Processing Plasmas and Reactors

  • Srinivasan Sivaram


In our discussion of the fundamental characteristics of plasmas, we did not place emphasis on the means of generating and sustaining the plasma. Nor did we consider the proper confinement of the plasma and the reactants, or the optimization of the plasma in order to produce a solid film on the substrate. In this chapter we will address these issues and study the coupling of external power to the discharge for its generation and maintenance. We will use a simple DC diode plasma in order to illustrate electron production and loss mechanisms. However, since most useful CVD processes use AC power sources, we will also examine RF and microwave discharges.


Electron Cyclotron Resonance Microwave Discharge Step Coverage Electron Cyclotron Resonance Heating Electron Cyclotron Resonance Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. C. Brown, Introduction to Electrical Discharges in Gases, John Wiley, New York, 1966.Google Scholar
  2. 2.
    E. Nasser, Fundamentals of Gaseous Ionization and Plasma Electronics, Wiley Interscience, New York, 1971.Google Scholar
  3. 3.
    J. S. Townsend, Electricity in Gases, Clarendon Press, London, 1915Google Scholar
  4. J. J. Thomson and G. P. Thomson, Conduction of Electricity Through Gases, Vol. II, p. 512, Cambridge University Press, Cambridge, UK, 1928.zbMATHGoogle Scholar
  5. 4.
    J. Slepian, Conduction of Electricity in Gases, p. 78, Westinghouse Electric and Manufacturing Co., Educational Dept., East Pittsburgh, 1933.Google Scholar
  6. 5.
    R. Paschen, Weidemann Annalen, 37, 69 (1889)CrossRefGoogle Scholar
  7. S.M. Rossnagel, in Thin Film Processes II (Vossen and Kern, eds.), p. 11, Academic Press, New York, 1991.CrossRefGoogle Scholar
  8. 6.
    F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plenum Press, New York, 1983.Google Scholar
  9. 7.
    D. L. Flamm, J. Vac. Sci. Technol. A4 (3), 729 (1986).CrossRefGoogle Scholar
  10. 8.
    H. R. Koenig, and L. I. Maissel, IBM J. RandD 14, 168 (1970).CrossRefGoogle Scholar
  11. 9.
    W. Kern, course notes, IEEE VLSI Multilevel Interconnect Conference Seminars, 1988Google Scholar
  12. R. Reif and W. Kern, in Thin Film Processes II (Vossen and Kern, eds.), p. 525, Academic Press, New York, 1991.CrossRefGoogle Scholar
  13. 10.
    R. S. Rosier, and G. M. Engle, Solid State Technol. 22 (12), 88 (1979)Google Scholar
  14. R. S. Rosier, and G. M. Engle, Solid State Technol. 24 (4), 172 (1981)Google Scholar
  15. J. R. Hollahan, and R. S. Rosier, in Thin Film Processes (Vossen and Kern, eds.), p. 335, Academic Press, New York, 1978.CrossRefGoogle Scholar
  16. 11.
    J. Asmussen, J. Vac. Sci. Technol. A7 (3), 883 (1989).MathSciNetCrossRefGoogle Scholar
  17. 12.
    P. Kidd, J. Vac. Sci. Technol. A9 (3), 466 (1991).CrossRefGoogle Scholar
  18. 13.
    R. Chebi, and S. Mittal, in Proc. IEEE VMIC, 1991, p. 61.Google Scholar
  19. 14.
    D. Webb, and S. Sivaram, in Proc. IEEE VMIC, 1992, p. 141.Google Scholar
  20. 15.
    B. Chapman, Glow Discharge Processes, John Wiley, New York, 1980.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Srinivasan Sivaram

There are no affiliations available

Personalised recommendations