Skip to main content

A Periodic Cytoskeletal Lattice in Striated Muscle

  • Chapter
Cell and Muscle Motility

Abstract

The microscopic structure of striated muscle has been examined for more than three centuries. Within this time span, progress in understanding the structural basis of contraction has been marked by at least two major developments: one was the deduction of a fundamental repeating unit, the sarcomere, from a complex series of microscopic bands, and another was the recognition that active shortening of the sarcomere repeat occurs through the action of mechanical crossbridges, operating between two constituent sets of sliding filaments. These two ideas traced macroscopic muscular movement through shortening of a microscopic sarcomere to some as yet unresolved motion taking place within a molecular complex between the major structural proteins, myosin and actin. During the course of this millionfold increase in spatial resolution of the contractile event, resulting in a sharp contemporary focus on a cross-bridge mechanism, some unique structural properties of striated muscle have been overlooked. One outstanding example is the very uniform long-range spatial regulation of the contractile apparatus that provides the actual physical framework for contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baskin, R., Roos, K., and Yeh, Y., 1979, Light diffraction study of single skeletal muscle fibers, Biophys. J.28:45–64.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, S., and Porter, K., 1953, An electron microscope study of the sectioned breast muscle of the domestic fowl, Am. J. Anal.93:61–105.

    Article  CAS  Google Scholar 

  • Bowman, W., 1840, On the minute structure and movements of voluntary muscle, Philos. Trans. R. Soc. Lond. [Biol] 457–501.

    Google Scholar 

  • Buckley, I., and Porter, K. R., 1975, Electron microscopy of critical point dried whole cultured cells, J. Microsc.104:107–120.

    Article  PubMed  CAS  Google Scholar 

  • Capco, D., Wan, K., and Penman, S., 1982, The nuclear matrix: Three dimensional architecture and protein composition, Cell 29:847–858.

    Article  PubMed  CAS  Google Scholar 

  • Close R., 1972, Dynamic properties of mammalian skeletal muscles, Physiol. Rev.52:129–197.

    PubMed  CAS  Google Scholar 

  • Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers. J. Cell Biol.68:539–556.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, P., and Chase, R., 1971, A potassium chloride-insoluble myofilament in vertebrate smooth muscle cells, Exp. Cell Res.66:417–425.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, P., and Katz, E. 1982, A periodic cytoskeletal lattice in striated muscle fibers, J. Cell Biol.95:375a.

    Google Scholar 

  • Cooke, P., and Meek, K., 1983, A cytoskeletal periodicity in striated muscle, J. Cell Biol.97:468a.

    Google Scholar 

  • Craig, R., and Offer, G., 1976, Axial arrangement of cross-bridges in thick filaments of vertebrate striated muscle. J. Mol. Biol.102:325–332.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, G., Lowy, J., and Millman, B., 1965, X-ray diffraction from living striated muscle during contraction, Nature 206:1357–1358.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, G., Lowy, J., and Millman, B., 1967, Low angle X-ray diffraction studies of living striated muscle during contraction, J. Mol. Biol.25:31–45.

    Article  PubMed  CAS  Google Scholar 

  • Ferrans, V., and Roberts, W., 1973, Intermyofibrillar and nuclear-myofibrillar connections in human and canine myocardium: An ultrastructural study, J. Mol. Cell Cardiol.5:247–257.

    Article  PubMed  CAS  Google Scholar 

  • Fischman, D., 1967, An electron microscope study of myofibril formation in embryonic skeletal muscle, J. Cell Biol.32:557–574.

    Article  PubMed  CAS  Google Scholar 

  • Franke, W., and Schinko, W., 1967, Nuclear shape in muscle cells, J. Cell Biol.42:326–331.

    Article  Google Scholar 

  • Franzini-Armstrong, C., 1970, Details of I band structure as revealed by the localization of ferritin, Tissue Cell 2:327–338.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, A., Huxley, A., and Julian, F., 1966, The variation in isometric tension with sarcomere length in vertebrate muscle fibers, J. Physiol. (Lond.) 184:170–192.

    CAS  Google Scholar 

  • Granger, B., and Lazarides, E., 1978, The existence of an insoluble Z-disc scaffold in chicken skeletal muscle, Cell 19:1253–1268.

    Article  Google Scholar 

  • Hall, C., Jakus, M., and Schmitt, F., 1946, An investigation of cross-striations and myosin filaments in muscle, Biol. Bull.90:32–50.

    Article  PubMed  CAS  Google Scholar 

  • Haugen, P., and Sten-Knudsen, O., 1976, Sarcomere lengthening and tension drop in the latent period of isolated frog skeletal muscle fibers, J. Gen. Physiol.68:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J., and Huxley, H., 1955, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol.9:228–264.

    Google Scholar 

  • Huxley, H., 1957, The double array of filaments in cross-striated muscle, J. Biophys. Biochem. Cytol.3:631–648.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H., 1963, Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle, J. Mol. Biol.7:281–308.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H., and Brown, W., 1967, The low angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol.30:383–434.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H., and Hanson, J., 1954, Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation, Nature 173:973–976.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, H., and Hanson, J., 1957, Quantitative studies on the structure of cross-striated myofibrils. I. Investigations by interference microscopy, Biochim. Biophys. Acta 23:229–249.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A., and Niedergerke, R., 1954, Structural changes in muscle during contraction, Nature 173:971–973.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A., and Peachey, L., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol. (Lond.) 156:150–165.

    CAS  Google Scholar 

  • Huxley, H., Brown, W., and Holmes, K., 1965, Constancy of axial spacings in frog sartorius muscle during contraction, Nature 206:1358.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, H., Bischoff, R., and Holtzer, H., 1968, Mitosis and intermediate sized filaments in developing skeletal muscle, J. Cell Biol.38:538–555.

    Article  PubMed  CAS  Google Scholar 

  • Ishiwata, S., 1981, Melting from both ends of an α-band in a myofibril. Observation with a phase-contrast microscope, J. Biochem. (Tokyo) 89:1647–1650.

    CAS  Google Scholar 

  • Karlson, U., and Andersson-Cedergren, E., 1968, Small leptomeric organelles in intrafusal fibers of the frog as revealed by electron microscopy, J. Ultrastruct. Res.23:417–426.

    Article  Google Scholar 

  • Kelly, D., 1969, Myofibrillogenesis and Z-band differentiation, Anat. Rec.163:403–426.

    Article  PubMed  CAS  Google Scholar 

  • Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature 283:249–256.

    Article  PubMed  CAS  Google Scholar 

  • Locker, R., and Leet, N., 1975, Histology of highly stretched beef muscle. The fine structure of grossly stretched single fibers, J. Ultrastruct. Res.52:64–75.

    Article  PubMed  CAS  Google Scholar 

  • Matolsty, A., and Gerendas, M., 1947, Isotropy in the I striation of striated muscle, Nature 159:502–503.

    Google Scholar 

  • McNeil, P., and Hoyle, G., 1967, Evidence for superthin filaments, Am. Zool.7:483–498.

    Google Scholar 

  • Ohtsuki, I., 1975, Distribution of troponin components in the thin filament studied by immu- noelectron microscopy, J. Biochem. (Tokyo) 77:633–639.

    CAS  Google Scholar 

  • Page, S., 1968, Fine structure of tortoise skeletal muscle, J. Physiol. (Lond.) 197:709–715.

    CAS  Google Scholar 

  • Page, S., and Huxley, H., 1963, Filament lengths in striated muscle, J. Cell Biol.19:369–390.

    Article  PubMed  CAS  Google Scholar 

  • Pierobon-Bormioli, S., 1981, Transverse sarcomere filamentous systems: Z and M cables, J. Muscle Res. Cell Motil.2:401–413.

    Article  Google Scholar 

  • Porter, K. R., and Anderson, K., 1982, The structure of the cytoplasmic matrix preserved by freeze drying and freeze substitution, Eur. J. Cell Biol.29:83–96.

    PubMed  CAS  Google Scholar 

  • Porter, K. R., and McNiven, M., 1982, The cytoplast: A unit structure in chromatophores, Cell 29:23–32.

    Article  PubMed  CAS  Google Scholar 

  • Price, M., and Sanger, J., 1979, Intermediate filaments connect Z discs in adult chicken muscle, J. Exp. Zool.208:263–269.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, C., 1980, Evolution and diversity of non-striated muscles, in: Handbook of Physiology (D. Bohr, A. Somlyo, and H. Sparks, eds.), Section 2, pp. 635–670, American Physiological Society, Bethesda, Md.

    Google Scholar 

  • Prosser, C., 1982, Diversity of narrow-fibered and wide-fibered muscles, in: Basic Biology of Muscles: A Comparative Approach (B. Twarog, R. Levine, and M. Dewey, eds.), pp. 381–397, Raven Press, New York.

    Google Scholar 

  • Rash, J., Biesele, J., and Gey, G., 1970, Three classes of filaments in cardiac differentiation, J. Ultrastruct. Res.33:408–435.

    Article  PubMed  CAS  Google Scholar 

  • Richardson, F., Stromer, M., Huiatt, T., and Robson, R., 1981, Immunoelectron and immunofluorescence localization of desmin in mature avian muscles, Eur. J. Cell Biol.26:91 – 101.

    PubMed  CAS  Google Scholar 

  • Rudel, R., and Zite-Ferenczy, F., 1979, Interpretation of light diffraction by cross-striated muscle as Bragg reflection of light by the lattice of contractile proteins, J. Physiol. (Lond.) 290:317 – 330.

    CAS  Google Scholar 

  • Ruska, H., and Edwards, G., 1957, A new cytoplasmic pattern in striated muscle fibers and its possible relation to growth, Growth 21:73–88.

    PubMed  CAS  Google Scholar 

  • Staufenbiel, M., and Deppert, W., 1982, Intermediate filaments are collapsed onto the nuclear surface after isolation of nuclei from tissue cells, Exp. Cell Res.138:207–214.

    Article  PubMed  CAS  Google Scholar 

  • Tigyi-Sebes, A., 1966, Migration of the substance of the anisotropic band of the cross striated muscle during the release of myosin, Acta Biochim. Biophys. Acad. Sci. Hung.1:407–412.

    CAS  Google Scholar 

  • Wang, K., and Ramirez-Mitchell, R., 1983, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of vertebrate skeletal muscle, J. Cell Biol.96:562 – 570.

    Article  PubMed  CAS  Google Scholar 

  • Yeh, Y., Baskin, R., Lieber, R., and Roos, K., 1980, Theory of light diffraction by single skeletal muscle fibers, Biophys. J.29:509–522.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cooke, P. (1985). A Periodic Cytoskeletal Lattice in Striated Muscle. In: Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4723-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4723-2_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4725-6

  • Online ISBN: 978-1-4757-4723-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics