Compartmentation in Plant Cells: The Role of the Vacuole

  • George J. Wagner
Part of the Recent Advances in Phytochemistry book series (RAPT, volume 16)


The mature plant cell vacuole is a multifunctional organelle which is unique to higher plants. It constitutes a compartment which is thought to be anabolically inactive and a primary site for metabolite storage and sequestration.1, 2 Cytologists carried out extensive studies of plant vacuoles during the late 1800’s and early 1900’s which revealed many of the functions of this organelle. This chapter will consider the roles of the vacuole in solute storage and sequestration, and discuss methods now being used to isolate and investigate plant vacuoles. Recent studies which have utilized vacuoles to estimate the compartmentation of solutes and enzymes will be discussed. Possible mechanisms of tonoplast transport will be considered.


Malic Acid Cinnamic Acid Acid Invertase Storage Root Beet Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zirkle, C. 1937. The Plant Vacuole. Bot. Rev. 3: 1–30.Google Scholar
  2. 2.
    Guilliermond, A. 1941. The Cytoplasm of the Plant Cell. Chronica Botanica Co., Waltham, MA. pp. 1–247.Google Scholar
  3. 3.
    Kramer, P. J. 1955. Physical chemistry of the vacuoles. In Encyclopedia of Plant Physiology (W. Ruhland, ed.). Springer-Verlag, Berlin, Vol 1, pp. 649–660.Google Scholar
  4. 4.
    Voeller, B. R. 1964. The plant cell: aspects of its form and function. In The Cell (J. Brachet, A. E. Mirsky, eds.) Academic Press, New York, Vol. VI, pp. 245–312.Google Scholar
  5. 5.
    De Robertis, E. D. P., W. W. Narinski, F. A. Salz. 1965. The plant vacuole. In Cell Biology, 4th Ed. W. B. Saunders Co., Philadelphia, Pa.Google Scholar
  6. 6.
    Pisek, A. 1955. Chemie des Zellsaftes. In Encyclopedia of Plant Physiology (W. Ruhland, ed.) Vol. I, Springer-Verlag, Berlin, pp. 614–626.Google Scholar
  7. 7.
    Matile, P. 1978. Biochemistry and function of vacuoles. Ann. Rev. Plant Physiol. 29: 193–213.Google Scholar
  8. 8.
    Marty, F., D. Branton, R. A. Leigh. 1980. Plant vacuoles. In The Biochemistry of Plants (P. K. Stumpf, E. E. Conn, eds.). Vol. I, Academic Press, New York, pp. 625–658.Google Scholar
  9. 9.
    Leigh, R. A. 1979. Do plant vacuoles degrade cytoplasmic components? Trends in Biol. Sci. N37-N38.Google Scholar
  10. 10.
    Nishimura, M., H. Beevers. 1979. Hydrolysis of protein in vacuoles isolated from higher plant tissue. Nature 277: 412–413.Google Scholar
  11. 11.
    Van der Wilden, W., E. M. Herman, M. J. Chrispeels. 1980. Protein bodies of mung bean cotyledons as autophagic organelles. Proc. Nat. Acad. Sci. Usa 77: 428–432.PubMedGoogle Scholar
  12. 12.
    Peoples, M. B., V. C. Beilharz, S. P. Waters, R. J. Simpson, M. J. Dalling. 1980. Nitrogen redistribution during grain growth in wheat. Planta 149: 241–251.Google Scholar
  13. 13.
    Heck, V., E. Martinoia, P. Matile. 1981. Subcellular localization of acid protease in barley mesophyll protoplasts. Planta 151: 198–200.Google Scholar
  14. 14.
    Ragster, L. E., M. J. Chrispeels. 1981. Autodigestion in crude extracts of soybean leaves and isolated chloroplasts as a measure of proteolytic activity. Plant Physiol. 67: 104–109.PubMedGoogle Scholar
  15. 15.
    Lin, W., V. A. Wittenbach. 1981. Subcellular localization of proteases in wheat corn mesophyll protoplasts. Plant Physiol. 67: 969–972.PubMedGoogle Scholar
  16. 16..
    Wagner, G. Isolation of higher plant vacuoles and tonoplast. In Isolation of Membranes and Organelles from Plant Cells (J. L. Hall, A. L. Moore, eds.). Academic Press, London (In press).Google Scholar
  17. 17.
    Wagner, G. J., H. C. Butcher, H. W. Siegelman. 1978. The plant protoplast. BioScience 28: 95–101.Google Scholar
  18. 18.
    Wagner, G. J. 1981. Enzymic and protein character of tonoplast from Hippeastrum vacuoles. Plant Physiol. 68: 499–503.PubMedGoogle Scholar
  19. 19.
    Wiebe, H. H. 1978. The significance of plant vacuoles. BioScience 28: 327–331.Google Scholar
  20. 20.
    Walter, H., E. Stadelmann. 1968. The physiological prerequisites for the transition of autotrophic plants from water to terrestrial life. BioScience 18: 694–701.Google Scholar
  21. 21.
    Dainty, J. 1968. The structure and possible function of the vacuole. In Plant Cell Organelles (J. B. Pridham, ed.). Academic Press, New York, pp. 40–46.Google Scholar
  22. 22.
    Hrazdina, G., G. J. Wagner, H. W. Siegelman. 1978. Subcellular localization of enzymes of anthocyanin biosynthesis in protoplasts. Phytochemistry 17: 53–56.Google Scholar
  23. 23.
    Schmeltz, I. 1971. Nicotine and other tobacco alkaloids. In Naturally Occurring Insecticides (J. Jacobson, D. G. Crosby, eds.). Dekker, New York, pp. 559–585.Google Scholar
  24. 24.
    Muller, C. H. 1969. The “co” in coevolution. Science 164: 197–198.PubMedGoogle Scholar
  25. 25.
    Fraenkel, G. S. 1959. The raison d’etre of secondary plant substances. Science 129: 1466–1470.PubMedGoogle Scholar
  26. 26.
    Rhoades, D. F., R. G. Cates. 1976. Toward a general theory of plant antiherbivore chemistry. In Biochemical Interaction between Plants and Insects (J. W. Wallace, R. L. Mansell, eds.). Recent Advances in Phytochemistry, Vol. 10. Plenum Press, New York, pp. 168–213.Google Scholar
  27. 27.
    Bell, A. O. 1981. Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32: 21–81.Google Scholar
  28. 28.
    Berenbaum, M., P. Feeny. 1981. Toxicity of angular furanocoumarins to swallowtail butterflies: escalation in a coevolutionary arms race? Science 212: 927–929.PubMedGoogle Scholar
  29. 29.
    Franceschi, V. R., H. T. Horner. 1980. Calcium oxalate crystals in plants. Bot. Rev. 46: 361–427.Google Scholar
  30. 30.
    Oaks, A., R. G. S. Bidwell. 1970. Compartmentation of intermediary metabolites. Annu. Rev. Plant Physiol. 21: 43–66.Google Scholar
  31. 31.
    Osmond, G. B. 1976. Transport in plants. In Encyclopedia of Plant Physiology, New Series. U. Luttge, M. G. Pitman, eds. Vol. 2A Springer-Verlag, Berlin, pp. 347–372.Google Scholar
  32. 32.
    Kisaki, T., N. E. Tolbert. 1969. Glycolate and glyoxylate metabolism by isolated peroxisomes and chloroplasts. Plant Physiol. 44: 242–250.PubMedGoogle Scholar
  33. 33.
    Saunders, J. A. 1979. Investigations of vacuoles isolated from tobacco. Plant Physiol. 64: 74–78.PubMedGoogle Scholar
  34. 34.
    Saunders, J. A., E. E. Conn, C. H. Lin, C. R. Stocking. 1977. Subcellular localization of the cyanogenic glucoside of Sorghum by autoradiography. Plant Physiol. 59: 647–652.PubMedGoogle Scholar
  35. 35.
    Robinson, T. 1980. The Organic Constituents of Higher Plants. Edit. 4. Cordus Press, P. O. Box 587, North Amherst, MA, pp. 201–205.Google Scholar
  36. 36.
    Imai, K., K. Furuya. 1951. Study of the phytochemical component of Fagopyrum cymosum Meisn. J. Pharm. Soc. Japan 71: 266–273.Google Scholar
  37. 37.
    Asen, S., R. N. Stewart, K. H. Norris. 1977. Antho-cyanin and pH involved in the color of ‘heavenly blue’ morning glory. Phytochemistry 16: 1118–1119.Google Scholar
  38. 38.
    Burch, G. E. 1972. Experiments of nature: whole leaf and purified alkaloids. Am. Heart J. 83: 845–847.PubMedGoogle Scholar
  39. 39.
    Akahori, A., F. Yasuda, M. Togami, K. Kagawa, T. Okahishi. 1969. Variation in isodiotigenin and diosgenin content in aerial parts of Dioscorea tokoro. Phytochemistry 8: 2213–2217.Google Scholar
  40. 40.
    Feeny, P. P. 1968. Seasonal changes in the tannin content of oak leaves. Phytochemistry 7: 871–880.Google Scholar
  41. 41.
    Arnold, G. W., J. J. Hill. 1972. Chemical factors effecting selection of food plants by ruminants. In Phytochemical Ecology (J. Harborne, ed.). Academic Press, London and New York, pp. 71–101.Google Scholar
  42. 42.
    Fassett, D. W. 1973. Oxalates. In Toxicants Occurring Naturally in Foods, National Academcy of Sciences, 2101 Constitution Ave., N.W., Washington, D.C., pp. 346–362.Google Scholar
  43. 43.
    Liener, I. E., J. E. Rose. 1953. Soyin, a toxic protein from the soybean III. Immunochemical properties. Proc. Soc. Exp. Biol. Med. 83: 539–547.PubMedGoogle Scholar
  44. 44.
    Vinson, C. G., F. B. Cross. 1942. Vitamin C contentof persimmon leaves and fruits. Science 96: 430–431.PubMedGoogle Scholar
  45. 45.
    Fassett, D. W. 1973. Nitrates and Nitrites. In Toxicants Occurring Naturally in Foods, National Academy of Sciences, 2101 Constitution Ave., N. W., Washington, D.C., pp. 7–25.Google Scholar
  46. 46.
    Allaway, W. H., H. A. Laitinen, H. W. Lakin, O. H. Muth. 1974. Selenium. In Geochemistry and The Environment, Vol. 1. National Academy of Sciences, 2101 Constitution Ave., Washington, D.C., pp. 57–63.Google Scholar
  47. 47.
    Brooks, R. R., J. Lee, R. D. Reeves. 1976. Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193: 579–580.PubMedGoogle Scholar
  48. 48.
    Page, A. L., F. T. Bingham, C. Nelson. 1972. Cadmium absorption and growth of various plant species as influenced by solution cadmium concentration. J. Environ. Quality 1: 288–291.Google Scholar
  49. 49.
    Finlayson, D. G., H. R. MacCarthy. 1973. Pesticide residues in plants. In Environmental Pollution by Pesticides (C. A. Edwards, ed.). Plenum Press, New York, pp. 57–86.Google Scholar
  50. 50.
    Martinoia, E., U. Heck, A. Wiemken. 1981. Vacuoles as storage compartments for nitrate in barley leaves. Nature 289: 292–294.Google Scholar
  51. 51.
    Wagner, G. J. 1979. The subcellular site and nature for intracellular cadmium in plants. In Trace Substances in Environmental Health — XIII (D. D. Hemphill, ed.). Univ. of Missouri Press, Columbia, Missouri, pp. 115–123.Google Scholar
  52. 52.
    Wagner, G. J., H. W. Siegelman. 1975. Large-scale isolation of intact vacuoles and isolation of choloroplasts from mature plant tissues. Science 190: 1298–1299.Google Scholar
  53. 53.
    Leigh, R. A., D. Branton. 1976. Isolation of vacuoles from root storage tissue of Beta vulgaris L. Plant Physiol. 58: 656–662.PubMedGoogle Scholar
  54. 54.
    Lorz, H. C., T. Harms, I. Potrykus. 1976. Isolation of “Vacuoplasts” from protoplasts of higher plants. Biochem. Physiol. Pflanzen 169: 617–620.Google Scholar
  55. 55.
    Leigh, R. A., D. Branton, F. Marty. 1979. Methods of isolation of intact vacuoles and fragments of tono-plast. In Plant Organelles, Methodological Surveys (B) Biochemistry, Vol. 9 (E. Reid, ed.). Ellis Harwood LTD., Publishers, Chichester, West Sussex, England, pp. 69–80.Google Scholar
  56. 56.
    Ohlrogge, J. B., J. L. Garcia-Martinez, D. Adams, L. Rappaport. 1980. Uptake and subcellular compart-mentation of gibberellin Ax applied to leaves of barley and cowpea. Plant Physiol. 66: 422–427.PubMedGoogle Scholar
  57. 57.
    Leigh, R. A., T. Rees, W. A. Fuller, J. Banfield. 1979. The location of acid invertase activity and sucrose in the vacuoles of storage of roots of beet root (Beta vulgaris). Biochem. J. 178: 539–547.PubMedGoogle Scholar
  58. 58.
    Grob, K., P. Matile. 1980. Compartmentation of ascorbic acid in vacuoles of horseradish root cells. Z. Pflanzenphysiol. 98: 235–243.Google Scholar
  59. 59.
    Buser, C., P. Matile. 1977. Malic acid in vacuoles isolated from Bryophyllum leaf cells. Z. Pflanzenphysiol. 82: 462–466.Google Scholar
  60. 60.
    Boller, T., H. Kende. 1979. Hydrolytic enzymes in the central vacuole of plant cells. Plant Physiol. 63: 1123–1132.PubMedGoogle Scholar
  61. 61.
    Taylor, A. R. D., J. L. Hall. 1976. Some physiological properties of protoplasts isolated from maize and tobacco tissues. J. Exp. Bot. 27: 383–391.Google Scholar
  62. 62.
    Hall, J. L. 1979. Methods for isolation of protoplasts and plasma membranes. In Plant Organelles, Methodological Surveys (B) Biochemistry, Vol. 9 (E. Reid, ed.). Ellis Horwood Ltd. Publisher, Chichester, West Sussex, England, pp. 69–80.Google Scholar
  63. 63..
    Cocking E. C. Isolation of Plant Protoplasts. In Isolation of Membranes and Organelles from Plant Cells (J. L. Hall, A. L. Moore, eds.). Academic Press, London (In Press).Google Scholar
  64. 64.
    Wagner, G. J., P. Mulready, J. Cutt. 1981. Vacuole/ extravacuole distribution of soluble protease in Hippeastrum petal and Triticum leaf protoplasts. Plant Physiol. 68: 1081–1089.PubMedGoogle Scholar
  65. 65.
    Wagner, G. J. 1979. Content and vacuole/extravacuole distribution of neutral sugars, free amino acids and anthocyanin in protoplasts. Plant Physiol. 64: 88–93.PubMedGoogle Scholar
  66. 66.
    Nishimura, M., H. Beevers. 1978. Hydrolases in vacuoles from castor bean endosperm. Plant Physiol. 62: 44–48.PubMedGoogle Scholar
  67. 67.
    Wagner, G. J. 1981. Vacuolar deposition of ascorbate-derived oxalic acid in barley. Plant Physiol. 67: 591–593.PubMedGoogle Scholar
  68. 68.
    Lin, W., G. J. Wagner, H. W. Siegelman, G. Hind. 1977. Membrane-bound ATPase of intact vacuoles and tono-plasts isolated from mature plant tissue. Biochim. Biophys. Acta 465: 110–117.PubMedGoogle Scholar
  69. 69.
    Saunders, J. A., E. E. Conn. 1978. Presence of the cyanogenic glucoside dhurrin in isolated vacuoles from Sorghum. Plant Physiol. 61: 154–157.PubMedGoogle Scholar
  70. 69a.
    Galun, E. 1981. Plant protoplasts as physiological tools. Annu. Rev. Plant Physiol. 32: 237–266.Google Scholar
  71. 70.
    Walker-Simmons, M., C. A. Ryan. 1977. Immunologicalidentification of protease inhibitors I and II in isolated tomato leaf vacuoles. Plant Physiol. 60: 61–63.PubMedGoogle Scholar
  72. 71.
    Beevers, L. 1976. Nitrogen Metabolism in Plants. Arnold Press, London.Google Scholar
  73. 72.
    Holleman, J. M., J. L. Key. 1967. Inactive and protein precursor pools of amino acids in the soybean hypocotyl. Plant Physiol. 42: 29–36.PubMedGoogle Scholar
  74. 73.
    Giaquinta, R. 1978. Source of sink leaf metabolism in relation to phloem translocation. Plant Physiol. 61: 380–385.PubMedGoogle Scholar
  75. 74.
    Outlaw, W. H., D. B. Fisher, A. L. Christy. 1975. Compartmentation in Vica faba leaves. Plant Physiol. 55: 704–711.PubMedGoogle Scholar
  76. 75.
    Moskowitz, A. H., G. Hrazdina. 1981. Vacuolar contents of fruit subepidermal cells from Vitis species. Plant Physiol. 68: 686–692.PubMedGoogle Scholar
  77. 76.
    Kenyon, W. H., R. Kringstad, C. C. Black. 1978. Diurnal changes in the malic acid content of vacuoles isolated from leaves of the crassulacean acid metabolism plant, Sedum telephium. FEBS Lett. 94: 281–283.Google Scholar
  78. 77.
    Reijngoud, D. J., J. M. Tager. 1977. The permeability properties of the lysosomal membrane. Biochim. Biophys. Acta 472: 419–449.PubMedGoogle Scholar
  79. 78.
    Matile, P. 1975. The Lytic Compartment of Plant Cells. Springer-Verlag, New York, pp. 1–175.Google Scholar
  80. 79.
    Butcher, H. C., G. J. Wagner, H. W. Siegelman. 1977. Localization of acid hydrolases in protoplasts. Plant Physiol. 59: 1098–1103.PubMedGoogle Scholar
  81. 80.
    Swain, T. 1976. Nature and properties of flavonoids. In Chemistry and Biochemistry of Plant Pigments (T. W. Goodwin, ed.). Edit. 2, Vol. 1, Academic Press, New York, pp. 425–463.Google Scholar
  82. 81.
    Conn, E. E. 1973. Biosynthesis of cyanogenic gluco-sides. Biochem. Soc. Symp. 38: 277–302.PubMedGoogle Scholar
  83. 82.
    Quail, P. H. 1979. Plant cell fractionation. Annu. Rev. Plant Physiol. 30: 425–484.Google Scholar
  84. 83.
    Saunders, J. A., E. E. Conn, C. H. Lin, M. Shimada. 1977. Localization of cinnamic acid 4-monoxygenase and the membrane-bound enzyme system for dhurrin biosynthesis in Sorghum seedlings. Plant Physiol. 60: 629–634.PubMedGoogle Scholar
  85. 84.
    Czichi, V., H. Kindl. 1977. Phenylalanine ammonia lyase and cinnamic acid hydroxylases as assembled consecutive enzymes on microsomal membranes of cucumber cotyledons: cooperation and subcellular distribution. Planta 134: 133–143.Google Scholar
  86. 84a.
    McClure, J. W. 1977. The physiology of phenolic compounds in plants. Recent Advan. Phytochem. 12: 525–556.Google Scholar
  87. 84b.
    Stafford, H. A. 1974. Possible multienzyme complexes regulating the formation of Cß-Ca phenolic compounds and lignins in higher plants. Recent Advan. Phytochem. 8: 53–79.Google Scholar
  88. 85.
    Diers, L., F. Schotz, B. Meyer. 1973. Uber die Ausbildung von Gerbsstoffvakuolen bei Oenothera. Cytobiologie 7: 10–19.Google Scholar
  89. 86.
    Chafe, S. C., D. J. Durzan. 1973. Tannin inclusions in cell suspension cultures of white spruce. Planta 113: 251–262.Google Scholar
  90. 87.
    Baur, P. S., C. H. Walkinshaw. 1974. Fine structure of tannin accumulation in callus cultures of Pinus elliotti (slash pine). Can. J. Bot. 52: 615–619.Google Scholar
  91. 88.
    Ginsberg, C. 1967. The relation of tannins to the differentiation of the root tissues in Reaumuria palastina. Bot. Gaz. 128: 1–10.Google Scholar
  92. 89.
    Pecket, R. C., C. J. Small. 1980. Occurrence, localization and development of anthocyanoplasts. Phytochemistry 19: 2571–2576.Google Scholar
  93. 90.
    Haghiri, F. 1973. Cadmium uptake by plants. J. Environ. Qual. 2: 93–96.Google Scholar
  94. 91.
    Bartlof, M., E. Brennan, C. A. Price. 1980. Partial characterization of cadmium-binding protein from the roots of cadmium-treated tomato. Plant Physiol. 66: 438–441.Google Scholar
  95. 92.
    Weigel, H. J., H. J. Jager. 1980. Subcellular distribution and chemical form of cadmium in bean plants. Plant Physiol. 65: 480–482.PubMedGoogle Scholar
  96. 93..
    Wagner, G. J., M. M. Trotter. Inducible cadmium binding complexes of cabbage and tobacco. Plant Physiol. (In Press).Google Scholar
  97. 94.
    Cherian, M. G. 1979. Metabolism and potential toxic effects of metallothionein. In Metallothionein (J. H. R. Kagi, M. Nordberg, eds.). Birkhauser Verlag, Basel, Boston, Stuttgart, pp. 337–345.Google Scholar
  98. 95.
    Smith, F. A., J. A. Raven. 1979. Intracellular pH and its regulation. Annu. Rev. Plant Physiol. 30: 289–311.Google Scholar
  99. 96.
    Kurkdjian, À., J. Guern. 1978. Intracellular pH in higher plant cells. Plant Sci. Lett. 11: 337–344.Google Scholar
  100. 97.
    Drawert, H. 1955. Der pH-Wert des Zellsaftes. In Encyclopedia of Plant Physiology (W. Ruhland, ed.). Springer-Verlag, Berlin, Vol. 1, pp. 627–639.Google Scholar
  101. 98.
    Wagner, G. J., P. Mulready. 1981. Solubilization and characterization of tonoplasts ATPase. Plant Physiol. Supp. 67: 8.Google Scholar
  102. 99.
    Leigh, R. A., R. R. Walker. 1980. ATPase and acid phosphatase activities associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta 150: 222–229.Google Scholar
  103. 100..
    Walker, R. R., R. A. Leigh. 1981. Characterization of a salt-stimulated ATPase activity associated with vacuoles isolated from storage roots of red beet (Beta vulgaris L.). Planta (In Press).Google Scholar
  104. 101.
    d’Auzac, J. 1975. Characterisation d’une ATPase membranaire en presence d’une phosphatase acide dans les lutoides du latex d’Hevea brasiliensis. Phytochemistry 14: 671–675.Google Scholar
  105. 102.
    d’Auzac, J. 1977. ATPase membranaire de vacuoles lysosomales: les lutoides du latex d1 Hevea brasiliensis. Phytochemistry 16: 1881–1885.Google Scholar
  106. 103.
    Lin, W., G. J. Wagner, G. Hind. 1977. The proton pump and membrane potential of vacuoles isolated from Tulipa petals. Plant Physiol. Supp. 59: 85.Google Scholar
  107. 103a.
    Marin, B., M. Marin-Lanza, E. Komor. 1981. The proton motive potential difference across the vacuo-lysosornai membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase. Biochem. J. 98: 365–372.Google Scholar
  108. 104.
    d’Auzac, J., C. Lioret. 1974. Mise en evidence d’un mecanisme d’accumulation du citrate dans les lutoides du latex d’Hevea brasiliensis. Physiol. Veg. 12: 617–635.Google Scholar
  109. 105.
    Guy, M., L. Reinhold, D. Michaeli. 1979. Direct evidence for a sugar transport mechanism in isolated vacuoles. Plant Physiol. 64: 61–64.PubMedGoogle Scholar
  110. 106.
    Doll, S., F. Rodier, J. Willenbrink. 1979. Accumulation of sucrose in vacuoles isolated from red beet tissue. Planta 144: 407–411.Google Scholar
  111. 107.
    Willenbrink, J., S. Doll. 1979. Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue. Planta 147: 159–162.Google Scholar
  112. 108.
    Doll, S., R. Hauer. 1981. Determination of the membrane potential of vacuoles isolated from red beet storage tissue. Planta 152: 153–158.Google Scholar
  113. 109.
    Briskin, D. P., R. T. Leonard. 1980. Isolation of tonoplast vesicles from tobacco protoplasts. Plant Physiol. 66: 684–687.PubMedGoogle Scholar
  114. 110.
    Rosen, B. P., E. R. Kashket. 1978. Energetics of active transport. In Bacterial Transport (B. P. Rosen, ed.). Chap. 12, Marcel Dekker, Inc., New York. pp. 559–620.Google Scholar
  115. 111.
    Hays, J. B. 1978. Group translocation transport systems. In Bacterial Transport (B. P. Rosen, ed.). Chap. 2, Marcel Dekker, Inc., New York. pp. 43–102.Google Scholar
  116. 112.
    Goto, K., H. Kirata, Y. Kagawa. 1980. A stable Na /H antiporter of thermophylic bacterium PS3. J. Bioenerget. Biomembran. 12: 297–308.Google Scholar
  117. 113.
    Mertz, S. M., N. Higinbotham. 1976. Transmembrane electropotential in barley roots as related to cell type, cell location, and cutting and aging effects. Plant Physiol. 57: 123–128,PubMedGoogle Scholar
  118. 114.
    Goldsmith, M. H. M., R. E. Clealand. 1978. The contribution of tonoplast and plasmamembrane to the electrical properties of higher plant cells. Planta 143: 261–265.Google Scholar
  119. 115.
    Saftner, R. A., R. E. Wyse. 1980. Alkali cation/sucrose cotransport in the root sink of sugar beet. Plant Physiol. 66: 884–889.PubMedGoogle Scholar
  120. 116.
    Luttge, U., E. Ball. 1979. Electrochemical investigation of active malic acid transport at the tonoplast into the vacuoles of the CAM plant Kalanchoe daigremontiana. J. Membrane Biol. 47: 401–422.Google Scholar
  121. 117.
    Boller, T., M. Durr, A. Wiemken. 1975. Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur. J. Biochem. 54: 81–91.PubMedGoogle Scholar
  122. 117a.
    Ohsumi, Y., Y. Anraku. 1981. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesciles of Saccharomyces cerevisiae. J. Biol. Chem. 256: 2079–2082.PubMedGoogle Scholar
  123. 117b.
    Kakinuma, Y., Y. Ohsumi, Y. Anraku. 1981. Properties of H translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 256: 10859–10863.PubMedGoogle Scholar
  124. 118.
    Blobel, G., B. Dobberstein. 1975. Transfer of proteins across membranes. J. Cell. Biol. 67:852–862.PubMedGoogle Scholar
  125. 119.
    Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77: 1496–1500.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • George J. Wagner
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations