CVD of Semiconductors

  • Srinivasan Sivaram
Chapter

Abstract

Semiconducting films such as Si and GaAs used in ICs depend on their crystallographic perfection to produce the device performance demanded of them. In theory, the growth of single-crystal thin films to match the substrate lattice, or epitaxy, is possible through most common methods of thin film deposition, such as evaporation, PVD, and CVD. However, CVD, liquid phase epitaxy and molecular beam epitaxy are the most commonly used methods of epitaxial thin film growth. In this chapter, we will examine the role of the chemistry, process conditions, and the reactor, that promote epitaxial growth of the semiconducting thin film.

Keywords

Chemical Vapor Deposition Epitaxial Growth Compound Semiconductor Liquid Phase Epitaxy Gate Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Faggin, and T. Klein, Solid State Electron. 13 (8), 1125 (1970).CrossRefGoogle Scholar
  2. 2.
    R. S. Muller, and T. I. Kamins, Device Electronics for Integrated Circuits, p. 443, John Wiley, New York, 1986.Google Scholar
  3. 3.
    S. M. Sze, Physics of Semiconductor Devices, 2nd Ed., John Wiley, New York, 1981.Google Scholar
  4. 4.
    M. E. Lunnon, and D.W. Greve, J. Appl. Phys. 54, 3278 (1983).CrossRefGoogle Scholar
  5. 5.
    T. Kamins, Polycrystalline Silicon for Integrated Circuit Applications, p. 218, Kluwer Academic, Boston, 1988.CrossRefGoogle Scholar
  6. 6.
    U. S. Davidsohn, and F. Lee, Proc. IEEE 57, 1532 (1969).CrossRefGoogle Scholar
  7. 7.
    R. D. Rung, H. Momose, and Y. Nagakubo, IEEE IEDM Techn. Dig. 236 (1982).Google Scholar
  8. 8.
    R. S. Rosier, Solid State Technol. 21 (4), 63–70 (1977).Google Scholar
  9. 9.
    C. H. J. van den Brekel, and L. J. M. Bollen, J. Cryst. Growth 54, 310 (1981).CrossRefGoogle Scholar
  10. 10.
    M. L. Hitchman, J. Kane, and A. E. Widmer, Thin Solid Films 59, 231 (1979).CrossRefGoogle Scholar
  11. 11.
    T. Kamins, Polycrystalline Silicon for Integrated Circuit Applications, p. 27, Kluwer Academic, Boston, 1988.CrossRefGoogle Scholar
  12. 12.
    B. S. Meyerson, and M. L. Yu, J. Elecrochem. Soc. 131 (5), 2366 (1984).CrossRefGoogle Scholar
  13. 13.
    L. H. Hall, and K. M. Koliwad, J. Electrochem. Soc. 120 (10), 1438 (1973).CrossRefGoogle Scholar
  14. 14.
    F. Moghadam, Intel Corporation, private communications.Google Scholar
  15. 15.
    R. S. Rosier, Solid State Technol. 21 (4), 63–70 (1977).Google Scholar
  16. 16.
    M. Matsui, Y. Shiraki, and E. Maruyama, J. Appl. Phys. 53 (2), 995 (1982).CrossRefGoogle Scholar
  17. 17.
    T. I. Kamins, J. Electrochem. Soc. 127 (3), 686 (1980).CrossRefGoogle Scholar
  18. 18.
    S. Nakayama, 1. Kawashima, and J. Murota, J. Electrochem. Soc., 133 (8), 1721 (1986).CrossRefGoogle Scholar
  19. 19.
    P. S. Burggraff, Semiconductor International, Oct. 1983, pp. 45–51.Google Scholar
  20. 20.
    W. R. Runyan, and K. E. Bean, Semiconductor Integrated Circuit Processing Technology, p. 295, Addison-Wesley, Reading, Mass., 1990.Google Scholar
  21. 21.
    G. R. Srinivasan, Solid State Technol. 24 (11), 101 (1981).Google Scholar
  22. 22.
    P. S. Burggraff, Semiconductor International, Oct. 1983, pp. 45–51.Google Scholar
  23. 23.
    N. Weste, and K. Eshraghian, Principles of CMOS VLSI Design, p. 58, Addison-Wesley, Reading, Mass., 1985.Google Scholar
  24. 24.
    D. S. Yaney, J. T. Nelson, and L. L. Vanskike, IEEE Trans. Electron Devices ED26(1), 10 (1979).Google Scholar
  25. 25.
    J. Bloem, and L. J. Giling, in VLSI Electronics Microstructure Science, Vol. 12, (Einspruch and Huff, eds.), p. 91, Academic Press, Orlando, Fla., 1985.Google Scholar
  26. 26.
    W. A. P. Claassen, and J. Bloem, Phillips J. Res. 36, 124 (1981).Google Scholar
  27. 27.
    J. Bloem, and L. J. Giling, in VLSI Electronics Microstructure Science, Vol. 12, (Einspruch and Huff, eds.), p. 117, Academic Press, Orlando, Fla., 1985.Google Scholar
  28. 28.
    J. Bloem, L. J. Giling, and M. W. M. Graef, J. Electrochem. Soc. 121, 1354 (1974).CrossRefGoogle Scholar
  29. 29.
    H. B. Pogge, in Handbook of Semiconductors (Keller, ed.), Vol. 3, p. 335, North Holland, Amsterdam, 1980.Google Scholar
  30. 30.
    M. L. Hammond, Solid State Technol. 21 (11), 68 (1978).Google Scholar
  31. 31.
    K. E. Bean, W. R. Runyan, and R. G. Massey, Semiconductor International, May 1985, p. 136.Google Scholar
  32. 32.
    W. R. Runyan, and K. E. Bean, Semiconductor Integrated Circuit Processing Technology, p. 305, Addison-Wesley, Reading, Mass., 1990.Google Scholar
  33. 33.
    W. Guth, Phys. Status Solidi b 51, 143 (1972).CrossRefGoogle Scholar
  34. 34.
    K. V. Ravi, C. J. Varker, and C. E. Volk, J. Electrochem Soc. 120, 533 (1973).CrossRefGoogle Scholar
  35. 35.
    K. V. Ravi, Imperfections and Impurities in Semiconductor Silicon, John Wiley, New York, 1981.Google Scholar
  36. 36.
    K. E. Bean, W. R. Runyan, and R. G. Massey, Semiconductor International, May 1985, p. 136.Google Scholar
  37. 37.
    S. P. Weeks, Solid State Technol. 24 (11), 111 (1981).Google Scholar
  38. 38.
    A. S. Salih, H. J. Kim, R. F. Davis, and G. A. Rozgonyi, Appl. Phys. Lett. 46 (4), 419 (1985).CrossRefGoogle Scholar
  39. 39.
    C. Y. Tan, Appl. Phys. Lett. 30, 175 (1977).CrossRefGoogle Scholar
  40. 40.
    J. Manoliu, Semiconductor International, April 1988, pp. 90–92.Google Scholar
  41. 41.
    R. D. Dupuis, Proc. Electrochem. Soc. 83, 175 (1983).Google Scholar
  42. 42.
    M. J. Howes and D. V. Morgan, Gallium Arsenide, John Wiley, New York, 1985.Google Scholar
  43. 43.
    J. R. Knight, Solid State Electronics, 8, 178 (1965).CrossRefGoogle Scholar
  44. 44.
    J. C. Hong, and H. H. Lee, J. Electrochem. Soc. 132, 427 (1985).CrossRefGoogle Scholar
  45. 45.
    H. M. Manasevit, Appl. Phys. Lett, 12, 156 (1968)CrossRefGoogle Scholar
  46. M. J. Ludowise, J. Appl. Phys. 58 (8), R31 (1985).CrossRefGoogle Scholar
  47. 46.
    K. F. Jensen, J. Crystal Growth 98, 148 (1989).CrossRefGoogle Scholar
  48. 47.
    K. W. Benz, H. Renz, J. Wiedlein, and M. H. Pilkuhn, J. Electron. Mater. 10, 185 (1981).CrossRefGoogle Scholar
  49. 48.
    T. F. Kuech, and K. F. Jensen, in Thin Film Processes II ( Vossen and Kern, eds.), p. 378, Academic Press, New York, 1991Google Scholar
  50. M. J. Ludowise, J. Appl. Phys. 58(8), R33 (1 985).Google Scholar
  51. 49.
    M. J. Ludowise, J. Appl. Phys. 58 (8), R31 (1985).CrossRefGoogle Scholar
  52. 50.
    J. L. Zilko, in Handbook of Thin Film Deposition Processes and Techniques (Schuegraf, ed.), p. 234, Noyes Publications, Park Ridge, N.J. (1988).Google Scholar
  53. 51.
    R. H. Moss, and P. C. Spurdens, J. Cryst. Growth 68, 96 (1984)CrossRefGoogle Scholar
  54. 52.
    See bibliography of Indium compounds in M. J. Ludowise, J. Appl. Phys. 58 (8), R31 (1985).Google Scholar
  55. 53.
    C. B. Cooper, III, R. R. Saxena, and M. J. Ludowise, J. Electron. Mater. 11, 1001 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Srinivasan Sivaram

There are no affiliations available

Personalised recommendations