Skip to main content

Emerging CVD Techniques

  • Chapter
Book cover Chemical Vapor Deposition
  • 482 Accesses

Abstract

The bulk of the discussion so far has concentrated on the two main modes of CVD film growth for microelectronics: thermal and plasma CVD. However, to suit novel applicatons, new CVD techniques are being developed where the energy for the forward progress of the CVD reaction is supplied by sources other than heat and electrical power. In these techniques, the reactant molecules are raised to excited states by direct absorption of energies from sources including photons, electrons and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Peters, F. L. Gebhart, and T. C. Hall, Solid State Technol. 23 (9), 121 (1980).

    Google Scholar 

  2. J. Y. Chen, R. C. Henderson, J. T. Hall, and J. W. Peters, J. Electrochem. Soc. 131 (9), 2146 (1984).

    Article  Google Scholar 

  3. T. Inoue, M. Konagai, and K. Takahashi, Appl. Phys. Lett. 43 (8), 774 (1983).

    Article  Google Scholar 

  4. R. Solanki, C. A. Moore, and G. J. Collins, Solid State Technol. 28 (6), 220 (1985).

    Google Scholar 

  5. D. J. Ehrlich, and J. Y. Tsao, J. Vac. Sci. Technol. Bl, 969 (1983).

    Google Scholar 

  6. R. Solanki, P. K. Boyer, and G. J. Collins, Appl. Phys. Lett. 41, 1048 (1983).

    Article  Google Scholar 

  7. D. J. Ehrlich, and J. Y. Tsao, in VLSI Electronics (Einspruch, ed.) Vol. 7, Ch. 3, Academic Press, New York, 1983.

    Google Scholar 

  8. L. R. Thompson, J. J. Rocca, K. Emery, P. K. Boyer, and G.J. Collins, Phys. Lett. 43, 777 (1983).

    Google Scholar 

  9. K. Emery, et al., Proc. Materials Research Society Symposium, Boston, Mass., 1983.

    Google Scholar 

  10. G. M. Shedd, H. Lezec, A. D. Dubner, and J. Melngailis, Appl. Phys. Lett. 49 (23) 1584 (1986).

    Article  Google Scholar 

  11. J. Melngailis, C. R. Musil, E. H. Stevens, M. Utlaut, E. M. Kellogg, R. T. Post, M.W. Geis, and R. W. Mountain, J. Vac. Sci. Technol. B4, 176 (1986).

    Article  Google Scholar 

  12. K. Gamo, N. Takakura, N. Samoto, R. Shimizu, and S. Namba, Jpn. J. Appl. Phys. 23, L293 (1984).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sivaram, S. (1995). Emerging CVD Techniques. In: Chemical Vapor Deposition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4751-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4751-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4753-9

  • Online ISBN: 978-1-4757-4751-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics