The Role of Microtubules in Plant Cell Wall Growth

  • Myron C. Ledbetter
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 16)


The earliest microscopic evidence that higher plants are composed of cells rested on visualization of walls as cell remnants in wood and cork (Figure 1). In time it was recognized that the living eukaryotic plant cell is usually encased in a wall which grows by apposition from within, and that crystalline cellulose predominates as a skeletal component of the wall. Cell shape and function are determined largely by the extent and pattern of wall material deposition, along with the orientation in which cellulosic elements are laid down. The longstanding interest in the physical and biological properties of walls is reflected in several summaries which have appeared on the subject through the years.1–3


Plant Cell Wall Cellulose Microfibril Cell Cortex Flax Fiber Cortical Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Frey-Wyssling, A. 1976. The plant cell wall. Borntraeger, Berlin, 294 p.Google Scholar
  2. 2.
    Preston, R. D. 1974. The physical biology of plant cell walls. Chapman and Hall, London, 491 p.Google Scholar
  3. 3.
    Roelofsen, P. A. 1949. The plant cell wall. Borntraeger, Berlin, 335 p.Google Scholar
  4. 4.
    Hess, K. 1928. Die Chemie der Zellulose und ihrer Begleiter. Akademische Verlagsgesellschaft M.B.H., Leipzig.Google Scholar
  5. 5.
    Giddings, T. H., Jr., D. L. Brower, L. A. Staehelin. 1980. Visualization of particle complexes in the plasma membrane of Micrasterias denticulata associated with the formation of cellulose fibrils and secondary cell walls. J. Cell. Biol. 84: 327–339.PubMedCrossRefGoogle Scholar
  6. 6.
    Cruger, H. 1855. Zur Entwicklungsgeschichte der Zellwand. Bot. Ztg. 13: 601–613, 617–629.Google Scholar
  7. 7.
    Dipple, L. 1867. Die Entstehung der wandstandigen Protoplasmastromchen. Abb. Naturforsch. Ges. Halle 10: 53–68.Google Scholar
  8. 8.
    Preston, R. D. 1964. Structural plant polysaccharides. Endeavour 23: 153–159.PubMedCrossRefGoogle Scholar
  9. 9.
    Moor, H., K. Muhlethaler. 1963. Fine structure in frozen-etched yeast cells. J. Cell Biol. 17: 609–628.PubMedCrossRefGoogle Scholar
  10. 10.
    Robards, A. W. 1969. Particles associated with developing plant cell walls. Planta 88: 376–379.CrossRefGoogle Scholar
  11. 11.
    Roland, J.-C. 1967. Aspects infrastructuraux des relations existant entre le protoplasme et la paroi des cellules de collenchyme. J. Microscopie 9: 399–412.Google Scholar
  12. 12.
    Mueller, S. C., R. M. Brown, Jr. 1980. Evidence for an intramembrane component associated with a cellulose microfibril-synthesizing complex in higher plants. J. Cell Biol. 84: 315–326.PubMedCrossRefGoogle Scholar
  13. 13.
    Wilkinson, M. J., D. H. Northcote. 1980. Plasma membrane ultrastructure during plant protoplast plasmolysis, isolation and wall regeneration: a freeze-fracture study. J. Cell Sci. 42: 401–415.PubMedGoogle Scholar
  14. 14.
    Porter, K. R., R. D. Machado. 1960. Studies on the endoplasmic reticulum Iv. Its form and distribution during mitosis in cells of onion root tip. J. Biophys. Biochem. Cytol. 7:167–180.PubMedCrossRefGoogle Scholar
  15. 15.
    Crispeels, M. J. 1980. The endoplasmic reticulum. In The plant cell (N. E. Tolbert, ed). The biochemistry of plants (P. K. Stumpf, E. E. Conn, eds.) Vol. I. Academic Press, New York, pp. 389–412.Google Scholar
  16. 16.
    Miller, E. C. 1938. Plant physiology. Edit. 2. McGraw-Hill, New York, 1201 p.Google Scholar
  17. 17.
    Sabatini, D. D., K. Bensch, R. J. Barrnett. 1963. Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17: 19–58.PubMedCrossRefGoogle Scholar
  18. 18.
    Ledbetter, M. C., K. R. Porter. 1963. A “microtubule” in plant cell fine structure. J. Cell Biol. 19: 239–250.PubMedCrossRefGoogle Scholar
  19. 19.
    Dustin, P. 1978. Microtubules. Springer-Verlag, Berlin, 452 p.CrossRefGoogle Scholar
  20. 20.
    Hepler, P. K. Plant microtubules. In Plant Biochemistry, 3rd edit. (J. Bonner, J. E. Varner, eds.). Academic Press, New York, pp. 147–187.Google Scholar
  21. 21.
    Hepler, P. K., B. A. Palevitz. 1974. Microtubules and microfilaments. Annu. Rev. Plant Physiol. 25: 309–362.CrossRefGoogle Scholar
  22. 22.
    Newcomb, E. H. 1969. Plant microtubules. Annu. Rev. Plant Physiol. 20: 253–288.CrossRefGoogle Scholar
  23. 23.
    Preston, R. D., R. N. Goodman. 1968. Structural aspects of cellulose biosynthesis. J. Roy. Microscopical Soc. 88: 513–527.CrossRefGoogle Scholar
  24. 24.
    Crockett, L. J., M. C. Ledbetter. 1972. The association of microtubules with early wall formation in the zoospores of the marine alga Cladophora gracilis. (Abstract) Amer. J. Bot. 57: 741.Google Scholar
  25. 25.
    Robinson, D. G., R. K. White, R. D. Preston. 1972. Fine structure of swarmers of Cladophora and Chaetomorpha III. Wall synthesis and development. Planta 107: 131–144.CrossRefGoogle Scholar
  26. 26.
    Heath, I. B. 1974. A unified hypothesis for the role of membrane bound enzyme complexes and microtubules in plant cell wall synthesis. J. Theor. Biol. 48: 445–449.PubMedCrossRefGoogle Scholar
  27. 27.
    Cronshaw, J. 1967. Tracheid differentiation in tobacco pith cultures. Planta 72: 78–90.CrossRefGoogle Scholar
  28. 28.
    Cote, W. 1977. Wood ultrastructure in relation to chemical composition. In The structure, biosynthesis, and degradation of wood (F. A. Loewus, V. C. Runeckles, eds.). Plenum, New York, pp. 1–44.CrossRefGoogle Scholar
  29. 29.
    Sloboda, R. D. 1980. The role of microtubules in cell structure and cell division. Amer. Scientist 68: 290–298.Google Scholar
  30. 30.
    Bonnett, H. T., Jr., E. H. Newcomb. 1966. Coated vesicles and other cytoplasmic components of growing root hairs of radish. Protoplasma 62: 59–75.CrossRefGoogle Scholar
  31. 31.
    Pickett-Heaps, J. D. 1967. The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation, and distribution of cytoplasmic microtubules. Dev. Biol. 15: 206–236.CrossRefGoogle Scholar
  32. 32.
    Carpita, N. C., D. P. Delmer. 1980. Protection of cellulose synthesis in detached cotton fibers by polyethylene glycol. Plant Physiol. 66: 911–916.PubMedCrossRefGoogle Scholar
  33. 33.
    Gunning, B. E. S., A. R. Hardham, J. E. Hughes. 1978. Evidence for initiation of microtubules in discrete regions of the cell cortex in Azolla root-tip cells, and an hypothesis on the development of cortical arrays of microtubules. Planta 143: 161–179.CrossRefGoogle Scholar
  34. 34.
    Gunning, B. E. S. 1979. Nature and development of microtubule arrays in cells of higher plants. Proc. 37th Annual Electron Microscopy Society of America Meeting, pp. 172–175.Google Scholar
  35. 35.
    Delmer, D. P. 1977. The biosynthesis of cellulose and other plant cell wall polysaccharides. In The structure, biosynthesis and degradation of wood (F. A. Loewus, V. C. Runeckles, eds.). Plenum, New York. pp. 45–77.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • Myron C. Ledbetter
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations