Skip to main content

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 16))

Abstract

The purpose of this review is to discuss some aspects of current research interest dealing with carbon metabolism in mesophyll chloroplasts of C3 plants that may be involved in control of the rate of carbon fixation or the distribution of fixed carbon among products. These aspects are stressed because an appreciation of the metabolic regulation of chloroplasts is necessary in order to begin to understand the coordinated metabolism that occurs between the chloro-plast and the cytosol in situ. Specifically, this review will emphasize recent developments indicating the important role of stromal pH on component processes which regulate the photosynthetic rate and utilization of inorganic phosphate [P.], and also the mechanisms which may be involved in the control of stromal pH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kluge, M. 1979. The flow of carbon in crassulacean acid metabolism (CAM). In Photosynthesis II (M. Gibbs, E. Latzko, eds.). Encyclopedia of Plant Physiology, New Series, Vol. 6. Springer-Verlag, New York. pp. 113–125.

    Chapter  Google Scholar 

  2. Trebst, A. 1974. Energy conservation in photosyn-thetic electron transport of chloroplasts. Annu. Rev. Plant Physiol. 25: 423–358.

    Article  CAS  Google Scholar 

  3. Douce, R., J. Joyard. 1979. Structure and function of the plastid envelope. Adv. Bot. Res. 7: 2–116.

    Google Scholar 

  4. Heber, U., H. W. Heldt. 1981. The chloroplast envelope: structure, function, and role in leaf metabolism. Annu. Rev. Plant Physiol. 32: 139–168.

    Article  CAS  Google Scholar 

  5. Walker, D. A. 1974. Chloroplast and cell-The movement of certain key substances, etc. across the chloroplast envelope. La Plant biochemistry (D. H. Northcote, ed.). MTP Int. Rev. Sci. Biochem. Ser. I, Vol. 11. Butterworths, London, pp. 1–49.

    Google Scholar 

  6. Halliwell, B. 1978. The chloroplast at work. A review of modern developments in our understanding of chloroplast metabolism. Prog. Biophys. Molec. Biol. 33: 1–54.

    Article  CAS  Google Scholar 

  7. Jensen, R. G. 1980. Biochemistry of the chloroplast. In The plant cell (N. E. Tolbert, ed.). The Biochemistry of Plants, Vol. 1, Chap. 7. Academic Press, New York. pp. 274–314.

    Google Scholar 

  8. Stitt, M., T. ap Rees. 1980. Carbohydrate breakdown by chloroplasts of Pisum sativum. Biochim. Biophys. Acta 627: 131–143.

    Article  PubMed  CAS  Google Scholar 

  9. Furbank, R. T., R. McC. Lilley. 1981. Reductive pentose phosphate cycle and oxidative carbohydrate metabolic activities in pea chloroplast stroma extracts. Plant Physiol. 67: 1036–1041.

    Article  PubMed  CAS  Google Scholar 

  10. Heldt, H. W. 1976. Metabolite transport in intact spinach chloroplasts. In The intact chloroplast (J. Barber, ed.). Elsevier/North-Holland Biomedical Press, The Netherlands, pp. 215–234.

    Google Scholar 

  11. Fliege, R., U. Flügge, K. Werdan, H. W. Heldt. 1978. Specific transport of inorganic phosphate, 3-phospho-glycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim. Biophys. Acta 502: 232–247.

    Article  PubMed  CAS  Google Scholar 

  12. Robinson, J. M., M. Gibbs, D. N. Cotler. 1977. Influence of pH upon the Warburg effect in isolated intact spinach chloroplasts. I. Carbon dioxide photoassimilation and glycolate synthesis. Plant Physiol. 59: 530–534.

    Article  PubMed  CAS  Google Scholar 

  13. Steup, M., D. G. Peavy, M. Gibbs. 1976. The regulation of starch metabolism by inorganic phosphate. Biochem. Biophys. Res. Commun. 72: 1554–1561.

    Article  PubMed  CAS  Google Scholar 

  14. Heldt, H. W., C. J. Chon, D. Maronde, A. Herold, Z. Stankovic, D. A. Walker, A. Kraminer, M. R. Kirk, U. Heber. 1977. Role of orthophosphate and other factors in the regulation of starch formation in leaves and isolated chloroplasts. Plant Physiol. 59: 1146–1155.

    Article  PubMed  CAS  Google Scholar 

  15. Walker, D. A. 1976. CO2 fixation by intact chloroplasts: Photosynthetic induction and its relation to transport phenomena and control mechanisms. Ref. 10, pp. 235–278.

    Google Scholar 

  16. Cockburn, W., C. W. Baldry, D. A. Walker. 1967. Oxygen evolution by isolated chloroplasts with carbon dioxide as the hydrogen acceptor. A requirement for orthophosphate or pyrophosphate. Biochim. Biophys. Acta 131: 594–596.

    Article  PubMed  CAS  Google Scholar 

  17. Sanwal, G. G., E. Greenberg, J. Hardie, E. C. Cameron, J. Preiss. 1968. Regulation of starch biosynthesis in plant leaves: Activation and inhibition of Adp-glucose pyrophosphorylase. Plant Physiol. 43: 417–427.

    Article  PubMed  CAS  Google Scholar 

  18. Edwards, G. E., R. McC. Lilley, M. D. Hatch. 1979. Isolation of intact and functional chloroplasts from mesophyll and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Plant Physiol. 63: 821–827.

    Article  PubMed  CAS  Google Scholar 

  19. Spalding, M. H., G. E. Edwards. 1980. Photosynthesis in isolated chloroplasts of the crassulacean acid metabolism plant Sedum praeltum. Plant Physiol. 65: 1044–1049.

    Article  PubMed  CAS  Google Scholar 

  20. Robinson, S. P., J. T. Wiskich. 1977. Inhibition of CO2 fixation by adenosine 5′-diphosphate and the role of phosphate transport in isolated pea chloroplasts. Arch. Biochem. Biophys. 184: 546–554.

    Article  PubMed  CAS  Google Scholar 

  21. Lilley, R. McC, A. W. D. Larkum. 1981. Isolation of functionally intact rhodoplasts from Griffithsia monilis (Ceramiaceae, Rhodophyta). Plant Physiol. 67: 5–8.

    Article  PubMed  CAS  Google Scholar 

  22. Cockburn, W., C. W. Baldry, D. A. Walker. 1967. Photosynthetic induction phenomena in spinach chloroplasts in relation to the nature of the isolating medium. Biochim. Biophys. Acta 143: 603–613.

    Google Scholar 

  23. Huber, S. C. 1979. Effect of photosynthetic intermediates on the magnesium inhibition of oxygen evolution by barley chloroplasts. Plant Physiol. 63: 754–757.

    Article  PubMed  CAS  Google Scholar 

  24. Schwerin, J. D., R. McC. Lilley, D. A. Walker. 1973. Inorganic pyrophosphatase and photosynthesis by isolated chloroplasts. I. Characterization of chloro-plast pyrophosphatase and its relation to the response to exogenous pyrophosphate. Biochim. Biophys. Acta 325: 596–604.

    Article  Google Scholar 

  25. Flügge, U. I., M. Freisi, H. W. Heldt. 1980. Balance between metabolite accumulation and transport in relation to photosynthesis by isolated spinach chloroplasts. Plant Physiol. 65: 574–577.

    Article  PubMed  Google Scholar 

  26. Robinson, S. P., J. T. Wiskich. 1977. p-Chloromer-curiphenyl sulphonic acid as a specific inhibitor of the phosphate translocator in isolated chloroplasts. Febs Lett. 78: 203–206.

    Article  PubMed  CAS  Google Scholar 

  27. Walker, D. A., K. Kosciukiewicz, C. Case. 1973. Photosynthesis by isolated chloroplasts: Some factors affecting induction in CO2-dependent O2 evolution. New Phytol. 72: 237–247.

    Article  Google Scholar 

  28. Huber, S. C. 1980. Effects of pH and other factors on the phosphate dependence of photosynthesis in spinach chloroplasts. Planta 149: 485–492.

    Article  CAS  Google Scholar 

  29. Huber, S. C. 1979. Effect of pH on chloroplast photosynthesis. Inhibition of O2 evolution by inorganic phosphate and magnesium. Biochim. Biophys. Acta 545: 131–140.

    Article  PubMed  CAS  Google Scholar 

  30. Lilley, R. McC, D. A. Walker. 1974. The reduction of 3-phosphoglycerate by reconstituted chloroplasts and by chloroplast extracts. Biochim. Biophys. Acta. 368: 269–278.

    Article  PubMed  CAS  Google Scholar 

  31. Stokes, D. M., D. A. Walker. 1972. Photosynthesis by isolated chloroplasts. Inhibition by DL-glyceralde-hyde of carbon dioxide assimilation. Biochem. J. 128: 1147–1157.

    PubMed  CAS  Google Scholar 

  32. Kirk, M. R., U. Heber. 1976. Rates of synthesis and source of glycolate in intact chloroplasts. Planta 132: 131–141.

    Article  CAS  Google Scholar 

  33. Gimmler, H., G. Schäfer, H. Kraminer, U. Heber. 1974. Amino acid permeability of the chloroplast envelope as measured by light scattering, volumetry and amino acid uptake. Planta 120: 47–61.

    Article  CAS  Google Scholar 

  34. Heldt, H. W., F. Sauer. 1971. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim. Biophys. Acta 234: 83–91.

    Article  PubMed  CAS  Google Scholar 

  35. Huber, S. C. 1979. Orthophosphate control of glucose-6-phosphate dehydrogenase light modulation in relation to the induction phase of chloroplast photosynthesis. Plant Physiol. 64: 846–851.

    Article  PubMed  CAS  Google Scholar 

  36. Walker, D. A. 1973. Photosynthetic induction phenomena and the light activation of ribulose diphosphate carboxylase. New Phytol. 72: 209–235.

    Article  CAS  Google Scholar 

  37. Stitt, M., W. Wirtz, H. W. Heldt. 1980. Metabolite levels during induction in the chloroplast and extra chloroplast compartments of spinach protoplasts. Biochim. Biophys. Acta. 593: 85–102.

    Article  PubMed  CAS  Google Scholar 

  38. Buchanan, B. B. 1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341–374.

    Article  CAS  Google Scholar 

  39. Anderson, L. E. 1979. Interaction between photochemistry and activity of enzymes. Ref. 1, pp. 271–281.

    Google Scholar 

  40. Pradel, J., J. M. Soulie, J. Bue, J. C. Meunier, J. Ricard. 1981. On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle. Eur. J. Biochem. 113: 507–511.

    Article  PubMed  CAS  Google Scholar 

  41. Anderson, L. E., S. C. Nehrlich, M. L. Champigny. 1978. Light modulation of enzyme activity: Activation of the light effect mediators by reduction and modulation of the enzyme activity by thiol p-disulfide exchange. Plant Physiol. 61: 601–605.

    Article  PubMed  CAS  Google Scholar 

  42. Latzko, E., R. V. Gamier, M. Gibbs. 1970. Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase. Biochem. Biophys. Res. Commun. 39: 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  43. Anderson, L. E., M. Avron. 1976. Light modulation of enzyme activity in chloroplasts. Generation of membrane-bound vicinal dithiol groups by photosynthetic electron transport. Plant Physiol. 57: 209–213.

    Article  PubMed  CAS  Google Scholar 

  44. Wolosiuk, R. A., B. B. Buchanan. 1977. Thioredoxin and glutathione regulate photosynthesis in chloroplasts. Nature (London) 266: 565–567.

    Article  CAS  Google Scholar 

  45. Wolosiuk, R. A., N. A. Crawford, B. C. Yee, B. B. Buchanan. 1979. Isolation of three thioredoxins from spinach leaves. J. Biol. Chem. 254: 1627–1632.

    PubMed  CAS  Google Scholar 

  46. Lara, C., A. de la Torre, B. B. Buchanan. 1980. Ferralterin: An iron-sulfur protein functional in enzyme regulation in photosynthesis. Biochem. Biophys. Res. Commun. 94: 1337–1344.

    Article  PubMed  CAS  Google Scholar 

  47. Leegood, R. C., D. A. Walker. 1980. Autocatalysis and light activation of enzymes in relation to photosynthetic induction in wheat chloroplasts. Arch. Biochem. Biophys. 200: 575–582.

    Article  PubMed  CAS  Google Scholar 

  48. Charles, S. A., B. Halliwell. 1981. Light activation of fructose bisphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide. A physiological role for the thioredoxin system. Planta 151: 242–246.

    Article  CAS  Google Scholar 

  49. Heldt, H. W., W. Laing, G. H. Lorimer, M. Stitt, W. Wirtz. 1981. On the regulation of CO2 fixation by light. Proc. Fifth International Congress on Photosynthesis. In press.

    Google Scholar 

  50. Huber, S. C. 1978. Substrates and inorganic phosphate control the light activation of Nadp-glyceral-dehyde-3-phosphate dehydrogenase and phosphoribulo-kinase in barley (Hordeum vulgare) chloroplasts. Febs Lett. 92: 12–16.

    Article  CAS  Google Scholar 

  51. Furbank, R. T., R. McC. Lilley. 1980. Effects of inorganic phosphate on the photosynthetic carbon reduction cycle in extracts from the stroma of pea chloroplasts. Biochim. Biophys. Acta 592: 65–75.

    Article  PubMed  CAS  Google Scholar 

  52. Wolosiuk, R. A., M. E. Perelmuter, C. Chehebar. 1980. Enhancement of chloroplast fructose-1,6-bisphos-phatase and dithiothreitol-reduced thioredoxin-f. Febs Lett. 109: 289–293.

    Article  CAS  Google Scholar 

  53. Woodrow, I. E., D. A. Walker. 1980. Light-mediated activation of stromal sedoheptulose bisphosphatase. Biochem. J. 191: 845–849.

    PubMed  CAS  Google Scholar 

  54. Breazeale, V. D., B. B. Buchanan, R. A. Wolosiuk. 1978. Chloroplast sedoheptulose 1,7-bisphosphatase: Evidence for regulation by the ferredoxin/thiore-doxin system. Z. Naturforsch. 33c: 521–528.

    Google Scholar 

  55. Levi, C., J. Preiss. 1978. Amylopectin degradation in pea chloroplast extracts. Plant Physiol. 61: 218–220.

    Article  PubMed  CAS  Google Scholar 

  56. Heldt, H. W., K. Werdan, M. Milovancev, G. Geller. 1973. Alkalization of the chloroplast stroma caused by light-dependent proton flux into the thylakoid space. Biochim. Biophys. Acta 314: 224–241.

    Article  PubMed  CAS  Google Scholar 

  57. Hall, D. O. 1976. The coupling of photophosphoryla-tion to electron transport in isolated chloroplasts. Ref. 10, pp. 135–170.

    Google Scholar 

  58. Werdan, K., H. W. Heldt, M. Milovancev. 1975. The role of pH in the regulation of carbon fixation in the chloroplast stroma. Studies on CO2 fixation in the light and dark. Biochim. Biophys. Acta 396: 276–292.

    Article  PubMed  CAS  Google Scholar 

  59. Purczeld, P., C. J. Chon, A. R. Portis, Jr., H. W. Heldt, U. Heber. 1978. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with nitrite-mediated proton transfer across the envelope. Biochim. Biophys. Acta 501: 488–498.

    Article  PubMed  CAS  Google Scholar 

  60. Enser, U., U. Heber. 1980. Metabolic regulation by pH gradients. Inhibition of photosynthesis by indirect proton transfer across the chloroplast envelope. Biochim. Biophys. Acta. 592: 577–591.

    Article  PubMed  CAS  Google Scholar 

  61. Flügge, U. I., Freisi, H. W. Heldt. 1980. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with acid mediated proton transfer across the envelope. Planta 149: 48–51.

    Article  Google Scholar 

  62. Zimmerman, G., G. J. Kelly, E. Latzko. 1976. Efficient purification and molecular properties of spinach chloroplast fructose 1,6-bisphosphatase. Eur. J. Biochem. 70: 361–367.

    Article  Google Scholar 

  63. Avron, M., M. Gibbs. 1974. Carbon dioxide fixation in the light and dark by isolated spinach chloroplasts. Plant Physiol. 53:140–143.

    Article  PubMed  CAS  Google Scholar 

  64. Huber, S. C. 1978. Regulation of chloroplast photo-synthetic activity by exogenous magnesium. Plant Physiol. 62: 321–325.

    Article  PubMed  CAS  Google Scholar 

  65. Demmig, B., H. Gimmler. 1979. Effect of divalent cations on cation fluxes across the chloroplast envelope and on photosynthesis of intact chloroplasts. Z. Naturforsch. 34c: 233–241.

    Google Scholar 

  66. Gimmler, H., G. Schäfer, U. Heber. 1974. Low permeability of the chloroplast envelope towards cations. In Proc. Third International Congress on Photosynthesis (M. Avron, ed.). Elsevier, Amsterdam, pp. 1381–1392.

    Google Scholar 

  67. Portis, A. R., H. W. Heldt. 1976. Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ dependency of CO2 fixation in intact chloroplasts. Biochim. Biophys. Acta 449: 434–446.

    Article  PubMed  CAS  Google Scholar 

  68. Huber, S. C., W. Maury. 1980. Effects of magnesium on intact chloroplasts. I. Evidence for activation of (sodium) potassium/proton exchange across the chloroplast envelope. Plant Physiol. 65: 350–354.

    Article  PubMed  CAS  Google Scholar 

  69. Maury, W. J., S. C. Huber, D. E. Moreland. 1981. Effects of magnesium on intact chloroplasts. II. Cation specificity and involvement of the envelope ATPase in (sodium) potassium/proton exchange across the envelope. Plant Physiol. In press.

    Google Scholar 

  70. Kaiser, W. M., W. Urbach, H. Gimmler. 1980. The role of monovalent cations for photosynthesis of isolated intact chloroplasts. Planta 149: 170–175.

    Article  CAS  Google Scholar 

  71. Sokolove, P. M., T. V. Marsho. 1979. The effect of valinomycin on electron transport in intact chloroplasts. FEBS Lett. 100: 179–184.

    Article  PubMed  CAS  Google Scholar 

  72. Huber, S. C., W. J. Maury, D. E. Moreland. 1981. Further studies on the effects of Mg2 on intact chloroplasts. Plant Physiol. 67 (Suppl.): 106.

    Google Scholar 

  73. Gimmler, H., B. Demmig, W. M. Kaiser. 1981. The role of K+ and H+-fluxes across the chloroplast envelope for photosynthetic C02-fixation. In Proc Fifth International Congress on Photosynthesis (G. Akoynnoglou, ed). In press.

    Google Scholar 

  74. Enser, N., U. Heber. 1981. Maintenance of a pH gradient across the chloroplast envelope. Ref. 71, in press.

    Google Scholar 

  75. Kobayashi, Y., Y. Inoue, K. Shibata, U. Heber. 1979. Control of electron flow in intact chloroplasts by the intrathylakoid pH, not by the phosphorylation potential. Planta 146: 481–486.

    Article  CAS  Google Scholar 

  76. Herold, A., D. H. Lewis. 1977. Mannose and green plants: Occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. New Phytol. 79: 1–40.

    Article  CAS  Google Scholar 

  77. Che-she, Sheu-Hwa, D. H. Lewis, D. A. Walker. 1975. Stimulation of photosynthetic starch formation by sequestration of cytoplasmic orthophosphate. New Phytol. 74: 383–392.

    Article  CAS  Google Scholar 

  78. Giersch, C., U. Heber, G. Kaiser, D. A. Walker, S. P. Robinson. 1980. Intracellular metabolite gradients and flow of carbon during photosynthesis of leaf protoplasts. Arch. Biochem. Biphys. 205: 246–259.

    Article  CAS  Google Scholar 

  79. Huber, S. C. 1981. Inter- and intra-specific variation in photosynthetic formation of starch and sucrose. 2. Pflanzenphysiol. 101: 49–54.

    CAS  Google Scholar 

  80. Huber, S. C. 1981. Interspecific variation in activity and regulation of leaf sucrose synthetase. Z. Pflanzenphysiol. 102: 443–450.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huber, S.C. (1982). Photosynthetic Carbon Metabolism in Chloroplasts. In: Creasy, L.L., Hrazdina, G. (eds) Cellular and Subcellular Localization in Plant Metabolism. Recent Advances in Phytochemistry, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4727-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4727-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4729-4

  • Online ISBN: 978-1-4757-4727-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics