Skip to main content

Cloning Nematode Myosin Genes

  • Chapter
Cell and Muscle Motility

Abstract

Little is known about the molecular basis for differential gene expression during muscle development, the assembly of contractile proteins into filament lattices, or the functions of contractile protein isoforms in different muscle tissues. The small soil nematode Caenorhabditis elegans is an attractive organism in which to apply biochemical and genetic approaches to the study of these problems. Only two major muscles are present in the organism—the pharyngeal muscle and the body wall muscle—and the anatomy and lineage of all the muscle cells in the organism throughout development are known (Suiston et al, 1983; Suiston and Horvitz, 1977). Because a large fraction of the nematode tissue mass is muscle, the major contractile proteins can be isolated in milligram quantities from a few liters of nematode culture (Epstein et al, 1974; Waterston et al, 1977; Harris and Epstein, 1977; MacLeod et al, 1977a,b; Zengel and Epstein, 1980c). Caenorhabditis elegans exhibits a characteristic swimming pattern on the surface of agar plates. Genetic analysis (Brenner, 1974) has defined mutations in more than 100 different genes that produce animals with defective motility (the uncoordinated, or unc, phe-notype). Mutations in 22 of these unc genes create gross abnormalities in muscle ultrastructure (Waterston et al, 1980; Zengel and Epstein, 1980b).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49:921–956.

    PubMed  CAS  Google Scholar 

  • Albertini, A. M., Hoter, M., Calos, M. P., and Miller, J. H., 1982, On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions, Cell 29:319–328.

    PubMed  CAS  Google Scholar 

  • Albertson, D. G., 1984, Localization of the ribosomal genes in Caenorhabditis eleganis chromosomes by in situ hybridization using biotin-labeled probes. EMBO J. 3:1227–1234.

    PubMed  CAS  Google Scholar 

  • Anderson, S., 1981, Shotgun DNA sequencing using cloned DNase I generated fragments, Nucl. Acids Res. 9:3015–3027.

    PubMed  CAS  Google Scholar 

  • Anderson, P., and Brenner, S., 1984, A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 81:4470–4474.

    PubMed  CAS  Google Scholar 

  • Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J., and Sreter, A., 1978, Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin, Arch. Biochem. Biophys. 190:793–799.

    PubMed  CAS  Google Scholar 

  • Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV 40 early promoter region, Nature 290:304–310.

    PubMed  CAS  Google Scholar 

  • Biggin, M. D., Gibson, T. J., and Hong, G. F., 1983, Buffer gradient gels and 35S label as an aid to rapid DNA sequencing, Proc. Natl. Acad. Sci. USA 13:3963–3965.

    Google Scholar 

  • Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77:71–94.

    PubMed  CAS  Google Scholar 

  • Burke, M., and Reisler, E., 1977, Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transactions, Biochemistry 16:5559–5563.

    PubMed  CAS  Google Scholar 

  • Burke, M., Sivaramakrishnan, M., and Kamalakannan, V., 1983, On the mode of the alkali light chain association to the heavy chain of myosin subfragment 1. Evidence for the involvement of the carboxyl-terminal region of the heavy chain, Biochemistry 22:3046–3053.

    PubMed  CAS  Google Scholar 

  • Capony, J., and Elzinga, M., 1981, The amino acid sequence of a. 34,000 dalton fragment from S-2 of myosin, Biophys. J. 33:148a.

    Google Scholar 

  • Cardinaud, R., 1979, Proteolytic fragmentation of myosin: Location of SH-1 and SH-2 thiols. Biochemie 61:807–821.

    CAS  Google Scholar 

  • Chizzonite, R. A., Everett, A. W., Clark, W. A., Jakovcic, S., Rabinowitz, M., and Zak, R., 1982, Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. J. Biol. Chem. 257:2056–2065.

    PubMed  CAS  Google Scholar 

  • Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., and Chambon, P., 1979, Organisation and sequence studies of the 17-piece chicken conalbumin gene, Nature 282:567–574.

    PubMed  CAS  Google Scholar 

  • Cohen, C., 1982, Matching molecules in the catch mechanism, Proc. Natl. Acad. Sci. USA 79:3176 – 3178.

    PubMed  CAS  Google Scholar 

  • Cohen, C., Szent-Györgyi, A. G., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of molluscan “catch” muscles. I. Paramyosin: Structure and assembly, J. Mol. Biol. 56:223–237.

    PubMed  CAS  Google Scholar 

  • Coulondre, C., and Miller, J. H., 1977, Genetic studies of the lac repressor. IV. Mutagenic specificity in the lac-I gene of Escherichia coli, J. Mol. Biol. 117:577–606.

    PubMed  CAS  Google Scholar 

  • Craig, R. W., 1977, Structure of α-segments from frog and rabbit skeletal muscle, J. Mol. Biol. 109:69–81.

    PubMed  CAS  Google Scholar 

  • Craig, R. W., and Offer, G., 1976, The location of C-protein in rabbit skeletal muscle, Proc. R. Soc. Lond.B 192:451–461.

    PubMed  CAS  Google Scholar 

  • Crick, F. H. C., 1952, Is alpha-keratin a coiled coil? Nature 170:882–883.

    PubMed  CAS  Google Scholar 

  • Davis, J. S., 1981, Pressure-jump studies on the length regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament, Biochem. J. 197:309–314.

    PubMed  CAS  Google Scholar 

  • Deininger, P. C., 1983, Random subcloning of sonicated DNA: Application to shotgun sequence analysis, Anal. Biochem. 129:219–223.

    Google Scholar 

  • Doolittle, R. F., Goldbaum, D. M., and Doolittle, L. R., 1978, Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: Construction of an atomic scale model, J. Mol. Biol. 120:311–316.

    PubMed  CAS  Google Scholar 

  • Dugaiczyk, A., Woo, S. L. C., Lai, E. C., Mace, M. L., McReynolds, L., and O’Malley, B. W., 1978, The natural ovalbumin gene contains seven intervening sequences, Nature 274:328–333.

    PubMed  CAS  Google Scholar 

  • Elliot, A., and Offer, G., 1878, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505 – 519.

    Google Scholar 

  • Elzinga, M., and Collins, J. H., 1977, Amino acid sequence of a myosin fragment that contains SH-1, SH-2, and N-methylhistidine, Proc. Natl. Acad. Sci. USA 74:4281–4284.

    PubMed  CAS  Google Scholar 

  • Elzinga, M., and Trus, B. L., 1980, Sequence and proposed structure of a 17,000 dalton fragment of myosin, in: Methods in Peptide and Protein Sequence Analysis (C. Birr, ed.), pp. 213–224, Elsevier Science Publ., New York.

    Google Scholar 

  • Epstein, H. F., Waterston, R. H., and Brenner, S., 1974, A mutant affecting the heavy chain of myosin in Caenorhabditis elegans, J. Mol. Biol. 90:291–300.

    PubMed  CAS  Google Scholar 

  • Epstein, H. F., Miller, D. M., III, Gossett, L. A., and Hecht, R. M., 1982a, Immunological studies of myosin isoforms in nematode embryos, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 7–14, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Epstein, H. F., Berman, S. A., and Miller, D. M., III, 1982b, Myosin synthesis and assembly in nematode body wall muscle, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 419–427, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Epstein, H. F., and Miller, D. M., III, 1983, Different locations of two myosin isoforms paramyosin, and core filaments within nematode thick filaments, J. Cell Biol. 97:2642.

    Google Scholar 

  • Fabian, F., and Muhlrad, A., 1968, Effect of trinitrophenylation on myosin ATPase, Biochim. Biophys. Acta 162:596–603.

    PubMed  CAS  Google Scholar 

  • Files, J. G., and Hirsh, D., 1981, Ribosomal DNA of Caenorhabditis elegans, J. Mol. Biol. 149:223 – 240.

    PubMed  CAS  Google Scholar 

  • Files, J. G., Carr, S., and Hirsh, D., 1983, Actin gene family in Caenorhabditis elegans, J. Mol. Biol. 164:355–375.

    PubMed  CAS  Google Scholar 

  • Flicker, P. F., Nalliman, T., and Vibert, P., 1983, Electron microscopy of Scallop myosin: Location of regulatory light chains, J. Mol. Biol. 169:723–741.

    PubMed  CAS  Google Scholar 

  • Frank, G., and Weeds, A., 1974, The amino acid sequence of the alkali light chains of rabbit skeletal-muscle myosin, Eur. J. Biochem. 44:317–334.

    PubMed  CAS  Google Scholar 

  • Fraser, R. D. B., and MacRae, T. P., 1973, Conformation in Fibrous Proteins, Academic Press, New York.

    Google Scholar 

  • Garcea, R. L., Schachat, F., and Epstein, H. F., 1978, Coordinate synthesis of two myosins in wild-type and mutant nematode muscle during larval development, Cell 15:421.

    PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978, Why genes in pieces?, Nature 271:501.

    PubMed  CAS  Google Scholar 

  • Gossett, L. M., and Hecht, R. M., 1980, A squash technique demonstrating nuclear cleavage of the nematode, Caenorhabditis elegans, J. Histochem. Cytochem. 28:507–510.

    CAS  Google Scholar 

  • Hanahan, D., and Meselson, M., 1980, A protocol for high density screening of plasmids in chi 1776, Gene 10:63–67.

    PubMed  CAS  Google Scholar 

  • Hardwicke, P. M. D., Wallimann, T., Szent-Györgyi, A. G., 1983, Light-chain movement and regulation in scallop myosin, Nature 301:478–482.

    PubMed  CAS  Google Scholar 

  • Harris, H. E., and Epstein, H. F., 1977, Myosin and paramyosin of Caenorhabditis elegans: Biochemical and structural properties of wild-type and mutant proteins, Cell 10:421 – 428.

    Google Scholar 

  • Heidecker, G., Messing, J., and Gronenborn, B., 1980, A versatile primer for DNA sequencing in the M13mp2 cloning system, Gene 10:69–73.

    PubMed  CAS  Google Scholar 

  • Hirsh, D., Files, J. G., and Carr, S. H., 1982, Isolation and genetic mapping of the actin genes of Caenorhabditis elegans, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 77–86, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Hozumi, T., and Muhlrad, A., 1981, Reactive lysyl of myosin subfragment 1 : Location on the 27K fragment and labeling properties, Biochemistry 20:2945–2950.

    PubMed  CAS  Google Scholar 

  • Hulmes, D. H., Miller, A., Parry, A. D., Piez, K. A., and Woodhead-Galloway, J., 1973, Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 79:137 – 148.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356–1366.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol. 30:383–434.

    PubMed  CAS  Google Scholar 

  • Hvidt, S., Nestler, F. H. M., Greaser, M. L., and Ferry, J. D., 1982, Flexibility of myosin rod determined from dilute solution viscoelastic measurements, Biochemistry 21:4064–4072.

    PubMed  CAS  Google Scholar 

  • Karn, J., Brenner, S., Barnett, L., and Cesareni, G., 1980, Novel bacteriophage lambda cloning vector, Proc. Natl. Acad. Sci. USA 77:5172–5176.

    PubMed  CAS  Google Scholar 

  • Karn, J., McLachlan, A. D., and Barnett, L., 1982, unc-54 myosin heavy chain gene of Caenorhabditis elegans; genetics, sequence, structure, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 129–142, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Karn, H., Brenner, S., and Barnett, L., 1983a, Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns, Proc. Natl. Acad. Sci. USA 80:4253–4257.

    PubMed  CAS  Google Scholar 

  • Karn, J., Brenner, S., and Barnett, L., 1983b, New bacteriophage lambda vectors with positive selection for cloned inserts, Methods Enzymol. 101:1–19.

    Google Scholar 

  • Kavinsky, C. J., Emeda, P. K., Sinha, A. M., Elzinga, M., Tong, S. W., Zak, R., Jakovicic, S., and Rabinowitz, M., 1983, Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle, Biol. Chem. 258:5196–5205.

    CAS  Google Scholar 

  • Kendrick-Jones, J., Szentkiralyi, E. M., Szent-Györgyi, A. G., 1976, Regulatory light chains in myosins, J. Mol. Biol. 104:747–779.

    PubMed  CAS  Google Scholar 

  • Kensler, R. W., and Levine, R. J. C., 1982, An electron microscopic and optical diffraction analysis of the structure of similar felson muscle thick filaments, J. Cell Biol. 92:443–45.

    PubMed  CAS  Google Scholar 

  • Kensler, R. W., and Stewart, M., 1983, Frog skeletal muscle thick filaments are three-stranded, J. Cell. Biol. 96:1797–1802.

    PubMed  CAS  Google Scholar 

  • Kramer, J. M., Cox, G. N., and Hirsh, D., 1982, Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans, Cell 30:599–606.

    PubMed  CAS  Google Scholar 

  • Kubo, S., Tokura, S., and Tonomura, Y., 1960, On the active site of myosin α-adenosine triphosphatase. I. Reaction of the enzyme with trinitrobenzenesulfonate, J. Biol. Chem. 235:2835–2839.

    PubMed  CAS  Google Scholar 

  • Kubo, S., Tokuyama, H., and Tonomura, Y., 1965, On the active site of myosin α-adenosine triphosphatase. V. Partial solution of the chemical structure around the binding site of trinitrobenzenesulfonate, Biochim. Biophys, Acta 100:459–470.

    CAS  Google Scholar 

  • Labbe, J. P., Mornet, D., Roseau, G., and Kassab, R., 1982, Cross-linking of F-actin to skeletal muscle myosin subfragment 1 with bis(imido esters): Further evidence for the interaction of myosin-head heavy chain with an actin dimer, Biochemistry 21:6897–6902.

    PubMed  CAS  Google Scholar 

  • Levine, R.J. C., Kensler, R. W., Reedy, M. C., Hofman, W., and King, H. A., 1983, Structure and paramyosin content of tanantula thick filaments, J. Cell Biol. 97:186–195.

    PubMed  CAS  Google Scholar 

  • Lewin, R., 1982, On the origin of introns, Science 217:921–922.

    PubMed  CAS  Google Scholar 

  • Lewis, J. A., Wu, C.-H., Berg, H., and Levine, H. H., 1980a, The genetics of levamisole resistance in the nematode Caenorhabditis elegans, Genetics 95:905–928.

    PubMed  CAS  Google Scholar 

  • Lewis, J. A., Wu, C.-H., Levine, J. H., and Berg, H., 1980b, Levamisole resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors, Neuroscience 5:967–989.

    PubMed  CAS  Google Scholar 

  • Lowey, S., Slayter, H. S., Weeds, A., and Baker, H., 1969, Substructure of the myosin molecule I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1–29.

    PubMed  CAS  Google Scholar 

  • Lu, R. C., 1980, Identification of a region susceptible to proteolysis in myosin subfragment-2, Proc. Natl. Acad. Sci. USA 77:2010–2013.

    PubMed  CAS  Google Scholar 

  • Lu, R. C., and Wong, A., 1982, The primary structure of the susceptible region of long S-2, Biophys. J. 37:52a.

    Google Scholar 

  • MacKenzie, J. M., Jr., and Epstein, H. F., 1980, Paramyosin is necessary for determination of nematode thick filament length in vivo, Cell 22:747–765.

    PubMed  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., and Epstein, H. F., 1981, Electron microscopy of nematode thick filaments, J. Ultrastruct. Res. 76:277–285.

    PubMed  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., Garcea, R. L., Zengel, J. M., and Epstein, H. F., 1978a, Muscle development in Caenorhabditis elegans; mutants exhibiting retarded sarcomere construction, Cell 15:751–762.

    PubMed  CAS  Google Scholar 

  • MacKenzie, J. M., Jr., Schachat, F., and Epstein, H. F., 1978b, Immunocytochemical localization of two myosins within the same muscle cells in Caenorhabditis elegans, Cell 15:413–419.

    PubMed  CAS  Google Scholar 

  • MacLeod, A. R., Waterston, R. H., and Brenner, S., 1977a, An internal deletion mutant of a myosin heavy chain in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 74:5336–5340.

    PubMed  CAS  Google Scholar 

  • MacLeod, A. R., Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977b, Identification of the structural gene for a myosin heavy chain in Caenorhabditis elegans, J. Mol. Biol. 114:133–140.

    PubMed  CAS  Google Scholar 

  • MacLeod, A. R., Karn, J., Waterston, R. H., and Brenner, S., 1979, The unc-54 myosin heavy chain gene of Caenorhabditis elegans; a model system for the study of genetic suppression in higher eukaryotes, in: Nonsense Mutations and tRNA Suppressors (J. E. Celis and J. D. Smith, eds.), pp. 301–311, Academic Press, New York.

    Google Scholar 

  • MacLeod, A. R., Karn, J., and Brenner, S., 1981, Molecular analysis of the unc-54 myosin heavy chain gene of Caenorhabditis elegans, Nature 291:386–390.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Karn, J., 1982, Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle, Nature 299:226–231.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino acid sequence of nematode myosin rod, J. Mol. Biol. 164:605–626.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1975, Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure, J. Mol. Biol. 98:293–304.

    PubMed  CAS  Google Scholar 

  • McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in α-tropomyosin and the interaction with actin, J. Mol. Biol. 103:271–298.

    PubMed  CAS  Google Scholar 

  • Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250–2255.

    PubMed  CAS  Google Scholar 

  • Messing, J., Crea, B., and Seeburg, P. H., 1981, A system for shotgun DNA sequencing, Nucleic Acids Res. 9:309–321.

    PubMed  CAS  Google Scholar 

  • Miller, A., and Tregear, R. T., 1972, Structure of insect fibrillas flight muscle in the presence and absence of ATP, J. Mol. Biol. 70:85–104.

    PubMed  CAS  Google Scholar 

  • Miller, D. M., III, MacKenzie, J. M., Bolton, L. H., and Epstein, H. F., 1981, Monoclonal antibodies to nematode myosin heavy chain isoenzymes, J. Cell Biol. 91:20023a.

    Google Scholar 

  • Miller, D. M., III, Ortiz, I., Berliner, G. C., and Epstein, H. F., 1983, Differential localization of two myosins within nematode thick filaments, Cell 34:477–490.

    PubMed  CAS  Google Scholar 

  • Moerman, D. G., and Baillie, D. L., 1979, Genetic organization in Caenorhabditis elegans; fine structure analysis of the unc-22 gene, Genetics 91:95–103.

    PubMed  CAS  Google Scholar 

  • Moerman, D. G., Plurad, S., Waterston, R. H., and Baillie, D. L., 1982, Mutations in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure, Cell 29:773–781.

    PubMed  CAS  Google Scholar 

  • Mornet, D., Pantel, P., Audemard, E., and Kassab, R., 1979, The limited tryptic cleavage of chymotryptic S-l: An approach to the characterization of the actin site in myosin heads, Biochem. Biophys. Res. Commun. 89:925–932.

    PubMed  CAS  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981a, Structure of the actin-myosin interface, Nature 292:301–306.

    PubMed  CAS  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981b, Proteolytic approach to structure and function of actin recognition site in myosin heads, Biochemistry 20:2110–2120.

    PubMed  CAS  Google Scholar 

  • Mount, S. M., 1982, A catalogue of splice junction sequences, Nucleic Acids Res. 10:459–472.

    PubMed  CAS  Google Scholar 

  • Niederman, R., and Peters, L. K., 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol. 161:505–517.

    PubMed  CAS  Google Scholar 

  • Offer, G. C., Moos, C., and Starr, R., 1973, A new protein of the thick filaments. Extraction, purification, and characterization, J. Mol. Biol. 74:653–676.

    PubMed  CAS  Google Scholar 

  • Okamoto, Y., and Yount, R. G., 1983, Identification of an active site peptide of myosin after photoaffinity labeling, Biophys. J. 41:298a.

    Google Scholar 

  • Pai, E. G., Sachsenheimer, W., Schirmer, R. H., and Schulz, G. E., 1977, Substrate positions and induced-fit in crystalline adenylate kinase, J. Mol. Biol. 114:37–45.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., 1978, Fibrinogen: A preliminary analysis of the amino acid sequences of the portions of the a, ß, and 4- chains postulated to form the interdomainal link between globular regions of the molecule, J. Mol. Biol. 120:545–551.

    CAS  Google Scholar 

  • Parry, D. A. D., 1981, Structure of rabbit skeletal myosin analysis of the amino acid sequences of two fragments from the rod region, J. Mol. Biol. 153:459–464.

    PubMed  CAS  Google Scholar 

  • Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of α- keratin: Structural implication of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113:449–454.

    PubMed  CAS  Google Scholar 

  • Pepe, F. A., 1967, The myosin filament. II. Interaction between myosin and actin filaments observed using antibody staining in fluorescent and electron microscopy, J. Mol. Biol. 27:227–236.

    PubMed  CAS  Google Scholar 

  • Reisler, E., Smith, C., and Seegan, G., 1980, Myosin minifilaments, J. Mol. Biol. 143:129–145.

    PubMed  CAS  Google Scholar 

  • Riddle, D. L., and Brenner, S., 1978, Indirect suppression in Caenorhabditis elegans, Genetics 89:299–314.

    PubMed  CAS  Google Scholar 

  • Rüther, U., Koenen, M., Sippel, A. E., and Muller-Hill, B., 1982, Exon cloning: Immunoenzy- matic identification of exons of the chicken lysozyme gene, Proc. Natl. Acad. Sci. USA 79:6852–6855.

    PubMed  Google Scholar 

  • Rüther, U., and Muller-Hill, B., 1983, Easy identification of cDNA clones, EMBO J. 2:1791 – 1794.

    PubMed  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463–5467.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A. R., Barreli, B. G., Smith, A.J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143:161–178.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, Ar. R., Hong, G. F., Hill, D. F., and Petersen, G. B., 1982, Nucleotide sequence of bacteriophage lambda DNA, J. Mol. Biol. 162:729–773.

    PubMed  CAS  Google Scholar 

  • Schachat, F. H., Harris, H. E., and Epstein, H. F., 1977, Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans, Cell 10:721–728.

    PubMed  CAS  Google Scholar 

  • Schachat, F. H., Garcea, R. L., and Epstein, H. F., 1978, Myosins exist as homodimers of heavy chains: Demonstration with specific antibody purified by nematode mutant myosin afinity chromatography, Cell 15:405–411.

    PubMed  CAS  Google Scholar 

  • Sivaramakrishnan, M., and Burke, M., 1982, The free heavy chain of vertebrate skeletal myosin subfragments shows full enzymatic activity, J. Biol. Chem. 257:1102–1105.

    PubMed  CAS  Google Scholar 

  • Sjöström, M., and Squire, J. M., 1977, Fine structure of the α-band in cryo-sections. The structure of the α-band of human skeletal muscle fibres from ultra-thin cryo sections negatively stained, J. Mol. Biol. 109:49–68.

    PubMed  Google Scholar 

  • Squire, J. M., 1981, The Structural Basis of Molecular Contraction, Plenum Press, New York.

    Google Scholar 

  • Staden, R., 1980, Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing, Nucleic Acids Res. 10:141–156.

    Google Scholar 

  • Starr, R., and Offer, G., 1973, Polarity of the myosin molecule, J. Mol. Biol. 81:17–31.

    PubMed  CAS  Google Scholar 

  • Starr, R., and Offer, G., 1983, H-protein and X-protein. Two new components of the thick filaments of vertebrate skeletal muscle, J. Mol. Biol. 170:675–698.

    PubMed  CAS  Google Scholar 

  • Suiston, J. E., and Horvitz, H. R., 1977, Postembryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56:100–156.

    Google Scholar 

  • Suiston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100:64–119.

    Google Scholar 

  • Szent-Györgyi, A. G., Cohen, C., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of Mulluscan catch muscles. II. Native filaments: Isolation and characterization. J. Mol. Biol. 56:239–258.

    PubMed  Google Scholar 

  • Takahashi, K., 1978, Topography of the myosin molecule as visualised by an improved negative staining method, J. Biochem. (Tokyo) 83:905–908.

    CAS  Google Scholar 

  • Takashi, R., Mulrad, A., and Botts, J., 1982, Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment 1, Biochemistry 21:5661–5668.

    PubMed  CAS  Google Scholar 

  • Thomas, D. D., Scidel, J. C., Hyde, J. S., and Gergely, J., 1975, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. USA 72:1729–1733.

    PubMed  CAS  Google Scholar 

  • Thomas, D. D., Ishiwata, S., Scidel, J. C., and Gergely, J., 1980, Submillisecond rotational dynamics of spin-labelled myosin heads in myofibrils, Biophys. J. 32:873–889.

    PubMed  CAS  Google Scholar 

  • Towbin, H., Staehelm, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350–4354.

    PubMed  CAS  Google Scholar 

  • Vibert, P., and Craig, R., 1983, Electron microscopy and image analysis of myosin filaments from scallop studied muscle. J. Mol. Biol. 165:303–320.

    PubMed  CAS  Google Scholar 

  • Wagner, P. D., and Giniger, E., 1981, Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains, Nature 292:560–562.

    PubMed  CAS  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N.J., 1982, Distantly related sequences in the a- and ß-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1:945–951.

    PubMed  CAS  Google Scholar 

  • Waterston, R. H., 1981, A second informational suppressor, sup-7X, in Caenorhabditis elegans, Genetics 97:307–325.

    CAS  Google Scholar 

  • Waterston, R. H., and Brenner, S., 1978, A suppressor mutation in the nematode acting on specific alleles of many genes, Nature 275:715–719.

    PubMed  CAS  Google Scholar 

  • Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977, Mutants affecting paramyosin in Caenorhabditis elegans, J. Mol. Biol. 117:825–842.

    Google Scholar 

  • Waterston, R. H., Thomson, J. N., and Brenner, S., 1980, Mutant with altered muscle structure in Caenorhabditis elegansDev. Biol. 77:271–302.

    PubMed  CAS  Google Scholar 

  • Waterston, R. H., Smith, K. C., and Moerman, D. G., 1982a, A genetic fine structure analysis of the myosin heavy chain gene unc-54 Caenorhabditis elegans, J. Mol. Biol. 158:1 – 15.

    PubMed  CAS  Google Scholar 

  • Waterston, R. H., Bolton, S., Sive, H. L., and Moerman, D. G., 1982b, Mutationally altered myosins in Caenorhabditis elegans, in Muscle Development (M. Pearson and H. E. Epstein, eds.), pp. 119–129, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Weeds, A. G., and Lowey, S., 1971, Substructure of the myosin molecule. II. The light chains of myosin, J. Mol. Biol. 61:701–725.

    PubMed  CAS  Google Scholar 

  • Weeds, A. G., and Pope, B., 1977, Studies on the chymotryptic digestion of myosin effects of divalent cations on proteolytic susceptibility, J. Biol. Chem. 255:1598–1602.

    Google Scholar 

  • Wells, J., and Yount, R. G., 1979, Active site trapping of nucletides by crosslinking two sulfhy- dryls in myosin subfragment-1, Proc. Natl. Acad. Sci. USA 76:4966–4970.

    PubMed  CAS  Google Scholar 

  • Wells, J., and Yount, R. G., 1980, Magnesium nucleotide is stoichiometrically trapped at the active site of myosins and its active proteolytic fragments by thiol cross-linking reagents, J. Biol. Chem. 255:1598–1602.

    PubMed  CAS  Google Scholar 

  • Wills, N., Gesteland, R. F., Kam, J., Barnett, L., Bolten, S., and Waterston, R. H., 1983, The genes sup-1 X and sup-b III of C. elegans suppress amber nonsense mutations via altered transfer RNA, Cell 33:575–583.

    PubMed  CAS  Google Scholar 

  • Wozney, J., Hanahan, D., Morimoto, R., Boedtker, H., and Doty, P., 1981, Fine structural analysis of the chicken pro-α-2-collagen gene, Proc. Natl. Acad. Sci. USA 78:712–716.

    PubMed  CAS  Google Scholar 

  • Wray, J. S., 1979, Structure of the backbone in myosin filaments of muscle, Nature 277:37–40.

    PubMed  CAS  Google Scholar 

  • Young, R. A., and Davis, R. W., 1983, Yeast RNA polymerase II genes: Isolation with antibody probes, Science 222:778–782.

    PubMed  CAS  Google Scholar 

  • Zengel, J. M., and Epstein, H. F., 1980a, Mutants altering coordinate synthesis of specific myosins during nematode muscle development, Proc. Natl. Acad. Sci. USA 77:852–856.

    PubMed  CAS  Google Scholar 

  • Zengel, J. M., and Epstein, H. F., 1980b, Identification of genetic elements associated with muscle structure in the nematode Caenorhabditis elegans, Cell Motu. 1:73–97.

    CAS  Google Scholar 

  • Zelgel, J. M., and Epstein, H. F., 1980c, Muscle development in Caenorhabditis elegans: A molecular genetic approach, in: Nematodes as Biological Models (B. Zuckerman, ed.), pp. 73–126, Academic Press, New York.

    Google Scholar 

  • Zweig, S. E., 1981, The muscle specificity and structure of two closely related fast-twitch white myosin heavy chain isozymes, J. Biol. Chem. 256:11847–11853.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Karn, J., Dibb, N.J., Miller, D.M. (1985). Cloning Nematode Myosin Genes. In: Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4723-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4723-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4725-6

  • Online ISBN: 978-1-4757-4723-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics