Applications of a Mathematical Model for Drug Distribution in Mammals

  • Kenneth B. Bischoff


Previous work by Bischoff and Brown (1)(hereafter called I) was devoted to the beginning development of a mathematical model that could be used to simulate the transport behavior of the circulatory system. The major ultimate application of interest will be to predict the transport, diffusion, and reactions of drugs introduced into the circulatory system. Teorell (2) was an early worker to attempt this, but due to lack of computational facilities at the time, extensive calculations could not be made. Only a few regions of the body were considered: drug depot (intramuscular regions, etc.) blood volume, kidney (etc.) elimination, tissues, and tissue inactivation. Some effort was made to choose the parameters for the various regions so that they were based on known physiological information, but again this could not be carried too far.


Cardiac Output Femoral Artery Pulmonary Vein Inferior Vena Drug Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bischoff, K. B. and Brown, R. G., Chem. Eng. Prof. Symp. Ser. 62, No. 66, 32 (1966).Google Scholar
  2. 2.
    Teorell, T., Arch. Int. Pharmacodyn. Therap. 57, 205, 226 (1937).Google Scholar
  3. 3.
    Bellman, R., Kalaba, R., and Jacquez, J. A., Bull. Math. Biophys. 22, 181 (1960).CrossRefGoogle Scholar
  4. 4.
    Jacquez, J. A., Bellman, R., and Kalaba, R., Bull. Math. Biophys. 22, 309 (1960).CrossRefGoogle Scholar
  5. 5.
    Bellman, R., Jacquez, J. A., and Kalaba, R., Proc. 4th Berkeley Symp. Math. Stat. Probl, J. Neyman, ed., Univ. California Press, Berkeley, 1961.Google Scholar
  6. 6.
    Bellman, R., Jacquez, J. A., Kalaba, R., and Kotkin, B., Proc. IIIrd. Intl. Cong. Chemotherapy, Georg. Thieme Verlog, Stuttgart, 1964.Google Scholar
  7. 7.
    Hays, M. T. and Wegner, L. H., J. Appl. Physiol. 20, 1319 (1965).Google Scholar
  8. 8.
    Lindbjerg I. F., Scandinav, J. Clin. Lab. Invest. 17, 371 (1965).Google Scholar
  9. 9.
    Meyer, J. S., Lavy, S., Ishikawa, S. and Symon, L., Am. J. Med. Elec. 3, 169 (1964).Google Scholar
  10. 10.
    Roston, S., Bull. Math. Biophys. 26, 1 (1964).CrossRefGoogle Scholar
  11. 11.
    Smith, R. E. and Morales, M. F., Bull. Math. Biophys. 6, 125, 133 (1944).CrossRefGoogle Scholar
  12. 12.
    Morales, M. F. and Smith, R. E., Bull. Math. Biophys. 6, 141 (1944).Google Scholar
  13. 13.
    Morales, M. F. and Smith, R. E., Bull. Math. Biophys. 1, 99 (1945).CrossRefGoogle Scholar
  14. 14.
    Rackow, H., Salanitre, E., Epstein, R. M., Wolf, G. L., and Perl, W., J. Appl. Physiol. 20, 611 (1965).Google Scholar
  15. 15.
    Perl, W., Rackow, H., Salanitre, E., Wolf, G. L., and Epstein, R. M., J. Appl. Physiol. 20, 621 (1965).Google Scholar
  16. 16.
    Guyton, A. C., “Function of the Human Body”, 2nd ed., Saunders, Philadelphia, 1964.Google Scholar
  17. 17.
    Guyton, A. C., “Textbook of Medical Physiology”, 2nd ed., Saunders, Philadelphia, 1964.Google Scholar
  18. 18.
    Altman, P. L., Dittmer, D. S., Grebe, R. M., eds., “Handbook of Circulation”, Fed. Am. Soc. Exp. Biol., Saunders, Philadelphia, 1959.Google Scholar
  19. 19.
    Altman, P. L. and Dittmer, D. S., ed., “Blood and Other Body Fluids”, Fed. Am. Soc. Exp. Biol., Saunders, Philadelphia, 1961.Google Scholar
  20. 20.
    Glasser, O., ed., “Medical Physics”, Year Book Publishers, Chicago, 1944, 1950, 1960.Google Scholar
  21. 21.
    Hamilton, W. F. and Dow, P., eds., “Handbook of Physiology”, Sec. 2, Am. Physiol. Soc., Washington, D. C., 1963.Google Scholar
  22. 22.
    Spector, W. S., ed., “Handbook of Biological Data”, Saunders, Philadelphia, 1956.Google Scholar
  23. 23.
    Levenspiel, O. and Bischoff, K. B., Adv. Chem. Eng. 4, 95–193 (1963).Google Scholar
  24. 24.
    Sheppard, C. W., “Basic Principles of the Tracer Method”, Wiley, New York, 1962.Google Scholar
  25. 25.
    Bischoff, K. B. and McCracken, E. A., Ind. Eng. Chem. 58, No. 7, 18 (1966).Google Scholar
  26. 26.
    Myhill, J., Wadsworth, G. P., and Brownell, G. L., Biophys. J. 5, 89 (1965).CrossRefGoogle Scholar
  27. 27.
    Sharney, L., Wasserman L. R., and Gevirtz, N. R., Am. J. Med. Elec. 3, 249 (1964).Google Scholar
  28. 28.
    Sharney, L., Wasserman, L. R., Gevirtz, N. R., Schwartz, L., and Tendler, D., Am. J. Med. Elec. 4, 95 (1965).Google Scholar
  29. 29.
    Sheppard, C. W., Am. New York Acad. Sci. 108, 29 (1963).CrossRefGoogle Scholar
  30. 30.
    Sheppard, C. W. and Spurr, G. B., Bull. Math. Biophys. 27, 65 (1965).CrossRefGoogle Scholar
  31. 31.
    Jacquez, J. A., Proc. Symp. Appl. Math. 14, 159 (1962).CrossRefGoogle Scholar
  32. 32.
    Zierler, K. L., Circulation Res. 12, 464 (1963).Google Scholar
  33. 33.
    Zierler, K. L., Federation Proc. 24, 1085 (1965).Google Scholar
  34. 34.
    Zierler, K. L., Circulation Res. 16, 309 (1965).Google Scholar
  35. 35.
    Chinard, F., Enns, T., and Nolan, M., Circulation Res. 10, 473 (1962).CrossRefGoogle Scholar
  36. 36.
    Crone, C., Acta Physiol. Scand. 58, 292 (1963).CrossRefGoogle Scholar
  37. 37.
    Ramsey, L. H., Puckett, W., Jose, A., and Lacy, W. W., Circulation Res. 15, 275 (1964).Google Scholar
  38. 38.
    Evans, R. L., Duncan, R. L., and Tyberg, J. V., J. Thcoet. Biol. 10, 490 (1966).CrossRefGoogle Scholar
  39. 39.
    Martin, P. and Yudilevich, D., Am. J. Physiol. 207 162 (1964).Google Scholar
  40. 40.
    Opdyke, D. F., J. Appl. Physiol. 20, 9 (1965).Google Scholar
  41. 41.
    Bacaner, M. B. and Beck, J. S., Am. J. Physiol. 206, 962 (1964).Google Scholar
  42. 42.
    Marshall, R. J., Wang, Y., and Shepherd, J. T., Circulation Res. 8, 93 (1960).Google Scholar
  43. 43.
    Polosa, C. and Hamilton, W. F., Am. J. Physiol. 204, 903 (1963).Google Scholar
  44. 44.
    Chien, S., Circulation Res. 12, 22 (1963).CrossRefGoogle Scholar
  45. 45.
    Fox, I. J., Castaneda, A. R., and Weber, K. C., Circulation Res. 15, 301 (1964).Google Scholar
  46. 46.
    Ultman, J. S., AIChE Student Members Bulletin, 6 No. 2, 33 (1965).Google Scholar
  47. 47.
    Taylor, A. E., Guyton, A. C., and Bishop, V. S., Circulation Res. 16, 353 (1965).Google Scholar
  48. 48.
    Schafer, D. E. and Johnson, J. A., Amer. J. Physiol. 206, 985 (1964).Google Scholar
  49. 49.
    Hyman, C., Federation Proc. 24, 1095 (1965).Google Scholar
  50. 50.
    Gômez, D. M., Demeester, M., Steinmetz, P. R., Lowenstein, J., Sammons, B. P., Baldwin, D. S., and Chasis, H., J. Appl. Physiol. 20, 703 (1965).Google Scholar
  51. 51.
    Thompson, H. K., Starmer, C. F., Whalen, R. E. and McIntosh, H. D., Circulation Res. 14, 502 (1964).Google Scholar
  52. 52.
    Udea, H., Ito, I., and Iio, M., Am. J. Med. Elec. 2, 229 (1963).Google Scholar
  53. 53.
    Stewart, G. N.,J. Physiol. 22, 159 (1897); Am. J. Physiol. 57, 27 (1921).Google Scholar
  54. 54.
    Hamilton, W. F., Moore, J. W., Kinsman, J. M., and Spurling, R. G., Am. J. Physiol. 99, 534 (1931).Google Scholar
  55. 55.
    Hara, H. H. and Bellville, J. W., Circulation Res. 12, 379 (1963).Google Scholar
  56. 56.
    Brouha, L., “Physiology in Industry”, Pergamon Press, 960.Google Scholar
  57. 57.
    Renkin, E. M., Federation Proc. 24, 1092 (1965).Google Scholar

Copyright information

© Springer Science+Business Media New York 1967

Authors and Affiliations

  • Kenneth B. Bischoff
    • 1
  1. 1.Department of Chemical EngineeringThe University of TexasAustinUSA

Personalised recommendations