2000, Interleukin1beta regulates CFTR expression in human intestinal T84 cells, Biochim Biophys Acta. 1500:241–248.PubMedCrossRefGoogle Scholar
- Cappelletti V., Fioravanti L., Miodini P., and Di Fronzo G., 2000, Genistein blocks breast cancer cells in the G (2) M phase of the cell cycle, J Cell Biochem. 79:594–600.PubMedCrossRefGoogle Scholar
- Carlo-Stella C., Dotti G., Mangoni L., Regazzi E., Garau D., Bonati A., Almici C., Sammarelli G., Savoldo B., Rizzo M.T., and Rizzoli V., 1996a, Selection of myeloid progenitors lacking BCR/ABL mRNA in chronic myelogenous leukemia patients after in vitro treatment with the tyrosine kinase inhibitor genistein, Blood. 88:3091–3100.PubMedGoogle Scholar
- Carlo-Stella C., Regazzi E., Garau D., Mangoni L., Rizzo M.T., Bonati A., Dotti G., Almici C., and Rizzoli V., 1996b, Effect of the protein tyrosine kinase inhitibor genistein on normal leukaemic haemopoietic progenitor cells, Br J Haematol. 93:551–557.PubMedCrossRefGoogle Scholar
- Casagrande F., Darbon J.M., 2000, P21 CIP1 is dispensable for the G2 arrest caused by genistein in human melanoma cells, J Exp Cell Res. 258:101–108.CrossRefGoogle Scholar
- Cataldi M., Taglialatela M., Guerriero S., Amoroso S., Lombardi G., di Renzo G., and Annunziato L., 1996, Protein-tyrosine kinases activate while protein-tyrosine phosphatases inhibit L-type calcium channel activity in pituitary GH3 cells, J Biol Chem. 19:9441–9446.Google Scholar
- Cattaneo M.G., D’atri F., and Vicentini L.M., 1997, Mechanisms of mitogen-activated protein kinase activation by nicotine in small-cell lung carcinoma cells, Biochem J. 328:499–503.PubMedGoogle Scholar
- Chen C.L., Levin A., Rao A., O’Neill K., Mess Inger Y., Myers D.E., Goldman F., Hurvitz C., Casper J.T., and Uckun F.M., 1999, Clinical pharmacokinetics of the CD 19 receptors-directed tyrosine kinase inhibitor B43-Genistein in patients with B-lineage lymphoid malignancies, J Clin Pharmacol. 39:1248–1255.PubMedCrossRefGoogle Scholar
- Chen X., Anderson J.J., 2001, Isoflavones inhibit proliferation of ovarian cancer cells in vitro via an estrogen receptor-dependent pathway, N.utr Cancer. 41:165–171.Google Scholar
- Choi Y.H., Lee W., Park K.Y., and Zhang L., 2000, p53-independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone Genistein in human prostate carcinoma cells, Jpn J Cancer Res. 91:164–173.PubMedCrossRefGoogle Scholar
- Choi Y.H., Zhang L., Lee W.H., and Park K.Y., 1998, Genistein-induced G2/M arrest is associated with the inhibition of cyclin B1 and the induction of p21 in human breast carcinoma cells, Int J Oncol 13:391–396.PubMedGoogle Scholar
- Clark J.W., Santos-Moore A., Stevenson L.E., and Frackelton A.R. Jr., 1996, Effects of tyrosine kinase inhibitors on the proliferation of human breast cancer cell lines and proteins important in the ras signaling pathway, Int J Cancer 65:186–191.PubMedCrossRefGoogle Scholar
- Constantinou A. and Huberman E., 1995, Genistein as an inducer of tumor cell differentiation: possible mechanisms of action. Proc Soc Exp Biol Med. 208:109–15.PubMedGoogle Scholar
- Constantinou A., Kiguchi K., and Huberman E., 1990, Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res. 50:2618–2624.PubMedGoogle Scholar
- Constantinou A.I., Kamath N., and Murley J.S., 1998a, Genistein inactivates bc1–2, delays the G2/M phase of the cell cycle, and induces apoptosis of human breast adenocarcinoma MCF-7 cells, Eur J Cancer. 34:1927–1934.PubMedCrossRefGoogle Scholar
- Constantinou A.I., Krygier A.E., and Mehta R.R., 1998b, Genistein induces maturation of cultured human breast cancer cells and prevents tumor growth in nude mice, Am J Clin Nutr. 68:1426S-1430S.Google Scholar
- Cruz M.L., Wong W.W., Mimouni F., Hachey D.L., Setchell K.D., Klein P.D., and Tsang R.C., 1994, Effects of infant nutrition on cholesterol synthesis rates, Pediatr Res. 35:135–140.PubMedCrossRefGoogle Scholar
- Dampier K., Hudson E.A., Howells L.M., Manson M.M., Walker R.A., and Gescher A., 2001, Differences between human breast cell lines in susceptibility towards growth inhibition by genistein, Br J Cancer. 85:618–624.PubMedCrossRefGoogle Scholar
- Darbon J.M., Penary M., Escalas N., Casagrande F., Goubin-Gramatica F., Baudouin C., and Ducommun B., 2000, Distinct Chk2 Activation Pathways Are Triggered by Genistein and DNA-damaging Agents in Human Melanoma Cells, J Biol Chem. 275:15363–15369.PubMedCrossRefGoogle Scholar
- Das R., and Vonderhaar B.K., 1996, Activation of raf-1, MEK, and MAP kinase in prolactin responsive mammary cells, Breast Cancer Res Treat 40:141–149.PubMedCrossRefGoogle Scholar
- Davis J.N., Kucuk O., and Sarkar F.H., 2002, Expression of prostate-specific antigen is transcriptionally regulated by Genistein in prostate cancer cells, Mol Carcinog. 34:91–101.PubMedCrossRefGoogle Scholar
- Davis J.N., Kucuk O., Djuric Z., and Sarkar F.H., 2001, Soy isoflavone supplementation in healthy men prevents NF-kappa B activation by TNF-alpha in blood lymphocytes., Free Radic Biol Med, 30:1293–1302.PubMedCrossRefGoogle Scholar
- Davis J.N., Kucuk, O., and Sarkar F.H., 1999, Genistein inhibits NF-kappa B activation in prostate cancer cells, Nutr Cancer. 35:167–174.PubMedCrossRefGoogle Scholar
- Davis J.N., Muqim N., Bhuiyan M., Kucuk O., Pienta KJ, and Sarkar F.H., 2000, Inhibition of prostate specific antigen expression by Genistein in prostate cancer cells, Int J Oncol. 16:1091–1097.PubMedGoogle Scholar
- de la Taille A., Katz A., Vacherot F., Saint F., Salomon L., Cicco A., Abbou C.C., and Chopin D.K., 2001, Cancer of the prostate: influence of nutritional factors. A new nutritional approach, Presse Med. 30:561–564.PubMedGoogle Scholar
- den Tonkelaar I, Keinan-Boker L, Veer PV, Arts CJ, Adlercreutz H, Thijssen JH, Peeters PH. 2001. Urinary phytoestrogens and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prey. 10:223–228.Google Scholar
- Deora A.B., Miranda M.B., and Rao S.G., 1997, Down-modulation of P210bcr/abl induces apoptosis/differentiation in K562 leukemic blast cells, Tumori. 83:756–761.PubMedGoogle Scholar
- Diel P., Olff S., Schmidt S., and Michna H., 2001, Molecular identification of potential selective estrogen receptor modulator (SERM) like properties of phytoestrogens in the human breast cancer cell line MCF-7, Planta Med. 67:510–514.PubMedCrossRefGoogle Scholar
- Ding D.X., Rivas C.I., Heaney M.L., Raines M.A., Vera J.C., and Golde D.W., 1994, The alpha subunit of the human granulocyte-macrophage colony-stimulating factor receptor signals for glucose transport via a phosphorylation-independent pathway, Proc Natl Acad Sci USA. 91:2537–2541.PubMedCrossRefGoogle Scholar
- Ding X.Z., Tong W.G., and Adrian T.E., 2001, 12-lipoxygenase metabolite 12(S)-HETE stimulates human pancreatic cancer cell proliferation via protein tyrosine phosphorylation and ERK activation, Int J Cancer. 94:630–636.PubMedCrossRefGoogle Scholar
- Elatter T.M., Virji A.S., 2000, The inhibitory effect of curcumin, Genistein, quercetin and cisplatin on the growth of oral cancer cells in vitro, Anticancer Res. 20:1733–1738.Google Scholar
- El-Zarruk A.A., and van den Berg H.W., 1999, The anti-proliferative effects of tyrosine kinase inhibitors towards tamoxifen-sensitive and tamoxifen-resistant human breast cancer cell lines in relation to the expression of epidermal growth factor receptors (EGF-R) and the inhibition of EGF-R tyrosine kinase, Cancer Lett. 142:185–193.PubMedCrossRefGoogle Scholar
- Ek O., Yanishevski Y., Zeren T., Waurzyniak B., Gunther R., Chelstrom L., Chandan-Langlie M., Schneider E., Myers D.E., Evans W., and Uckun F.M., 1998, In vivo toxicity and pharmacokinetic features of B43 (Anti-CD19)- Genistein immunoconjugate, Leuk Lymphoma. 30:389–394.PubMedGoogle Scholar
- Farhan H., Wahala K., Adlercreutz H., and Cross H.S., 2002, Isoflavonoids inhibit catabolism of vitamin D in prostate cancer cells., J Chromatogr B Analyt Technol. Biomed Life Sci. 777:261–268.PubMedCrossRefGoogle Scholar
- Finlay G.J., Holaway K.M., and Baguley B.C., 1994, Comparison of the effects of genistein and amsacrine on leukemia cell proliferation, Oncol Res. 6:33–37.PubMedGoogle Scholar
- Fioravanti L., Cappelletti V., Miodini P., Ronchi E., Brivio M., and Di Fronzo G., 1998, Genistein in the control of breast cancer cell growth: insights into the mechanism of action in vitro. Cancer Lett. 130:143–152.PubMedCrossRefGoogle Scholar
- Fiorelli G., Picariello L., Martineti V., Tonelli F., and Brandi M.L., 1999, Estrogen synthesis in human colon cancer epithelial cells, J Steroid Biochem Mol Biol. 71:223–230.PubMedCrossRefGoogle Scholar
- Frey R.S., and Singletary K.W., 2003, Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25c expression in immortalized human mammary epithelial cells, J Nutr. 133:226–231.PubMedGoogle Scholar
- Frey R.S., Li J., and Singletary K.W., 2001, Effects of genistein on cell proliferation and cell cycle arrest in nonneoplastic human mammary epithelial cells: involvement of Cdc2, p21 (waf/cip 1), p27 (kipl), and Cdc25c expression, Biochen Pharmacol. 61:979–989.CrossRefGoogle Scholar
- Fujimoto N., Sueoka N., Sueoka E., Okabe S., Suganuma M., Harada M., and Fujiki H., 2002, Lung cancer prevention with (-)-epigallocatechin gallate using monitoring by heterogenous nuclear ribonucleoprotein B 1, Int J Oncol. 20:1233–1239.PubMedGoogle Scholar
- Geller J., Sionit L., Partido C., Li L., Tan X., Youngkin T., Nachtsheim D., and Hoffman R.M., 1998, Genistein inhibits the growth of human-patient BPH and prostate cancer in histoculture, Prostate. 34:75–79.PubMedCrossRefGoogle Scholar
- Ghafar M.A., Golliday E., Bingham J., Mansukhani M.M, Anastasiadis A.G., and Katz A.E., 2002, Regression of prostate cancer following administration of Genistein Combined Polysaccharide (GCP), a nutritional supplement: a case report, J Altern Complement Med. 8:493–497.PubMedCrossRefGoogle Scholar
- Grandaliano G., Monno R., Ranieri E., Gesualdo L., Schena F.P., Martino C., and Ursi M, 2000, Regenerative and proinflammatory effects of thrombin on human proximal tubular cells, JAm Soc Nephrol. 11:1016–1025.Google Scholar
- Guo Q., Rimbach G., Moini H., Weber S., and Packer L., 2002, ESR and cell culture studies on free radicalscavenging and antioxidant activities of isoflavonoids, J Toxicology. 179:171–180.CrossRefGoogle Scholar
- Hagmann W., 1994, Cell proliferation status, cytokine action and protein tyrosine phosphorylation modulate leukotriene biosynthesis in a basophil leukaemia and a mastocytoma cell line, Biochem J. 299:467–472.PubMedGoogle Scholar
- Hartman R.R., Rimoldi D., Lejeune F.J., and Carrel S., 1997, Cell differentiation and cell-cycle alterations by tyrosine kinase inhibitors in human melanoma cells, Melanoma Res. 7:S27–S33.CrossRefGoogle Scholar
- Heruth D.P., Wetmore L.A., Leyva A., and Rothberg P.G., 1995, Influence of protein tyrosine phosphorylation on the expression of the c-myc oncogene in cancer of the large bowel, J Cell Biochem. 58:83–94.PubMedCrossRefGoogle Scholar
- Hedlund T.E., Johannes W.U., Miller G.J., 2003, Soy isoflavonoid equol modulates the growth of benign and malignant prostatic spithelial cells in vitro, J Prostate. 54:68–78.CrossRefGoogle Scholar
- Hillman G.G., Forman J., Kucuk O., Yudelev M., Maughan R.L., Rubio J., Layer A., Tekyi-Mensah S., Abrams J., and Sarkar F.H., 2001, Genistein potentiates the radiation effect on prostate carcinoma cells, Clin Cancer Res. 7:382–390.PubMedGoogle Scholar
- Hoffman R., 1995, Potent inhibition of breast cancer cell lines by the isoflavonoid kievitone: comparison with genistein, Biochem Biophys Res Commun. 211:600–606.PubMedCrossRefGoogle Scholar
- Honke K., Tsuda M., Hirahara Y., Miyao N., Tsukamoto T., Satoh M., and Wada Y, 1998, Cancer-associated expression of glycolipid sulfotransferase gene in human renal cell carcinoma cells, Cancer Res. 58:3800–3805.PubMedGoogle Scholar
- Honma Y., Okabe-Kado J., Kasukabe T., Hozumi M., and Umezawa K., 1990, Inhibition of ab 1 oncogene tyrosine kinase induces differentiation of human myelogenous leukemia K562 cells. Jpn J Cancer Res. 81:1132–113.PubMedCrossRefGoogle Scholar
- Hooijberg J.H., Broxterman H.J., Heijn M., Fles D.L., Lankelma J., and Pinedo H.M., 1997, Modulation by (iso) flavonoids of the ATPase activity of the multidrug resistance protein, FEBS Lett. 413:344–348.PubMedCrossRefGoogle Scholar
- Hsieh C.Y., Santell R.C., Haslam S.Z., and Helferich W.G., 1998, Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo, Cancer Res. 58:3833–3838.PubMedGoogle Scholar
- Hu Y., Dragowska W.H., Wallis A., Duronio V., and Mayer L., 2001, Cytotoxicity induced by manipulation of signal transduction pathways is associated with down-regulation of Bc1–2 but not Mc1–1 in MCF-7 human breast cancer, Breast Cancer Res Treat. 70:11–20.PubMedCrossRefGoogle Scholar
- Hunakova L., Sedlak J., Klobusicka M., Duraj J., and Chorvath B., 1994, Tyrosine kinase inhibitor-induced differentiation of D-562 cells: alterations of cell cycle and cell surface phenotype, Cancer Lett. 81:81–87.PubMedCrossRefGoogle Scholar
- Ihn H., and Tamaki K., 2002, Mitogenic activity of dermatofibrosarcoma protuberas is mediated via an extracellular signal related kinase dependent pathway, J Invest Dermatol. 119:954–960.PubMedCrossRefGoogle Scholar
- Iida J., Meijne A.M., Spiro R.C., Roos E., Furct L.T., and McCarthy J.B., 1995, Spreading and focal contact formation of human melanoma cells in response to the stimulation of both melanoma-associated proteoglycan (NG2) and alpha 4 beta 1 integrin, Cancer Res. 55:2177–2185.PubMedGoogle Scholar
- Jenab S., Morris P.L., 1997, Transcriptional regulation of Sertoli cell immediate early genes by interleukin-6 and interferon-gamma is mediated through phosphorylation of STAT 3 and STAT 1 proteins, Endocrinology 138:2740–2746.PubMedCrossRefGoogle Scholar
- Jones T.H., Justice S.K., and Price A., 1997, Suppression of tyrosine kinase activity inhibits [3H] thymidine uptake in cultured human pituitary tumor cells, J Clin Endocrinol Metab. 82:2143–2147.PubMedCrossRefGoogle Scholar
- Ju Y.H., Allred C.D., Allred K.F., Karko K.L., Doerge D.R., and Helferich W.G., 2001, Physiological concentrations of dietary genistein dose-dependently stimulate growth of estrogen-dependent human breast cancer (MCF-7) tumors implanted in athymic nude mice, J Nutr. 131:2957–2962.PubMedGoogle Scholar
- Ju Y.H., Doerge D.R., Allred K.F., Allred C.D., and Helferich W.G., 2002, Dietary genistein negates the inhibitory effect of tamoxifen on growth of estrogen-dependent human breast cancer (MCF-7) cells implanted in athymic mice, Cancer Res. 62:2474–2477.PubMedGoogle Scholar
- Katdare M., Osborne M., Telang N.T., 2002, Soy isoflavone genistein modulates cell cycle progression and induces apoptosis in HER-2/neu oncogene expressing human breast epithelial cells. Int J Oncol. 21:809–815.PubMedGoogle Scholar
- Katdare M., Osborne M.P., and Telang N.T., 1998, Inhibition of aberrant proliferation and induction of apoptosis in pre-neoplastic human mammary epithelial cells by natural phytochemicals, Oncol Rep 5:311–315.PubMedGoogle Scholar
- Kawase T., Oriskasa M., Oguro A., and Burns DM., 1999, Possible regulation of epidermal growth factor-receptor tyrosine autophosphorylation by calcium and G proteins in chemically permeabilized rat UMR106 cells, Arch Oral Biol. 44:157–171.PubMedCrossRefGoogle Scholar
- Kelly G.E., Nelson C., Waring M.A., Joannou G.E., and Reeder A.Y., 1993, Metabolites of dietary (soya) isoflavones in human urine, Clin Chim Acta. 223:9–22.PubMedCrossRefGoogle Scholar
- Khoshyomn S., Manske G.C., Lew S.M., Wald S.L., and Penar P.L., 2000. Synergistic action of genistein and cisplatin on growth inhibition and cytotoxicity of human medulloblastoma cells, Pediatr Neurosurg. 33:123–131.PubMedCrossRefGoogle Scholar
- Khoshyomn S., Nathan D., Manske G.C., Osler T.M., and Penar P.L., 2002, Synergistic effect of genistein and BCNU on growth inhibition and cytotoxicity of glioblastoma cells, J Neurooncol. 57:193–200.PubMedCrossRefGoogle Scholar
- Kiguchi K., Constantinou A.I., and Huberman E., 1990, Genistein-induced cell differentiation and protein-linked DNA strand breakage in human melanoma cells, Cancer Commun. 2:271–277.PubMedGoogle Scholar
- Kikuchi H., and Hossain A., 1999, Signal transduction-mediated CYPIA1 induction by omeprazole in human HepG2 cells., Exp Toxicol pathol. 51:342–346.PubMedCrossRefGoogle Scholar
- Kikuchi Y., and Nash H.A., 1979. Nicking-closing activity associated with bacteriophage lambda int gene product, Proc Natl Acad Sci USA. 76:3760–3764.PubMedCrossRefGoogle Scholar
- Kim J.G., Shin I., Lee K.S., and Han J.S., 2001, D609-sensitive tyrosine phosphorylation is involved in Fasmediated phospholipase, Exp Mol Med. 33:303–309.PubMedCrossRefGoogle Scholar
- Klein J.M., and McCarthy T.A., 1997, Inhibition of tyrosine kinase activity decreases expression of surfactant protein A in a human lung adenocarcinoma cell line independent of epidermal growth factor receptor, Biochim Biophys Acta. 1355:218–230.PubMedCrossRefGoogle Scholar
- Kobayashi T., Nakata T., and Kuzumaki T., 2002, Effect of flavonoids on cell cycle progression in prostate cancer cells, Cancer Lett. 176:17–23.PubMedCrossRefGoogle Scholar
- Kumar NB., Cantor A., Allen K., Ricardi D., and Cox C.E., 2002, The specific role of isoflavones on estrogen metabolism in premenopausal women, Cancer. 94:1166–1174.PubMedCrossRefGoogle Scholar
- Kumi-Diaka J., and Butler A., 2000, Caspase-3 protease activation during the process of genistein-induced apoptosis in TM4 testicular cells, Biol Cell. 92:115–124.PubMedCrossRefGoogle Scholar
- Kumi-Diaka J., Nguyen V., and Butler A., 1999, Cytotoxic potential of the phytochemical genistein isoflavone (4′, 5′, 7-trihydroxyisoflavone) and certain environmental chemical compounds on testicular cells, Biol Cell. 91:515–523.PubMedCrossRefGoogle Scholar
- Kumi-Diaka J., Rodriguez R., and Goudaze G., 1998, Influence of genistein (4′, 5′ 7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines, Biol Cell. 90:349–354.PubMedGoogle Scholar
- Kumi-Diaka J., Sanderson N., and Hall A., 2000, The mediating role of caspase-3 protease in the intracellular mechanism of Genistein-induced apoptosis in human prostatic carcinoma cell lines, DU 145 and LNCaP, Biol Cell. 92:594–604.Google Scholar
- Kuo M.L., Huang T.S., and Lin J.K., 1995, Preferential requirement for protein tyrosine phosphatase activity in the 12-O-tetradecanoylphorbol-13-acetate-induced differentiation of human colon cancer cells, Biochem Pharmacol. 50:1217–1222.PubMedCrossRefGoogle Scholar
- Kuo S.M., 1996, Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells, Cancer Lett. 110:41–48.PubMedCrossRefGoogle Scholar
- Kuo S.M., Morehouse H.F., and Lin C.P., 1997, Effect of antiproliferative flavonoids on ascorbic acid accumulation in human colon adenocarcinoma cells, Cancer Lett. 116:131–137.PubMedCrossRefGoogle Scholar
- Kuriu A., Ikeda H., Kanakura Y., Griffin J.D., Druker B., Yagura H., Kitayama H., Ishikawa J., Nichiura T., and Kanayama Y, et al., 1991, Proliferation of human myeloid leukemia cell line associated with the tyrosinephosphorylation and activation of the proto-oncogene c-kit product. Blood. 78:2834–2840.PubMedGoogle Scholar
- Kusaka M., and Sperelakis N., 1996, Genistein inhibition of fast Na+ current in uterine leiomyosarcoma cells is independent of tyrosine kinase inhibition, Biochim Biophys Acta. 1278:1–4.PubMedCrossRefGoogle Scholar
- Kyle E, Neckers L., Takimoto C., Curt G., and Bergan R., 1997, Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity, Mol Pharmacol. 51:193–200.PubMedGoogle Scholar
- Lamon-Fava S., 2000, Genistein activates apolipoprotein A-I gene expression in the human hepatoma cell line Hep G2, J. Nutr. 130:2489–2492.PubMedGoogle Scholar
- Lampe J.W., 2003, Isoflavonoid and lignan phytoestrogens as dietary biomarkers, J Nutr. 133:956S–964S.Google Scholar
- Lebakken C.S., McQuade K.J., and Rapraeger A.C., 2000, Syndecan1 signals independently of betal integrin s during Raji cell spreading, Exp Cell Res. 259:315–325.PubMedCrossRefGoogle Scholar
- Lei W., Mayotte J.E., and Levitt M.L., 1998, EGF-dependent and independent programmed cell death pathways in NCI-H596 normal cell lung cancer cells, Biochem Biophys Res Commun. 245:939–945.PubMedCrossRefGoogle Scholar
- Lei W., Mayotte J.E., and Levitt M.L., 1999, Enhancement of chemosensitivity and programmed cell death by tyrosine kinase inhibitors corelates with EGFR expression in non-small cell lung cancer cells, Anticancer Res. 19:221–228.PubMedGoogle Scholar
- Leung L.K., and Wang T.T., 2000, Bcl-2 is not reduced in the death of MCF-7 cells at low genistein concentration, J Nutr. 130:2922–2926.PubMedGoogle Scholar
- Leyton J., Garcia-Marin L.J., Tapia J.A., Jensen R.T., and Moody T.W., 2001, Bombesin and gastrin releasing peptide increase tyrosine phosphorylation of focal adhesion kinase and paxillin in non-smell cell lung cancer cells, Cancer Lett. 162:87–95.PubMedCrossRefGoogle Scholar
- Li W., and Weber G., 1998a, Synergistic action of tiazofurin and Genistein in human ovarian carcinoma cells, Oncol Res. 10:117–122.PubMedGoogle Scholar
- Li W., and Weber G., 1998b, Synergistic action of tiazofurin and genistein on growth inhibition and differentiation of K-562 human leukemic cells, Life Sci. 63:1975–1981.PubMedCrossRefGoogle Scholar
- Li Y., and Sarkar F., 2002a, Inhibition of nuclear factor kappaB activation in PC3 cells by Genistein is mediated via Akt signaling pathway, J Clin Cancer Res. 8:2369–2377.Google Scholar
- Li Y., and Sarkar F., 2002c, Gene expression profiles of Genistein-treated PC3 prostate cancer cells, J Nutr. 132:3623–3631.PubMedGoogle Scholar
- Li Y., and Sarkar F.H., 2002b, Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with Genistein, J Cancer Lett. 186:157–164.CrossRefGoogle Scholar
- Li Y., Bhuiyan M., Sarkar F.H., 1999b. Induction of apoptosis and inhibition of c-erbB-2 in MDA-MB-435 cells by genistein. Int J Oncol. 15:525–533.PubMedGoogle Scholar
- Li Y., Upadhyay S., Bhuiyan M., and Sarkar F.H., 1999a, Induction of apoptosis in breast cancer cells MDAMB-231 by genistein, Oncogene. 18:3166–3172.PubMedCrossRefGoogle Scholar
- Lian F., Bhuiyan M., Li Y.W., Wall N., Kraut M., and Sarkar F.H., 1998, Genistein-induced G2-M arrest, p21WAF1 upregulation, and apoptosis in a non-small-cell lung cancer cell line, Nutr Cancer. 31:184–191.PubMedCrossRefGoogle Scholar
- Lian F., Li Y., Bhuiyan M., and Sarkar F.H., 1999, p53 independent apoptosis induced by genistein in lung cancer cells, Nutr Cancer. 33:125–131.PubMedCrossRefGoogle Scholar
- Liu Y., Bhalla K., Hill C., and Priest D.G., 1994, Evidence for involvement of tyrosine phosphorylation in taxolinduced apoptosis in a human ovarian tumor cell line, Biochem Pharmacol. 48:1265–1272.PubMedCrossRefGoogle Scholar
- Loukovaara M., Carson M., Palotie A., and Adlercreutz H., 1995, Regulation of sex hormone-binding globulin production by isoflavonoids and patterns of isoflavonoid conjugation in HepG2 cell cultures, Steroids. 60:656–661.PubMedCrossRefGoogle Scholar
- Lu L.J., and Anderson K.E., 1998. Sex and long-term soy diets affect the metabolism and excretion of soy isoflavones in humans, Am J Clin Nutr. 68:1500S-1504S.Google Scholar
- Lu L.J., Anderson K.E., Grady J.J., Kohen F., and Nagamani M., 2000, Decreased ovarian hormones during a soya diet: implications for breast cancer prevention, Cancer Res. 60:4112–4121.PubMedGoogle Scholar
- Lu L.J., Bromeling L.D., Marshall M.V., and Ramanujam V.M., 1995, A simplified method to quantify isoflavones in commercial soybean diets and human urine after legume consumption, Cancer Epidemiol Biomarkers Prey. 4:497–503.Google Scholar
- Lu L.J., Lin S.N., Grady J.J., Nagamani M., and Anderson K.E., 1996, Altered kinetics and extent of urinary daidzein and genistein excretion in women during chronic soya exposure, Nutr Cancer. 26: 289–302.PubMedCrossRefGoogle Scholar
- Maeno T., Tanaka T., Sando Y., Suga T., Maeno Y., Nakagawa J., Hosono T., Sato M., Akiyama H., Kishi S., Nagai R., and Kurabayashi M., 2002, Stimulation of vascular endothelial growth factor gene transcription by all trans retinoic acid through Sp1 and Sp3 sites in human bronchioloalveolar carcinoma cells, Am J Respir Cell Mol Biol. 26:246–253.PubMedCrossRefGoogle Scholar
- Maggiolini M., Bonofiglio D., Marsico S., Panno M.L., Cenni B., Picard D., Ando S., 2001. Estrogen receptor alpha mediates the proliferative but not the cytotoxic dose-dependent effects of two major phytoestrogens on human breast cancer cells. Mol Pharmacol. 60:595:602.Google Scholar
- Maggiolini M., Vivacqua A., Carpino A., Bonofiglio D., Fasanella G., Salerno M., Picard D., and Ando S., 2002, The mutant androgen receptor T877A mediates the proliferative but not the cytotoxic dose-dependent effects of Genistein and quercetin on human LNCaP prostate cancer cells, Mol Pharmacol. 62:1027–1035.PubMedCrossRefGoogle Scholar
- Makishima M., Honma Y., Hozumi M., Sampi K., Hattori M., Umezawa K., Motoyoshi K., 1991, Effects of inhibitors of protein tyrosine kinase activity and/or phosphatidylinositol turnover on differentiation of some human myelomonocytic leukemia cells. Leuk Res. 5:701:708.Google Scholar
- Marino M., Pallottini V., and Trentalance A., 1998, Estrogens cause rapid activation of IP3-PKC-alpha signal transduction pathway in HEP2 cells., Biochem Biophys Res Commun. 245:254–258.PubMedCrossRefGoogle Scholar
- Markiewicz L., Garey J., Adlercreutz H., and Gurpide E., 1993, In vitro bioassays of non-steroidal phytoestrogens, J Steroid Biochem Mol Biol. 45:399–405.PubMedCrossRefGoogle Scholar
- Markovits J., Pommier Y., Mattern M.R., Esnault C., Roques B.P., Le Pecq JB., and Kohn K.W., 1986. Effects of the bifunctional antitumor intercalator ditercalinium on DNA in mouse leukemia L1210 cells and DNA topoisomerase II, Cancer Res. 46:5821–5826.PubMedGoogle Scholar
- Mazur W., 1998, Phytoestrogen content in foods, Baillieres Clin Endocrinol Metab. 2:729–742Google Scholar
- Mazur W., and Adlecreut H., 2000, Overview of naturally occuring endocrine-active substances in the human diet in relation to human health, Nutrition. 16:654–658.PubMedCrossRefGoogle Scholar
- McMichael-Phillips D.F., Harding C., Morton M., Roberts S.A., Howell A., Potten C.S., and Bundred N.J., 1998, Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast, Am J Clin Nutr. 68:1431S-1435S.Google Scholar
- Messina M.J., and Loprinzi C.L., 2001, Soy for breast cancer survivors: a critical review of the literature, J Nutr. 131:3095S-3108S.Google Scholar
- Milovic V., Deubner C., Zeuzem S., Piiper A., Caspary W.F., and Stein J., 1995, EGF stimulates polyamine uptake in Caco-2 cells, Biochem Biophys Res Commun. 206:962–968.PubMedCrossRefGoogle Scholar
- Miodini P., Fioravanti L., Di Fronzo G., and Cappelletti V., 1999. The two phyto-oestrogens genistein and quercetin exert different effects on estrogen receptor function, Br J Cancer. 80:1150–1155.PubMedCrossRefGoogle Scholar
- Mitchell J.H., Cawood E., Kinniburgh D., Provan A., Collins A.R., and Irvine D.S., 2001, Effect of phytoestrogen food supplement on reproductive health in normal males, Clin Sci. 100:613–618.PubMedCrossRefGoogle Scholar
- Mitchell J.H., Duthie S., and Collins A.R., 2000, Effects of phytoestrogens on growth and DNA integrity in human prostate tumor cell lines: PC-3 and LNCaP, J Nutr Cancer. 38:223–228.CrossRefGoogle Scholar
- Mitropoulou T.N., Tzanakakis G.N., Nikitovic D., Tsatsakis A., and Karamanos N.K., 2002, In vitro effects of genistein on the synthesis and distribution of glycosaminoglycans/proteoglycans by estrogen receptor-positive and negative human breast cancer epithelial cells, Anticancer Res. 22:2841–2846.PubMedGoogle Scholar
- Monti E., and Sinha B.K., 1994, Antiproliferative effect of genistein and adriamycin against estrogen-dependent and independent human breast carcinoma cell lines, Anticancer Res. 14:1221–1226.PubMedGoogle Scholar
- Morisset J., Douziech N., Rydzewska G., Buscail L., and Rivard N., 1995, Cell signalling pathway involved in PACAP-induced AR4–2J cell proliferation, Cell Signal. 7:195–205.PubMedCrossRefGoogle Scholar
- Morton D.L., Ravindranath M.H., Irie R.F., 1994. Tumor gangliosides as targets for active specific immunotherapy of melanoma in man. Prog Brain Res. 101:251–275.PubMedCrossRefGoogle Scholar
- Morton M.S., Arisaka O., Miyake N., Morgan L.D., and Evans B.A., 2002, Phytoestrogen concentrations in serum from Japanese men and women over forty years of age, J Nutr. 132:3168–3171.PubMedGoogle Scholar
- Mousavi Y., Adlercreutz H., 1993, Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture, Steroids. 58:301–304.PubMedCrossRefGoogle Scholar
- Mukhopadhyay D., Tsiokas L., and Sukhatme V.P., 1998, High cell density induces vascular endothelial growth factor expression via protein tyrosine phosphorylation, Gene Expr. 7:53–60.PubMedGoogle Scholar
- Munoz R., Klingenberg O., Wiedlocha A., Rapak A., Falnes PO., and Olsnes S., 1997, Effect of mutation of cytoplasmic receptor domain and of Genistein on transport of acidic fibroblast growth factor into cells, On cogene. 15:525–536.Google Scholar
- Murkies A., Dalais F.S., Briganti E.M., Burger H.G., Healy D.L., Wahlqvist M.L., and Davis S.R., 2000. Phytoestrogens and breast cancer in postmenopausal women: a case control study, Menapause. 7:289–296.CrossRefGoogle Scholar
- Myers D.E., Jun X., Waddick K.G., Forsyth C., C helstrom L.M., Gunther R.L., Tumer N.E., Bolen J., and Uckun F.M., 1995. Membrane-associated CD19 LYN complex is an endogenous p53-independent and Bcl-2-independent regulator of apoptosis in human B-lineage lymphoma cells, Proc Nall Acad Sci USA. 92:9575–9579.CrossRefGoogle Scholar
- Myers D.E., Sicheneder A., Clementson D., Dvo rak N., Venkatachalam T., Sev A.R., Chandan-Langlie M., and Uckun F.M., 1998, Large scale manufacturing of B43 (anti-CD19)-genistein for clinical trials in leukemia lymphoma, Leuk Lymphoma. 29:329–338.PubMedCrossRefGoogle Scholar
- Naik H.R., Lehr J., and Pienta K.J., 1994, An in vitro and in vivo study of antitumor effects of Genistein on hormone refractory prostate cancer, Anticancer Res. 14:2617–2619.PubMedGoogle Scholar
- Nakagawa H., Yamamoto D., Kiyozuka Y., Tsuta K., Uemura Y., Hioki K., Tsutsui Y., and Tsubura A., 2000. Effects of genistein and synergistic action in combination with eicosapentaenoic acid on the growth of breast cancer cell lines, J Cancer Res Clin Oncol. 126:448–454.PubMedCrossRefGoogle Scholar
- Nakanishi K., Fujimoto J., Ueki T., Kishimoto K., Hashimoto-Tamaoki T., Furuyama J., Itoh T., Saski Y., and Okamoto E., 1999, Hepatocyte growth factor promotes migration of human hepatocellular carcinoma via phosphatidylinositol 3-kinase, Clin Exp. Metastasis. 17:507–514.PubMedCrossRefGoogle Scholar
- Nomoto S., Arao Y., Horiguchi H., Ikeda K., Kayama F., 2002. Oestrogen causes G2/M arrest and apoptosis in breast cancer cells MDA-MB-231. Oncol Rep. 9:773–776.PubMedGoogle Scholar
- Oelmann E., Sreter L., Schuller I., Serve H., Koenigsmann M., Wiedenmann B., Oberberg D., Reufi B., Thiel E., and Berdel W.E., 1995, Nerve growth factor stimulates clonal growth of human lung cancer cell lines and a human glioblastoma cell line expressing high-affinity nerve growth factor binding sites involving tyrosine kinase signaling, Cancer Res. 55:2212–2219.PubMedGoogle Scholar
- Ohno T., Kato N., Ishii E., Shimizu M., Ito Y., Tomono S., and Kawazu S., 1993, Genistein augments cyclic adenosine 3′5′-monophosphate (cAMP) accumulation and insulin release in MIN6 cells, Endocr Res. 19:273–285.PubMedCrossRefGoogle Scholar
- Okura A., Arakawa H., Oka H., Yoshinari T., and Monden Y., 1988. Effect of genistein on topoisomerase activity and on the growth of [Val 12] Ha-rastransformed NIH 3T3 cells, Biochem Biophys Res Commun. 157:183–189.PubMedCrossRefGoogle Scholar
- Onozawa M., Fukuda K., Ohtani M., Akaza H., Sugimura T., and Wakabayashi K., 1998, Effects of soybean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP, Jpn J Clin Oncol. 28:360–363.PubMedCrossRefGoogle Scholar
- Oude Weernink P.A., Verheul E., Kerkhof E., van Veelen C.W., and Rijksen G., 1996, Inhibitors of protein tyrosine phosphorylation reduce the proliferation of two human glioma cell lines, Neurosurgery. 38:108–113.PubMedCrossRefGoogle Scholar
- Pagliacci M.C., Smacchia M., Migliorati G., Grignani F., Riccardi C., and Nicoletti I., 1994, Growth-inhibitory effects of the natural phyto-oestrogen genistein in MCF-7 human breast cancer cells, Eur J Cancer 30A:1675–1682.CrossRefGoogle Scholar
- Pagliacci M.C., Spinozzi F., Migliorati G., Fumi G., Smacchia M., Grignani F., Riccardi C., and Nicoletti I., 1993, Genistein inhibits tumor cell growth in vitro but enhances mitochrondrial reduction of tetrazolium salst: a further pitfall in the use of the MTT assay for evaluating cell growth and survival, Eur J Cancer 29A:1573–1577.CrossRefGoogle Scholar
- Panno M.L., Salerno M., Pezzi V., Sisci D., Maggiolini M., Mauro L., Morrone E.G. and Ando S., 1996, Effect of oestradiol and insulin on the proliferative pattern and on oestrogen and progesterone receptor contents in MCF-7 cells, J Cancer Res Clin Oncol. 122:745–749.PubMedCrossRefGoogle Scholar
- Park J.H., Oh E. J., Choi Y.H., Kang C.D., Kang H.S., Kim D.K., Kang K.I., and Yoo M.A., 2001, Synergistic effects of dexamethasone and Genistein on the expressions of Cdk inhibitor p21 WAF 1 /CIP 1 in human hepatocellular and colorectal carcinoma cells, Int J Oncol. 18:997–1002.PubMedGoogle Scholar
- Peterson G., and Barnes S., 1991, Genistein inhibition of the growth of human breast cancer cells: independence from estrogen receptors and the multi-drug resistance gene, Biochem Biophys Res Commun. 179: 661–667.PubMedCrossRefGoogle Scholar
- Peterson G., and Barnes S., 1993, Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation, Prostate. 22:335–345.PubMedCrossRefGoogle Scholar
- Peterson G., and Barnes S., 1996, Genistein inhibits both estrogen and growth factor-stimulated proliferation of human breast cancer cells, Cell Growth Differ. 7:1345–1351.PubMedGoogle Scholar
- Peterson T.G., Coward L., Kirk M., Falany C.N., and Barnes S., 1996, The role of metabolism in mammary epithelial cell growth inhibition by the isoflavones genistein and biochanin A, Carcinogenesis 17:1861–1869.PubMedCrossRefGoogle Scholar
- Peterson T.G., Ji G.P., Kirk M., Coward L., Falany C.N., and Barnes S., 1998, Metabolism of the isoflavones genistein and biochanin A in human breast cancer cell lines, Am J Clin Nutr. 68:1505S-1511S.Google Scholar
- Plewa M.J., Berhow M.A., Vaughn S.F., Woods E.J., Rundell M., Naschansky K., Bartolini S., and Wagner E.D., 2001, Isolating antigenotoxic components and cancer cell growth suppressors from agricultural by-products, Mutat Res. 480:109–120.PubMedCrossRefGoogle Scholar
- Po L.S., Chen Z.Y., Tsang D.S., and Leung L.D., 2002, Baicalein and genistein display differential actions on estrogen receptor (ER) transactivation and apoptosis in MCF-7 cells, Cancer Lett. 187:33–40.PubMedCrossRefGoogle Scholar
- Polkowski K., Skierski J.S., and Mazurek A.P., 2000, Anticancer activity of genistein-piperazine complex. In vitro study with HL-60 cells, Acta Pol Pharm. 57:223–232.PubMedGoogle Scholar
- Ponnathpur V., Ibrado A.M., Reed J.C., Ray S., Huang Y., Self S., Bullock G., Nawabi A., and Bhalla K., 1995, Effects of modulators of protein kinases on taxol-induced apoptosis of human leukemic cells possessing disparate levels of p26BCL-2 protein, Clin Cancer Res. 1:1399–1406.PubMedGoogle Scholar
- Portoukalian J., Zwingelstein G., Abdul-Malak N., and Dore J.F., 1978, Alteration of gangliosides in plasma and red cells of humans bearing melanoma tumors, Biochem Biophys Res Commun. 85:916–920PubMedCrossRefGoogle Scholar
- Pumford S.L., Morton M., Turkes A, and Griffiths K., 2002, Determination of the isoflavonoids Genistein and daidzein in biological samples by gas chromatography-mass spectrometry, Ann Clin Biochem. 39:281–292.PubMedCrossRefGoogle Scholar
- Ralph S.J., Wines B.D., Payne M.J., Grubb D., Hatzinisiriou I., Linnane A.W., and Devenish R.J., 1995, Resistance of melanoma cell lines to interferons correlates with reduction of IFN-induced tyrosine phorylation. Induction of the anti-viral state by IFN is prevented by tyrosine kinase inhibitors, J Immunol. 154:2248–2256.PubMedGoogle Scholar
- Rao A., Woodruff R., Wade W.N., Kute T.E., and Cramer SD., 2002, Genistein and Vitamin D synergistically inhibit prostatic epithelial cell growth, J Nutr. 132:3191–3194.PubMedGoogle Scholar
- Rauth S., Kichina J., and Green A., 1997, Inhibition of growth and induction of differentiation of metastatic melanoma cell sin vitro by Genistein: chemosensitivity is regulated by cellular p53, Br J Cancer. 75:1559–1566.PubMedCrossRefGoogle Scholar
- Ravindranath M.H., Morton D.L., 1991. Role of gangliosides in active immunotherapy with melanoma vaccine. Int Rev Immunol. 7:303–329.PubMedCrossRefGoogle Scholar
- Ravindranath M.H., Morton D.L., Irie R.F., 1989. An epitope common to gangliosides O-acetyl-GD3 and GD3 recognized by antibodies in melanoma patients after active specific immunotherapy. Cancer Res. 49:3891–3897.PubMedGoogle Scholar
- Ravindranath M.H., Tsuchida T., Morton D.L., Irie R.F., 1991. Ganglioside GM3: GD3 ratio as an index for the management of melanoma. Cancer. 67:3029–3035.PubMedCrossRefGoogle Scholar
- Rokhlin O.W., and Cohen M.B., 1995, Differential sensitivity of human prostatic cancer cell lines to the effects of protein kinase and phosphatase inhibitors., Cancer Lett. 98:103–110.PubMedGoogle Scholar
- Sakamoto K., 2000, Synergistic effects of thearubitin and genistein on human prostate tumor cell (PC-3) growth via cell cycle arrest, Cancer Lett. 151:103–109.PubMedCrossRefGoogle Scholar
- Salti G.I., Grewai S., Mehta R.R., Das Gupta T.K., Boddie A.W., J.R. 2000, Genistein induces apoptosis and topoisomerase II-mediated DNA breakage in colon cancer cells, Eur J Cancer. 36:796–802.PubMedCrossRefGoogle Scholar
- Santell R.C., Kieu N., and Helferich W.G., 2000, Genistein inhibits growth of estrogen-independent human breast cancer cells in culture but not in athymic mice, J Nutr. 130:1665–1669.PubMedGoogle Scholar
- Santibanez J.F., Navarro A., and Martinez J., 1997, Genistein inhibits proliferation and in vitro invasive potential of human prostatic cancer cell lines, Aniticancer Res. 17:1199–1204.Google Scholar
- Sasamura H., Takahasi A., Miyao N., Yanase M., Masumori N., Kitamura H., Itoh N., and Tsukamoto T, 2002, Inhibitory effect on expression of angiogenic factors by antiangiogenic agents in renal cell carcinoma, Br J Cancer. 86:768–773.PubMedCrossRefGoogle Scholar
- Sathyamoorthy N., Gilsdorf J.S., and Wang T.T., 1998, Differential effect of genistein on transforming growth factor beta 1 expression in normal and malignant mammary epithelial cells, Anticancer Res, 18:2449–2453.PubMedGoogle Scholar
- Savickieni J., Gineitis A., Shanbhag V.P., and Stigbrand T., 1995, Protein kinase inhibitors exert stage specific and inducer dependent effects on HL-60 cell differentiation, Anticancer Res. 15:687–692.Google Scholar
- Scholar E.M., and Toews M.L., 1994. Inhibition of invasion of murine mammary carcinoma cells by the tyrosine kinase inhibitor genistein, Cancer Lett. 87:159–162.PubMedCrossRefGoogle Scholar
- Setchell K.D., Zimmer-Nechemias L., Cai J., and Heubi J.E., 1998, Isoflavone content of infant formulas and the metabolic fate of these phytoestrogens in early life, Am J Clin Nutr. 68:1453S-1461S.Google Scholar
- Shao Z.M., Alpaugh M.L., Fontana J.A., and Barsky S.H., 1998a, Genistein inhibits proliferation similarly in estrogen receptor-positive and negative human breast carcinoma cell lines characterized by P21 WAF 1/CIP 1 induction, G2/M arrest, and apoptosis, J Cell Biochem. 69:44–54.PubMedCrossRefGoogle Scholar
- Shao Z.M., Shen Z.Z., Fontana J.A., and Barsky S.H., 2000, Genistein’s “ER-dependent and independent” actions are mediated through ER pathways in ER-positive breast carcinoma cell lines, Anticancer Res. 20: 2409–2416.PubMedGoogle Scholar
- Shao Z.M., Wu J., Shen Z.Z., and Barsky S.H., 1998c, Genistein inhibits both constitutive and EGF-stimulated invasion in ER-negative human breast carcinoma cell lines, Anticancer Res. 18:1435–1439.PubMedGoogle Scholar
- Shao Z.M., Wu J., Shen Z.Z., and Barsky S.H., 1998b, Genistein exerts multiple suppressive effects on human breast carcinoma cells, Cancer Res. 58:4851–4857.PubMedGoogle Scholar
- Shelnutt S.R., Cimino C.O., Wiggins P.A., and Badger T.M., 2000, Urinary pharmacokinetics of the glucuronide and sulfate conjugates of genistein and daidzein, Cancer Epidemiol Biomarkers Prey. 9:413–419.Google Scholar
- Shen F., and Weber G., 1997, Synergistic action of quercetin and Genistein in human ovarian carcinoma cells, Oncol. Res. 9:597–602.PubMedGoogle Scholar
- Shen F., Xue X., and Weber G., 1999, Tamoxifen and genistein synergistically down-regulate signal transduction and proliferation in estrogen receptor-negative human breast carcinoma MDA-MB-435 cells, Anticancer Res. 19:1657–1662.PubMedGoogle Scholar
- Shen J.C., Klein R., Wei Q., Guan Y., Contois J.H., Wang T.T., Chang S., and Hursting S.D., 2000, Low-dose Genistein induces cyclin-dependent kinase inhibitors and G (1) cell-cycle arrest in human prostate cancer cells, Mol Carcinog. 29:92–102.PubMedCrossRefGoogle Scholar
- Simeone D.M., Yule D.I., Logsdon C.D. and Williams J.A., 1995, Ca2+ signaling through secretagogue and growth factor receptors on pancreatic AR42J cells, Regul Pept. 55:197–206.PubMedCrossRefGoogle Scholar
- Sjoberg E.R., Chammas R., Ozawa II., Kawashima I., Kho K.H., Morris HR, Dell, A., Tai T and Varki A.,1995, Expression of De-N-actetyl-gangliosides in Human melanoma Cells Is Induced by Genistein or Nocodazole, J Bio Chem. 270:2921–2930.CrossRefGoogle Scholar
- So F.V., Guthrie N., Chambers A.F., and Carroll K.K., 1997, Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen, Cancer Lett. 112:127–133.PubMedCrossRefGoogle Scholar
- Spinozzi F., Pagliacci M.C., Migliorati G., Moraca R., Grignani F., Riccardi C., and Nicoletti I., 1994, The natural tyrosine kianse inhibitor genistein produces cellcycle arrest and apoptosis in Jurkat T- leukemia cells, Leuk Res. 18:431–439.PubMedCrossRefGoogle Scholar
- Steck T.R., and Drlica K., 1984, Bacterial chromosome segregation: evidence for DNA gyrase involvement in decatenation, Cell. 36:1081–1088.PubMedCrossRefGoogle Scholar
- Sternglanz R., DiNardo S., Voelkel K.A., Nishimura Y., Hirota Y., Becherer K., Zumstein L., and Wang J.C., 1981. Mutations in the gene coding for Escherichia coli DNA topoisomerase I affect transcription and transposition, Proc Natl Acad Sci USA. 78:2747–2751.PubMedCrossRefGoogle Scholar
- Strom S.S, Yamamura Y., Duphorne C.M., Spitz M.R., Babaian R.J., Pillow P.C., and Hursting S.D., 1999, Phytoestrogen intake and prostate cancer: a case-control study using a new database, Nutr Cancer. 33:20–25.PubMedCrossRefGoogle Scholar
- Sun X.Y., Plouzek C., Henry J.P., Wang T.T., and Phang J.M., 1998, Increase d UDP-glucuronosyltransferase activity and decreased prostate specific antigen production by biochanin A in prostate cancer cells, Cancer Res. 58:2379–2384.PubMedGoogle Scholar
- Suzuki K., Koike H., Matsui H., Ono Y., Hasumi M., Nakazato H., Okugi H., Sekine Y., Oki K., Ito K., Yamamoto T., Fukabori Y., Kurokawa K., and Yamanaka H., 2002, Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3, Int J Cancer. 99:846–852.PubMedCrossRefGoogle Scholar
- Takeda Y., Nishio K., Niitani H., and Saijo N., 1994, Reversal of multidrug resistance by tyrosine-kinase inhibitors in a non-P-glycoprotein-mediated multidrug-resistant cell line, Int J Cancer. 57:229–239.PubMedCrossRefGoogle Scholar
- Tanos V., Brzezinski A., Drize O., Strauss N., Peretz T., 2002. Synergistic inhibitory effects of genistein and tamoxifen on human dysplastic and malignant epithelial breast cells in vitro. Eur J Obstet Gynecol Reprod Biol. 102:188–194.PubMedCrossRefGoogle Scholar
- Thompson D., Whicher J.T., and Evans S.W., 1993, Interleukin 6 signal transduction in a human hepatoma cell line (Hep G2), Immunopharmacol Immunotoxicol. 15:371–386.PubMedCrossRefGoogle Scholar
- Tiisala S., Majuri M.L., Carpen O., Renkonen R., 1994, Genistein enhances the ICAM-mediated adhesion by inducing the expression of ICAM-1 and its counter-receptors, Biochem Biophys Res Commun. 203:443–449.PubMedCrossRefGoogle Scholar
- Torti M., Marti K.B., Altschuler D., Yamamoto K., and Lapetina E.G., 1992, Erythropoietin induces p21ras activation and p 120GAP tyrosine phosphorylation in human erythroleukemia cells, J Biol Chem. 267:8293–8298.PubMedGoogle Scholar
- Traganos F., Ardelt B., Halko N., Bruno S., and Darzynkiewicz Z., 1992, Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells. Cancer Res. 52:6200–6208.PubMedGoogle Scholar
- Tsujishita Y., Asaoka Y., and Nishizuka Y., 1994, Regulation of phospholipase A2 in human leukemia cell lines: its implication for intracellular signaling, Proc Natl Acad Sci USA. 91:6274–6278.PubMedCrossRefGoogle Scholar
- Uckun F.M., Evans W.E., Forsyth C.J., Waddick K.G., Ahlgren L.T., Chelstrom L.M., Burkhardt A., Bolen J., Myers D.E., 1995, Biotherapy of B-cell precursor leukemia by targeting genistein to CD 19-associated tyrosine kinases, Science. 267:886–891.PubMedCrossRefGoogle Scholar
- Uckun F.M., Messinger Y., Chen C.L., O’Neill K., Myers D.E., Goldman F., Hurvitz C., Casper J.T., Levine A., 1999, Treatment of therapy-refractory B-lineage acute lymphoblastic leukemia with an apoptosis-inducing CD 19-directed tyrosine kinase inhibitor. Clin Cancer Res. 5:3906–3913.PubMedGoogle Scholar
- Uckun F.M., Narla R.K., Jun X., Zeren T., Venkatatchalam T., Waddick K.G., Rostostev A., and Myers D.E., 1998, Cytototoxic activity of epidermal growth factor-genistein against breast cancer cells, Clin Cancer Res. 4:901–912.PubMedGoogle Scholar
- Upadhyay S., Neburi M., Chinni S.R., Alhasan S., Miller F., and Sarkar F.H., 2001, Differential sensitivity of normal and malignant breast epithelial cells to genistein is partly mediated by p21 (WAF1), Clin Cancer Res. 7:1782–1789.PubMedGoogle Scholar
- van Rijn J., van den Berg J.,1997, Flavonoids as enhancers of x-ray-induced cell damage in hepatoma cells., Clin Cancer Res. 3:1775–1779.PubMedGoogle Scholar
- Veldman C.M., Schmid C., 1998, Differential effects of fluroide and insulin-like growth factor I on sodiumdependent alanine and phosphate transport in a human osteoblast-like cell line, Growth Horm IGF Res. 8:55–63.PubMedCrossRefGoogle Scholar
- Venkatakrishnan G.S.R., and Groopman J.E., 2000, Chemokine receptors CXCR-1/2 activate mitogen-activated protein kinase via the epidermal growth factor receptor in ovarian cancer cells, J Biol Chem. 275:6868–6875.PubMedCrossRefGoogle Scholar
- Verma S.P., Salamone E., and Goldin B., 1997, Curcumin and genistein, plant natural products, show synergistic inhibitory effects on the growth of human breast cancer MCF-7 cells induced by estrogenic pesticides, Biochem Biophys Res Commun. 233:692–696.PubMedCrossRefGoogle Scholar
- Versantvoort C.H., Rodes T., and Twentyman P.R., 1996, Acceleration of MRP-associated efflux of rhodamine 123 by genistein and related compounds, Br J Cancer. 74:1949–1954.PubMedCrossRefGoogle Scholar
- Wang C., and Kurzer M.S., 1998, Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors, Nutr Cancer. 31:90–100.PubMedCrossRefGoogle Scholar
- Wang T.T., Sathyamoorthy N., Phang J.M., 1996. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 17:272–275.Google Scholar
- Watanabe S., Yamaguchi M., Sobue T., Takahashi T., Miura T., Arai Y., Mazur W., Wahala K., and Adlercreutz H., 1998. Pharmacokinetics of soybean isoflavones in plasma, urine and feces of men after ingestion of 60 g baked soybean powder (kinako), J Nutr. 128:1710–1715.PubMedGoogle Scholar
- Weber G., Shen D.F., Li W., Yang H., Look K.Y., Abonyi M., and Prajda N., 2000, Signal transduction and biochemical targeting of ovarian carcinoma, Eur J Gynaecol Oncol. 21:231–236.PubMedGoogle Scholar
- Wegenka U.M., Lutticken C., Buschmann J., Yuan J., Lottspeich F., Muller-Esterl W., Schindler C., Roeb E., Heinrich P.C., and Horn F., 1994, The interleukin-6-activated acute-phase response factor is antigenically and functionally related to members of the signal transducer and activator of transcription (STAT) family, Mol Cell Biol. 14:3186–3196.PubMedGoogle Scholar
- Willard S.T., and Frawley L.S., 1998, Phytoestrogens have agonistic and combinatorial effects on estrogenresponsive gene expression in MCF-7 human breast cancer cells, Endocrine. 8:117–121.PubMedCrossRefGoogle Scholar
- Xiang H., Schevzov G., Gunning P., Williams HM., and Silink M., 2002, A comparative study of growth-inhibitory effects of isoflavones and their metabolites on human breast and prostate cancer cell lines, Nutr Cancer. 42:224–232.PubMedCrossRefGoogle Scholar
- Xu J., and Loo G., 2001, Different effects of genistein on molecular markers related to apoptosis in two phenotypically dissimilar breast cancer cell lines, J Cell Biochem. 82:78–88.PubMedCrossRefGoogle Scholar
- Yabunaka N., 1995, Studies on the regulation of glycolipid sulfotransferase activity in human renal cancer cells, Hokkaido Igaku Zasshi. 70:289–300.PubMedGoogle Scholar
- Yabunaka N., Honke K., Ishii A., Ogiso Y., Kuzumaki N., Agishi Y., and Makita A., 1997, Involvement of Ras in the expression of glycolipid sulfotransferase in human renal cancer cells, Int J Cancer. 71:620–630.PubMedCrossRefGoogle Scholar
- Yamada A., Hara A., Inoue M., Kamizono S., Higuchi T., and Itoh K., 1997, Beta 2-integrin-mediated signal up-regulates counterecptor ICAM-1 expression on human monocytic cell line THP-1 through tyrosine phosphorylation, Cell Immunol. 178:9–16.PubMedCrossRefGoogle Scholar
- Yamamoto S., Sobue T., Sasaki S., Kobayashi M., Arai Y., Uehara M., Adlercreutz H., Watanabe S., Takahashi T., Litoi Y., Iwase Y., Akabane M., and Tsugane S., 2001, Validity and reproducibility of a self-administered food-frequency questionnaire to assess isoflavone intake in a Japanese population in comparison with dietary records and blood and urine isoflavones, J Nutr. 131:2741–2747.PubMedGoogle Scholar
- Yamane M., and Abe A., 2000, Omega-hydroxylation activity toward leukotriene B (4) and polyunsaturated fatty acids in the human hepatoblastoma cell line, HepG2, and human lung adenocarcinoma cell line, A549, J Biochem. 128:827–835.PubMedCrossRefGoogle Scholar
- Yamashita K., Suzuki M., Iwata H., Koike T., Hamaguchi M., Shinagawa A., Noguchi T., and Hayakawa T., 1996. Tyrosine phosphorylation is crucial for growth signaling by tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2), FEBS Lett. 396:103–107.PubMedCrossRefGoogle Scholar
- Yan C., and Han R., 1999, Protein tyrosine kinase inhibitor genistein suppresses in vitro invasion of HT 1080 human fibrosarcoma cells, Zhonghua Zhong Liu Za Zhi. 21:171–174.PubMedGoogle Scholar
- Yanagihara K., Ito A., Toge T., and Numoto M., 1993, Antiproliferative effects of isoflavones on human cancer cell lines established from the gstrointestinal tract, Cancer Res. 53:5815–5821.PubMedGoogle Scholar
- Yang C.C., Hsu C., Sheu J.C, Mai X.Y., and Yang S.D., 1998, Differential tyrosine phosphorylation/activation of oncogenic proline-directed protein kinase F (A)/GSK-3alpha in well and poorly differentiated human prostate carcinoma cells, J Protein Chem. 17:329–335.PubMedCrossRefGoogle Scholar
- Yang E.B., Wang D.F., Mack P., and Cheng L.Y., 1996, Genistein, a tyrosine kinase inhibitorm reduces EGF-induced EGF receptor internalization and degradation in human hepatoma HepG2 cells, Biochem Biophs Res Commun. 224:309–317.CrossRefGoogle Scholar
- Yu J., Cheng Y., Xie L., and Zhang R., 1999, Effects of genistein and daidzein on membrane characteristics of HCT cells, Nutr Cancer. 33:100–104.PubMedCrossRefGoogle Scholar
- Yu L., Blackburn G.L., and Zhou JR., 2003, Genistein and daidzein downregulate prostate androgen-regulated transcript- 1 (PART 1) gene expression induced by dihydrotestosterone in human prostate LNCaP cancer cells, J Genistein Prostate Cancer. 133:389–392.Google Scholar
- Yun J., Lee C.K., Chang I.M., Takatsu K., Hirano T., Min K.R., Lee M.K., and Kim Y., 2000, Differential inhibitory effects of sophoricoside analogs on bioactivity of several cytokines, Life Sci. 67:2855–2863.PubMedCrossRefGoogle Scholar
- Zheng W., Dai Q., Custer L.J., Shu X.O., Wen W.Q., Jin F., Franke A.A., 1999, Urinary excretion of isoflavonoids and the risk of breast cancer, Cancer Epidemiol Biomarkers Prey. 8:35–40.Google Scholar
- Zhu Q., Meisinger J., Van Thiel D.H., Zhang Y., and Mobarhan S., 2002, Effects of soybean extract on morphology and survival of Caco-2, SW620, and HT-29 cells, Nutr Cancer. 42:131–140.PubMedCrossRefGoogle Scholar