Skip to main content

Hardness of Ceramic Single Crystals

  • Chapter

Abstract

The outstanding achievements of dislocation theory when applied to the mechanical properties of materials make it the natural source for workers in the materials hardness area to turn to when seeking to rationalize collected data. This has been particularly true when hardness anisotropy has been observed and then considered theoretically.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, Oxford (1965).

    Google Scholar 

  2. R. W. Armstrong and C. C. Way, J. Amer. Ceram. Soc. 61, 102 (1978).

    Article  CAS  Google Scholar 

  3. A. S. Keh, J. Appl. Phys. 31, 1538 (1960).

    Article  Google Scholar 

  4. K. C. Yoo, R. G. Rosemeier, W. L. Elban, and R. W. Armstrong, J. Mater. Sci. Letters 3, 560 (1984).

    Article  CAS  Google Scholar 

  5. I. J. McColm and S. J. Wilson, J. Solid State Chem. 26, 223 (1978).

    Article  CAS  Google Scholar 

  6. A. S. Keh, J. Appl. Phys. 31, 1538 (1960).

    Article  Google Scholar 

  7. A. H. Cottrell, Trans. AIME 212, 192 (1958).

    Google Scholar 

  8. A. P. Gerk, J. Mater. Sci. 12, 735 (1977).

    Article  CAS  Google Scholar 

  9. C. A. Brookes, J. B. O’Neill, and B. A. W. Redfern, Proc. Roy. Soc. A322, 73 (1971).

    Article  CAS  Google Scholar 

  10. D. Brasen, J. Mater. Sci. 11, 791 (1976).

    Article  CAS  Google Scholar 

  11. C. A. Brookes, R. M. Hooper, and W. A. Lambert, Phil. Mag. A47, L9 (1983).

    Article  CAS  Google Scholar 

  12. S. G. Roberts, P. D. Warren, and P. B. Hirsch, J. Mater. Res. 1, 162 (1986).

    Article  CAS  Google Scholar 

  13. H. C. Gatos and M. C. Lavine, in Progress in Semiconductors 9, 1, A. P. Gibson and R. E. Burgers, eds., Heywood, New York (1965).

    Google Scholar 

  14. K. Maeda, O. Ueda, Y. Murayama, and K. Sakamoto, J. Phys. Chem. Solids 38, 1173 (1977).

    Article  CAS  Google Scholar 

  15. P. B. Hirsch, P. Pirouz, S. G. Roberts, and P. D. Warren, Phil. Mag. B52, 759 (1985).

    Article  CAS  Google Scholar 

  16. Y. S. Boyarskaya, D. Z. Grabko, and E. I. Punch, J Mater. Sci. Letters. 14, 737 (1979).

    CAS  Google Scholar 

  17. J. Thery, Mater. Res. Bull. 18, 481 (1983).

    Article  CAS  Google Scholar 

  18. G. R. Sawyer, P. M. Sargent, and T. F. Page, J. Mater. Sci. 15, 1001 (1980).

    Article  CAS  Google Scholar 

  19. T. Tsuya, J. Nucl. Mat. 22, 148 (1967).

    Article  CAS  Google Scholar 

  20. K. Nakano, H. Matsubara, and T. Imura, J. Less Common Metals 47, 259 (1976).

    Article  CAS  Google Scholar 

  21. F. W. Vahldiek and S. A. Mersol, J. Less Comm. Metals 55, 265 (1977).

    Article  CAS  Google Scholar 

  22. O. O. Adewoye and J. I. Agu, J. Mater. Sci. Letters 6, 953 (1987).

    Article  Google Scholar 

  23. A. M. Lejus, D. Ballutaud, C. R’Kha, and J. Livage, Mater. Res. Bull. 15, 95 (1980).

    Article  CAS  Google Scholar 

  24. S. A. Mersol, F. W. Vahldiek, and C. T. Lynch, Trans. Met. Soc. AIME 233, 1658 (1965).

    CAS  Google Scholar 

  25. F. W. Vahldiek and S. A. Mersol, J. Less Common Metals 15, 165 (1968).

    Article  CAS  Google Scholar 

  26. Y. Kumashiro and E. Sakuma, J. Mater. Sci. Letters 15, 1321 (1980).

    CAS  Google Scholar 

  27. S. B. Wen and H. K. Liu, J. Mater. Sci. Letters 6, 1057 (1987).

    Article  CAS  Google Scholar 

  28. S. Okada, T. Atoda, I. Higashi, and Y. Takobushi, J. Mater. Sci. 22, 2993 (1987).

    Article  CAS  Google Scholar 

  29. C. A. Brookes, in Science of Hard Materials, R. K. Viswanadham, D. J. Rowcliffe, and J. Gurland, eds., Plenum, New York (1983).

    Google Scholar 

  30. C. A. Brookes and P. Green, Proc. Roy. Soc. A368, 37 (1979).

    Article  CAS  Google Scholar 

  31. C. Feng and C. Elbaum, Trans. Met. Soc. AIME 212, 47 (1958).

    CAS  Google Scholar 

  32. M. Garfinkle and R. G. Garlick, Trans. Met. Soc. AIME 242, 809 (1968).

    CAS  Google Scholar 

  33. K. Nakano, T. Imura, and S. Takeuchi, Jap. J. Appl. Phys. 12, 186 (1973).

    Article  CAS  Google Scholar 

  34. A. Nadai, Plasticity, McGraw-Hill, New York (1931), p. 247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

McColm, I.J. (1990). Hardness of Ceramic Single Crystals. In: Ceramic Hardness. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4732-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4732-4_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3213-6

  • Online ISBN: 978-1-4757-4732-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics