The Effects of Switching from Coal to Alternative Fuels on Heavy Metals Emissions from Cement Manufacturing

  • Arun B. Mukherjee
  • Ursula Kääntee
  • Ron Zevenhoven
Chapter

Abstract

The total generation of scrap car tires throughout the world is estimated at 1000 million pieces per year which presents economic, environmental treatment and disposal problems. In the European Union, the estimated generation of scrap car tires is about 180 million per year of which 65% should be recycled by the member states. In Fnnand, the recovery percentage is about 90. There are many ways scrap car tires can be reused and these may include heat and power production, road construction, landfills, protection of sea shores from waves and so on. A cement production plant at the south-west coast of Finland has replaced traditional fossil fuel (coal and petcoke) by 10% scrap car tires. Car tires contain heavy metals. This study focuses on how toxic elements Hg and Tl can be captured as particulates in presence of Mn and Cr oxides. The shifting of gaseous phases of metals to particulate forms is more beneficial for the ecosystem because metal-containing particulates are more easily seperatable from the gas stream by the emission control equipments.

Keywords

Alternative Fuel Cement Plant Waste Tire Tire Scrap Cement Manufacturing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Statistical year book of Finland. 2000,193–194.Google Scholar
  2. 2.
  3. 3.
    Williams, P. T., Borttrill, R. P., and Cunliffe, A. M. The potential of pyrolyses for recycled used tyres, In: Recycling and Reuse of used Tyres. Dhar, R. K., Limbachiya, M. C. and Paine, K. A. (Eds). MPG Books. Bodmin, UK, 2001, 187–201.Google Scholar
  4. 4.
    National Asphalt Paving Association Scrap tire utilization technologies. Lanham, MD, 1993.Google Scholar
  5. 5.
    Williams, P. T., Waste treatment and disposal, John Wiley &Sons, Chichester, 1998.Google Scholar
  6. 6.
    Davies, R. D., and Worthington, G. S. Use of scrap tyre as a fuel in the cement manufacturing process, See ref. 3, 93–106.Google Scholar
  7. 7.
    Kääntee, U., Zevenhoven, R., Backman, R., and Hupa, M. Process modelling of cement manufacturing using alternative fuels. See ref. 3, 81–92.Google Scholar
  8. 8.
    Kääntee, U., Zevenhoven, T., Backman, R., and Hupa, M. The impact of alternative fuels on the cement manufacturing process. In: Proc of R2000 Recovery, Recycling and Reintegration, June 2000, Toronto (ON), Canada, 2000,1070–1075 (CD-ROM)Google Scholar
  9. 9.
    WA Greenhouse Gas R & D Programme (IEA GHG R & D). The reduction of greenhouse gas emissions from the cement industry, Report No. PH3/7, Cheltenham, UK.Google Scholar
  10. 10.
    Alsop, P.A. “Cement Plant Operations Handbook for Dry Process Plants” 2“d Edition, International Cement Review, Dorking, Surrrey (UK ) July 1998.Google Scholar
  11. 11.
    Rosemann, H., Theoretische und betriebliche Untersuchungen zum Brennstof- fenergieverbrauch von Zementdrehofenanlagen mit Vorcalcinierung (Theoritical and operational investigation on fuel consumption in rotary kiln cement plants with pre calciner). Schriftenreihe der Zementindustrie 48, Beton Verlag, Dusseldorf, 1987 (in German).Google Scholar
  12. 12.
    Finnsementti Oy, Emission measurements report EVK-19709V-01 (13.9.1995)Google Scholar
  13. 13.
    Finnsementti Oy, Emission measurements report EVK-21067V-01 (16.11.1995)Google Scholar
  14. 14.
    Karlsson, M., Zevenhoven, R., Hupa, M. Laboratory characterisation of waste tyre particles for combustion in a cement klin. In: Proc. of the Finnish-Swedish Flame Days, Naantali, Finland. Sept 3–4, 1996. 18 p.Google Scholar
  15. 15.
    Environment Agency, Tires in the environment, Environment Agency Report, UK, 1998.Google Scholar
  16. 16.
    European Commission, Copy to the Commission, DGXI of the Member States reporting for 1995 to the Secretary of the Basel Convention, 1998Google Scholar
  17. 17.
    Nelson, R. G., Hossain, A. S. M. M., An energetic and economic analysis of using scrap tyres for electricity generation and cement manufacturing, See ref 4, 119–127.Google Scholar
  18. 18.
    Zevenhoven, R., Editor, The 1999 Finnish waste-to-energy course, Course material, Helsinki University of Technology, Espoo, Finland, 1999.Google Scholar
  19. 19.
    Uniroyal, Rubber chemical selector guide 2000, URL: http://www.uniyoyalchemical.com/rubchems.htm.
  20. 20.
    Lyons, J. C., Hitchens, D. G., and Monticello, D. A., Recovery of scrap rubber tires from landfill for construction uses, waste disposal by landfill, Green >93, Sarsby, ed, A. A. Balkema, Rotterdam, 1995, 327–334.Google Scholar
  21. 21.
    Park, J. K., Kim, J. Y., and Edil, T. B., Mitigation of organic compound movement in landfills by a layer of shredded tires, Proc 66th Water Envirn Fed Conf, California, 1996.Google Scholar
  22. 22.
    Amirkhanian, S. N., Utilization of crumb rubber in asphaltic concrete mixtures–south Carolina=s experience, See ref 3, 163–174.Google Scholar
  23. 23.
    Collins, K. J., Jensen, A. C., Mallinson, J. J., Smith, I. P., Mudge, S. M. and Russel, A. Scrap tyres for marine construction: Environmental impact. See ref, 3, 149–162.Google Scholar
  24. 24.
    ETRA (European Tire Recycling Association), Civil engineering association in the EU, 2000, 15–17.Google Scholar
  25. 25.
    ETRA (European Tire Recycling Association), Further information, on bales, a new development, 2000, p. 13.Google Scholar
  26. 26.
    Meij, R., Winkel, B. H., and Havinga, H., Emissies naar van micro-en spoorelementen tijdens bijsstoken van 10% secundaire brandstoffen en biomassa in poederkoolgestookte eenheden in Nederland, (Emissions of micro-and trace elements from CO-firing 10% secondary fuels and biomass in pulverised coal fired units in the Netherlands) 99530162-KST/MAT 99–6579, Arnhem, The Netherlands, KEMA, 1999, pp. 49, (in Dutch).Google Scholar
  27. 27.
    Meij, R., and Pilage, E., Databank spoorelementen. Deel 6 Emissies bij het stoken van zware stookolie (Data base trace elements Part 6: emissions from firing heavy fuel oil) 63925-KES/WBR 94–3104, Arnhem, The Netherlands, KEMA, 1994, (in Dutch).Google Scholar
  28. 28.
    Abo Akademi University, Combustion Chemistry Research Group, Turku, Finland, Fuel analysis data bank (R. Zevenhoven) (unpublished ), 1998.Google Scholar
  29. 29.
    Vogg, H., Braun, H., Metzger, M., and Schneider, J., The specific role of cadmium and mercury in municipal solid waste incineration. Waste Management & Research, 4, 1986, 65–74.CrossRefGoogle Scholar
  30. 30.
    Flagan, R. C., Submicron particles from coal combustion, 1761 Symposium ( International) on Combustion, The Combustion Institute, 1978, p. 97.Google Scholar
  31. 31.
    U.S. EPA, Prediction of the fate of toxic metals in hazardous waste incinerators, U. S. Environmental Protection Agent, Office of Research and Development, Washington, D.C., 1988, 1–3 to 1–14.Google Scholar
  32. 32.
    Clarke, L. B., and Sloss, L. L., Trace elements - emissions from coal combustion and gasification. IEACR/49, London, UK, IEA Coal Research, 1992, 111 pp.Google Scholar
  33. 33.
    Meij, R., Behaviour, control and emissions of trace species by coal-fired power plants in Europe, 58087-KST/MAT 97–6546, Arnhem, Netherlands, KEMA, 1997, 53 pp.Google Scholar
  34. 34.
    Frizgerald, W., Engstrom, D., Mason, R., and Nater, E., The case for atmospheric mercury contamination in remote areas. Environ Sci Technol 32 (1), 1998, 1–7.CrossRefGoogle Scholar
  35. 35.
    Granite, E.J., Pennline, H.W., Hargis, R.A., ANovel sorbents for mercury removal from flue gas@ Ind. & Eng. Chem. Res. 39, 2000, 1020–1029CrossRefGoogle Scholar
  36. 36.
    Granite, E.J., Pennline, H.W., Haddad, G.J., Hargis, R.A. An investigation of sorbents for mercury removal from flue gas in: Proc. of the 15th Ann. Int. Pittsburgh Coal Conf., Pittsburgh ( PA ), Sept. 1998 ( CD-ROM )CrossRefGoogle Scholar
  37. 37.
    Ranta, J., Autonpaloittelujätteen ja rengasromun terminen konversio energiaksi ja raaka-aineeklsi (Thermal conversion of automotive shredder residue into energy and raw materails). VTT Research Notes 1960, Espoo, Finland, 1999, 81 pp.Google Scholar
  38. 38.
    Al-Tabbaa, A., and Chifambira, B., and Waterfall, P., Novel and sustainable applications for granulated waste tyre in low permeability subsurface barriers, See ref 3, 175–186.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Arun B. Mukherjee
    • 1
  • Ursula Kääntee
    • 2
  • Ron Zevenhoven
    • 3
  1. 1.Department of Limnology and Environmental ProtectionUniversity of HelsinkiFinland
  2. 2.Finnsementti OyParainenFinland
  3. 3.Energy Engineering and Environmental ProtectionHelsinki University of TechnologyEśpooFinland

Personalised recommendations