Photosynthetic Carbon Metabolism in Chloroplasts

  • Steven C. Huber
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 16)


The purpose of this review is to discuss some aspects of current research interest dealing with carbon metabolism in mesophyll chloroplasts of C3 plants that may be involved in control of the rate of carbon fixation or the distribution of fixed carbon among products. These aspects are stressed because an appreciation of the metabolic regulation of chloroplasts is necessary in order to begin to understand the coordinated metabolism that occurs between the chloro-plast and the cytosol in situ. Specifically, this review will emphasize recent developments indicating the important role of stromal pH on component processes which regulate the photosynthetic rate and utilization of inorganic phosphate [P.], and also the mechanisms which may be involved in the control of stromal pH.


Induction Phase Crassulacean Acid Metabolism Calvin Cycle Spinach Chloroplast Chloroplast Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kluge, M. 1979. The flow of carbon in crassulacean acid metabolism (CAM). In Photosynthesis II (M. Gibbs, E. Latzko, eds.). Encyclopedia of Plant Physiology, New Series, Vol. 6. Springer-Verlag, New York. pp. 113–125.CrossRefGoogle Scholar
  2. 2.
    Trebst, A. 1974. Energy conservation in photosyn-thetic electron transport of chloroplasts. Annu. Rev. Plant Physiol. 25: 423–358.CrossRefGoogle Scholar
  3. 3.
    Douce, R., J. Joyard. 1979. Structure and function of the plastid envelope. Adv. Bot. Res. 7: 2–116.Google Scholar
  4. 4.
    Heber, U., H. W. Heldt. 1981. The chloroplast envelope: structure, function, and role in leaf metabolism. Annu. Rev. Plant Physiol. 32: 139–168.CrossRefGoogle Scholar
  5. 5.
    Walker, D. A. 1974. Chloroplast and cell-The movement of certain key substances, etc. across the chloroplast envelope. La Plant biochemistry (D. H. Northcote, ed.). MTP Int. Rev. Sci. Biochem. Ser. I, Vol. 11. Butterworths, London, pp. 1–49.Google Scholar
  6. 6.
    Halliwell, B. 1978. The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog. Biophys. Molec. Biol. 33: 1–54.CrossRefGoogle Scholar
  7. 7.
    Jensen, R. G. 1980. Biochemistry of the chloroplast. In The plant cell (N. E. Tolbert, ed.). The Biochemistry of Plants, Vol. 1, Chap. 7. Academic Press, New York. pp. 274–314.Google Scholar
  8. 8.
    Stitt, M., T. ap Rees. 1980. Carbohydrate breakdown by chloroplasts of Pisum sativum. Biochim. Biophys. Acta 627: 131–143.PubMedCrossRefGoogle Scholar
  9. 9.
    Furbank, R. T., R. McC. Lilley. 1981. Reductive pentose phosphate cycle and oxidative carbohydrate metabolic activities in pea chloroplast stroma extracts. Plant Physiol. 67: 1036–1041.PubMedCrossRefGoogle Scholar
  10. 10.
    Heldt, H. W. 1976. Metabolite transport in intact spinach chloroplasts. In The intact chloroplast (J. Barber, ed.). Elsevier/North-Holland Biomedical Press, The Netherlands, pp. 215–234.Google Scholar
  11. 11.
    Fliege, R., U. Flügge, K. Werdan, H. W. Heldt. 1978. Specific transport of inorganic phosphate, 3-phospho-glycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta 502: 232–247.PubMedCrossRefGoogle Scholar
  12. 11a.
    Robinson, J. M., M. Gibbs, D. N. Cotler. 1977. Influence of pH upon the Warburg effect in isolated intact spinach chloroplasts. I. Carbon dioxide photoassimilation and glycolate synthesis. Plant Physiol. 59: 530–534.PubMedCrossRefGoogle Scholar
  13. 12.
    Steup, M., D. G. Peavy, M. Gibbs. 1976. The regulation of starch metabolism by inorganic phosphate. Biochem. Biophys. Res. Commun. 72: 1554–1561.PubMedCrossRefGoogle Scholar
  14. 13.
    Heldt, H. W., C. J. Chon, D. Maronde, A. Herold, Z. Stankovic, D. A. Walker, A. Kraminer, M. R. Kirk, U. Heber. 1977. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 59: 1146–1155.PubMedCrossRefGoogle Scholar
  15. 14.
    Walker, D. A. 1976. CO2 fixation by intact chloroplasts: Photosynthetic induction and its relation to transport phenomena and control mechanisms. Ref. 10, pp. 235–278.Google Scholar
  16. 15.
    Cockburn, W., C. W. Baldry, D. A. Walker. 1967. Oxygen evolution by isolated chloroplasts with carbon dioxide as the hydrogen acceptor. A requirement for orthophosphate or pyrophosphate. Biochim. Biophys. Acta 131: 594–596.PubMedCrossRefGoogle Scholar
  17. 16.
    Sanwal, G. G., E. Greenberg, J. Hardie, E. C. Cameron, J. Preiss. 1968. Regulation of starch biosynthesis in plant leaves: Activation and inhibition of Adp-glucose pyrophosphorylase. Plant Physiol. 43: 417–427.PubMedCrossRefGoogle Scholar
  18. 17.
    Edwards, G. E., R. McC. Lilley, M. D. Hatch. 1979. Isolation of intact and functional chloroplasts from mesophyll and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Plant Physiol. 63: 821–827.PubMedCrossRefGoogle Scholar
  19. 18.
    Spalding, M. H., G. E. Edwards. 1980. Photosynthesis in isolated chloroplasts of the crassulacean acid metabolism plant Sedum praeltum. Plant Physiol. 65: 1044–1049.PubMedCrossRefGoogle Scholar
  20. 19.
    Robinson, S. P., J. T. Wiskich. 1977. Inhibition of CO2 fixation by adenosine 5′-diphosphate and the role of phosphate transport in isolated pea chloroplasts. Arch. Biochem. Biophys. 184: 546–554.PubMedCrossRefGoogle Scholar
  21. 20.
    Lilley, R. McC, A. W. D. Larkum. 1981. Isolation of functionally intact rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 67: 5–8.PubMedCrossRefGoogle Scholar
  22. 21.
    Cockburn, W., C. W. Baldry, D. A. Walker. 1967. Photosynthetic induction phenomena in spinach chloroplasts in relation to the nature of the isolating medium. Biochim. Biophys. Acta 143: 603–613.Google Scholar
  23. 22.
    Huber, S. C. 1979. Effect of photosynthetic intermediates on the magnesium inhibition of oxygen evolution by barley chloroplasts. Plant Physiol. 63: 754–757.PubMedCrossRefGoogle Scholar
  24. 23.
    Schwerin, J. D., R. McC. Lilley, D. A. Walker. 1973. Inorganic pyrophosphatase and photosynthesis by isolated chloroplasts. I. Characterization of chloro-plast pyrophosphatase and its relation to the response to exogenous pyrophosphate. Biochim. Biophys. Acta 325: 596–604.CrossRefGoogle Scholar
  25. 24.
    Flügge, U. I., M. Freisi, H. W. Heldt. 1980. Balance between metabolite accumulation and transport in relation to photosynthesis by isolated spinach chloroplasts. Plant Physiol. 65: 574–577.PubMedCrossRefGoogle Scholar
  26. 25.
    Robinson, S. P., J. T. Wiskich. 1977. p-Chloromer-curiphenyl sulphonic acid as a specific inhibitor of the phosphate translocator in isolated chloroplasts. Febs Lett. 78: 203–206.PubMedCrossRefGoogle Scholar
  27. 26.
    Walker, D. A., K. Kosciukiewicz, C. Case. 1973. Photosynthesis by isolated chloroplasts: Some factors affecting induction in CO2-dependent O2 evolution. New Phytol. 72: 237–247.CrossRefGoogle Scholar
  28. 27.
    Huber, S. C. 1980. Effects of pH and other factors on the phosphate dependence of photosynthesis in spinach chloroplasts. Planta 149: 485–492.CrossRefGoogle Scholar
  29. 28.
    Huber, S. C. 1979. Effect of pH on chloroplast photosynthesis. Inhibition of O2 evolution by inorganic phosphate and magnesium. Biochim. Biophys. Acta 545: 131–140.PubMedCrossRefGoogle Scholar
  30. 29.
    Lilley, R. McC, D. A. Walker. 1974. The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochim. Biophys. Acta. 368: 269–278.PubMedCrossRefGoogle Scholar
  31. 30.
    Stokes, D. M., D. A. Walker. 1972. Photosynthesis by isolated chloroplasts. Inhibition by DL-glyceralde-hyde of carbon dioxide assimilation. Biochem. J. 128: 1147–1157.PubMedGoogle Scholar
  32. 30a.
    Kirk, M. R., U. Heber. 1976. Rates of synthesis and source of glycolate in intact chloroplasts. Planta 132: 131–141.CrossRefGoogle Scholar
  33. 31.
    Gimmler, H., G. Schäfer, H. Kraminer, U. Heber. 1974. Amino acid permeability of the chloroplast envelope as measured by light scattering, volumetry and amino acid uptake. Planta 120: 47–61.CrossRefGoogle Scholar
  34. 32.
    Heldt, H. W., F. Sauer. 1971. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim. Biophys. Acta 234: 83–91.PubMedCrossRefGoogle Scholar
  35. 33.
    Huber, S. C. 1979. Orthophosphate control of glucose-6-phosphate dehydrogenase light modulation in relation to the induction phase of chloroplast photosynthesis. Plant Physiol. 64: 846–851.PubMedCrossRefGoogle Scholar
  36. 34.
    Walker, D. A. 1973. Photosynthetic induction phenomena and the light activation of ribulose diphosphate carboxylase. New Phytol. 72: 209–235.CrossRefGoogle Scholar
  37. 35.
    Stitt, M., W. Wirtz, H. W. Heldt. 1980. Metabolite levels during induction in the chloroplast and extra chloroplast compartments of spinach protoplasts. Biochim. Biophys. Acta. 593: 85–102.PubMedCrossRefGoogle Scholar
  38. 36.
    Buchanan, B. B. 1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341–374.CrossRefGoogle Scholar
  39. 37.
    Anderson, L. E. 1979. Interaction between photochemistry and activity of enzymes. Ref. 1, pp. 271–281.Google Scholar
  40. 38.
    Pradel, J., J. M. Soulie, J. Bue, J. C. Meunier, J. Ricard. 1981. On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle. Eur. J. Biochem. 113: 507–511.PubMedCrossRefGoogle Scholar
  41. 39.
    Anderson, L. E., S. C. Nehrlich, M. L. Champigny. 1978. Light modulation of enzyme activity: Activation of the light effect mediators by reduction and modulation of the enzyme activity by thiol p-disulfide exchange. Plant Physiol. 61: 601–605.PubMedCrossRefGoogle Scholar
  42. 40.
    Latzko, E., R. V. Gamier, M. Gibbs. 1970. Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase. Biochem. Biophys. Res. Commun. 39: 1140–1144.PubMedCrossRefGoogle Scholar
  43. 41.
    Anderson, L. E., M. Avron. 1976. Light modulation of enzyme activity in chloroplasts. Generation of membrane-bound vicinal dithiol groups by photosynthetic electron transport. Plant Physiol. 57: 209–213.PubMedCrossRefGoogle Scholar
  44. 42.
    Wolosiuk, R. A., B. B. Buchanan. 1977. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature (London) 266: 565–567.CrossRefGoogle Scholar
  45. 43.
    Wolosiuk, R. A., N. A. Crawford, B. C. Yee, B. B. Buchanan. 1979. Isolation of three thioredoxins from spinach leaves. J. Biol. Chem. 254: 1627–1632.PubMedGoogle Scholar
  46. 44.
    Lara, C., A. de la Torre, B. B. Buchanan. 1980. Ferralterin: An iron-sulfur protein functional in enzyme regulation in photosynthesis. Biochem. Biophys. Res. Commun. 94: 1337–1344.PubMedCrossRefGoogle Scholar
  47. 45.
    Leegood, R. C., D. A. Walker. 1980. Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch. Biochem. Biophys. 200: 575–582.PubMedCrossRefGoogle Scholar
  48. 46.
    Charles, S. A., B. Halliwell. 1981. Light activation of fructose bisphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide. A physiological role for the thioredoxin system. Planta 151: 242–246.CrossRefGoogle Scholar
  49. 47.
    Heldt, H. W., W. Laing, G. H. Lorimer, M. Stitt, W. Wirtz. 1981. On the regulation of CO2 fixation by light. Proc. Fifth International Congress on Photosynthesis. In press.Google Scholar
  50. 48.
    Huber, S. C. 1978. Substrates and inorganic phosphate control the light activation of Nadp-glyceral-dehyde-3-phosphate dehydrogenase and phosphoribulo-kinase in barley (Hordeum vulgare) chloroplasts. Febs Lett. 92: 12–16.CrossRefGoogle Scholar
  51. 49.
    Furbank, R. T., R. McC. Lilley. 1980. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Biochim. Biophys. Acta 592: 65–75.PubMedCrossRefGoogle Scholar
  52. 50.
    Wolosiuk, R. A., M. E. Perelmuter, C. Chehebar. 1980. Enhancement of chloroplast fructose-1,6-bisphos-phatase and dithiothreitol-reduced thioredoxin-f. Febs Lett. 109: 289–293.CrossRefGoogle Scholar
  53. 51.
    Woodrow, I. E., D. A. Walker. 1980. Light-mediated activation of stromal sedoheptulose bisphosphatase. Biochem. J. 191: 845–849.PubMedGoogle Scholar
  54. 52.
    Breazeale, V. D., B. B. Buchanan, R. A. Wolosiuk. 1978. Chloroplast sedoheptulose 1,7-bisphosphatase: Evidence for regulation by the ferredoxin/thiore-doxin system. Z. Naturforsch. 33c: 521–528.Google Scholar
  55. 53.
    Levi, C., J. Preiss. 1978. Amylopectin degradation in pea chloroplast extracts. Plant Physiol. 61: 218–220.PubMedCrossRefGoogle Scholar
  56. 54.
    Heldt, H. W., K. Werdan, M. Milovancev, G. Geller. 1973. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim. Biophys. Acta 314: 224–241.PubMedCrossRefGoogle Scholar
  57. 55.
    Hall, D. O. 1976. The coupling of photophosphoryla-tion to electron transport in isolated chloroplasts. Ref. 10, pp. 135–170.Google Scholar
  58. 56.
    Werdan, K., H. W. Heldt, M. Milovancev. 1975. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim. Biophys. Acta 396: 276–292.PubMedCrossRefGoogle Scholar
  59. 57.
    Purczeld, P., C. J. Chon, A. R. Portis, Jr., H. W. Heldt, U. Heber. 1978. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with nitrite-mediated proton transfer across the envelope. Biochim. Biophys. Acta 501: 488–498.PubMedCrossRefGoogle Scholar
  60. 58.
    Enser, U., U. Heber. 1980. Metabolic regulation by pH gradients. Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim. Biophys. Acta. 592: 577–591.PubMedCrossRefGoogle Scholar
  61. 59.
    Flügge, U. I., Freisi, H. W. Heldt. 1980. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with acid mediated proton transfer across the envelope. Planta 149: 48–51.CrossRefGoogle Scholar
  62. 60.
    Zimmerman, G., G. J. Kelly, E. Latzko. 1976. Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur. J. Biochem. 70: 361–367.CrossRefGoogle Scholar
  63. 61.
    Avron, M., M. Gibbs. 1974. Carbon dioxide fixation in the light and dark by isolated spinach chloroplasts. Plant Physiol. 53:140–143.PubMedCrossRefGoogle Scholar
  64. 62.
    Huber, S. C. 1978. Regulation of chloroplast photo-synthetic activity by exogenous magnesium. Plant Physiol. 62: 321–325.PubMedCrossRefGoogle Scholar
  65. 63.
    Demmig, B., H. Gimmler. 1979. Effect of divalent cations on cation fluxes across the chloroplast envelope and on photosynthesis of intact chloroplasts. Z. Naturforsch. 34c: 233–241.Google Scholar
  66. 64.
    Gimmler, H., G. Schäfer, U. Heber. 1974. Low permeability of the chloroplast envelope towards cations. In Proc. Third International Congress on Photosynthesis (M. Avron, ed.). Elsevier, Amsterdam, pp. 1381–1392.Google Scholar
  67. 65.
    Portis, A. R., H. W. Heldt. 1976. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta 449: 434–446.PubMedCrossRefGoogle Scholar
  68. 66.
    Huber, S. C., W. Maury. 1980. Effects of magnesium on intact chloroplasts. I. Evidence for activation of (sodium) potassium/proton exchange across the chloroplast envelope. Plant Physiol. 65: 350–354.PubMedCrossRefGoogle Scholar
  69. 67.
    Maury, W. J., S. C. Huber, D. E. Moreland. 1981. Effects of magnesium on intact chloroplasts. II. Cation specificity and involvement of the envelope ATPase in (sodium) potassium/proton exchange across the envelope. Plant Physiol. In press.Google Scholar
  70. 68.
    Kaiser, W. M., W. Urbach, H. Gimmler. 1980. The role of monovalent cations for photosynthesis of isolated intact chloroplasts. Planta 149: 170–175.CrossRefGoogle Scholar
  71. 69.
    Sokolove, P. M., T. V. Marsho. 1979. The effect of valinomycin on electron transport in intact chloroplasts. FEBS Lett. 100: 179–184.PubMedCrossRefGoogle Scholar
  72. 70.
    Huber, S. C., W. J. Maury, D. E. Moreland. 1981. Further studies on the effects of Mg2 on intact chloroplasts. Plant Physiol. 67 (Suppl.): 106.Google Scholar
  73. 71.
    Gimmler, H., B. Demmig, W. M. Kaiser. 1981. The role of K+ and H+-fluxes across the chloroplast envelope for photosynthetic C02-fixation. In Proc Fifth International Congress on Photosynthesis (G. Akoynnoglou, ed). In press.Google Scholar
  74. 72.
    Enser, N., U. Heber. 1981. Maintenance of a pH gradient across the chloroplast envelope. Ref. 71, in press.Google Scholar
  75. 73.
    Kobayashi, Y., Y. Inoue, K. Shibata, U. Heber. 1979. Control of electron flow in intact chloroplasts by the intrathylakoid pH, not by the phosphorylation potential. Planta 146: 481–486.CrossRefGoogle Scholar
  76. 74.
    Herold, A., D. H. Lewis. 1977. Mannose and green plants: Occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1–40.CrossRefGoogle Scholar
  77. 75.
    Che-she, Sheu-Hwa, D. H. Lewis, D. A. Walker. 1975. Stimulation of photosynthetic starch formation by sequestration of cytoplasmic orthophosphate. New Phytol. 74: 383–392.CrossRefGoogle Scholar
  78. 76.
    Giersch, C., U. Heber, G. Kaiser, D. A. Walker, S. P. Robinson. 1980. Intracellular metabolite gradients and flow of carbon during photosynthesis of leaf protoplasts. Arch. Biochem. Biphys. 205: 246–259.CrossRefGoogle Scholar
  79. 77.
    Huber, S. C. 1981. Inter- and intra-specific variation in photosynthetic formation of starch and sucrose. 2. Pflanzenphysiol. 101: 49–54.Google Scholar
  80. 78.
    Huber, S. C. 1981. Interspecific variation in activity and regulation of leaf sucrose synthetase. Z. Pflanzenphysiol. 102: 443–450.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Steven C. Huber
    • 1
  1. 1.U.S. Department of Agriculture, Science and Education Administration, Agricultural Research Service and Departments of Crop Science and BotanyN.C. State UniversityRaleighUSA

Personalised recommendations