Cloning Nematode Myosin Genes

  • Jonathan Karn
  • Nick J. Dibb
  • David M. Miller


Little is known about the molecular basis for differential gene expression during muscle development, the assembly of contractile proteins into filament lattices, or the functions of contractile protein isoforms in different muscle tissues. The small soil nematode Caenorhabditis elegans is an attractive organism in which to apply biochemical and genetic approaches to the study of these problems. Only two major muscles are present in the organism—the pharyngeal muscle and the body wall muscle—and the anatomy and lineage of all the muscle cells in the organism throughout development are known (Suiston et al, 1983; Suiston and Horvitz, 1977). Because a large fraction of the nematode tissue mass is muscle, the major contractile proteins can be isolated in milligram quantities from a few liters of nematode culture (Epstein et al, 1974; Waterston et al, 1977; Harris and Epstein, 1977; MacLeod et al, 1977a,b; Zengel and Epstein, 1980c). Caenorhabditis elegans exhibits a characteristic swimming pattern on the surface of agar plates. Genetic analysis (Brenner, 1974) has defined mutations in more than 100 different genes that produce animals with defective motility (the uncoordinated, or unc, phe-notype). Mutations in 22 of these unc genes create gross abnormalities in muscle ultrastructure (Waterston et al, 1980; Zengel and Epstein, 1980b).


Heavy Chain Caenorhabditis Elegans Myosin Heavy Chain Body Wall Myosin Head 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., and Eisenberg, E., 1980, Regulation and kinetics of the actin-myosin-ATP interaction, Annu. Rev. Biochem. 49:921–956.PubMedGoogle Scholar
  2. Albertini, A. M., Hoter, M., Calos, M. P., and Miller, J. H., 1982, On the formation of spontaneous deletions: The importance of short sequence homologies in the generation of large deletions, Cell 29:319–328.PubMedGoogle Scholar
  3. Albertson, D. G., 1984, Localization of the ribosomal genes in Caenorhabditis eleganis chromosomes by in situ hybridization using biotin-labeled probes. EMBO J. 3:1227–1234.PubMedGoogle Scholar
  4. Anderson, S., 1981, Shotgun DNA sequencing using cloned DNase I generated fragments, Nucl. Acids Res. 9:3015–3027.PubMedGoogle Scholar
  5. Anderson, P., and Brenner, S., 1984, A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 81:4470–4474.PubMedGoogle Scholar
  6. Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J., and Sreter, A., 1978, Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin, Arch. Biochem. Biophys. 190:793–799.PubMedGoogle Scholar
  7. Benoist, C., and Chambon, P., 1981, In vivo sequence requirements of the SV 40 early promoter region, Nature 290:304–310.PubMedGoogle Scholar
  8. Biggin, M. D., Gibson, T. J., and Hong, G. F., 1983, Buffer gradient gels and 35S label as an aid to rapid DNA sequencing, Proc. Natl. Acad. Sci. USA 13:3963–3965.Google Scholar
  9. Brenner, S., 1974, The genetics of Caenorhabditis elegans, Genetics 77:71–94.PubMedGoogle Scholar
  10. Burke, M., and Reisler, E., 1977, Effect of nucleotide binding on the proximity of the essential sulfhydryl groups of myosin. Chemical probing of movement of residues during conformational transactions, Biochemistry 16:5559–5563.PubMedGoogle Scholar
  11. Burke, M., Sivaramakrishnan, M., and Kamalakannan, V., 1983, On the mode of the alkali light chain association to the heavy chain of myosin subfragment 1. Evidence for the involvement of the carboxyl-terminal region of the heavy chain, Biochemistry 22:3046–3053.PubMedGoogle Scholar
  12. Capony, J., and Elzinga, M., 1981, The amino acid sequence of a. 34,000 dalton fragment from S-2 of myosin, Biophys. J. 33:148a.Google Scholar
  13. Cardinaud, R., 1979, Proteolytic fragmentation of myosin: Location of SH-1 and SH-2 thiols. Biochemie 61:807–821.Google Scholar
  14. Chizzonite, R. A., Everett, A. W., Clark, W. A., Jakovcic, S., Rabinowitz, M., and Zak, R., 1982, Isolation and characterization of two molecular variants of myosin heavy chain from rabbit ventricle. J. Biol. Chem. 257:2056–2065.PubMedGoogle Scholar
  15. Cochet, M., Gannon, F., Hen, R., Maroteaux, L., Perrin, F., and Chambon, P., 1979, Organisation and sequence studies of the 17-piece chicken conalbumin gene, Nature 282:567–574.PubMedGoogle Scholar
  16. Cohen, C., 1982, Matching molecules in the catch mechanism, Proc. Natl. Acad. Sci. USA 79:3176 – 3178.PubMedGoogle Scholar
  17. Cohen, C., Szent-Györgyi, A. G., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of molluscan “catch” muscles. I. Paramyosin: Structure and assembly, J. Mol. Biol. 56:223–237.PubMedGoogle Scholar
  18. Coulondre, C., and Miller, J. H., 1977, Genetic studies of the lac repressor. IV. Mutagenic specificity in the lac-I gene of Escherichia coli, J. Mol. Biol. 117:577–606.PubMedGoogle Scholar
  19. Craig, R. W., 1977, Structure of α-segments from frog and rabbit skeletal muscle, J. Mol. Biol. 109:69–81.PubMedGoogle Scholar
  20. Craig, R. W., and Offer, G., 1976, The location of C-protein in rabbit skeletal muscle, Proc. R. Soc. Lond.B 192:451–461.PubMedGoogle Scholar
  21. Crick, F. H. C., 1952, Is alpha-keratin a coiled coil? Nature 170:882–883.PubMedGoogle Scholar
  22. Davis, J. S., 1981, Pressure-jump studies on the length regulation kinetics of the self-assembly of myosin from vertebrate skeletal muscle into thick filament, Biochem. J. 197:309–314.PubMedGoogle Scholar
  23. Deininger, P. C., 1983, Random subcloning of sonicated DNA: Application to shotgun sequence analysis, Anal. Biochem. 129:219–223.Google Scholar
  24. Doolittle, R. F., Goldbaum, D. M., and Doolittle, L. R., 1978, Designation of sequences involved in the “coiled-coil” interdomainal connections in fibrinogen: Construction of an atomic scale model, J. Mol. Biol. 120:311–316.PubMedGoogle Scholar
  25. Dugaiczyk, A., Woo, S. L. C., Lai, E. C., Mace, M. L., McReynolds, L., and O’Malley, B. W., 1978, The natural ovalbumin gene contains seven intervening sequences, Nature 274:328–333.PubMedGoogle Scholar
  26. Elliot, A., and Offer, G., 1878, Shape and flexibility of the myosin molecule, J. Mol. Biol. 123:505 – 519.Google Scholar
  27. Elzinga, M., and Collins, J. H., 1977, Amino acid sequence of a myosin fragment that contains SH-1, SH-2, and N-methylhistidine, Proc. Natl. Acad. Sci. USA 74:4281–4284.PubMedGoogle Scholar
  28. Elzinga, M., and Trus, B. L., 1980, Sequence and proposed structure of a 17,000 dalton fragment of myosin, in: Methods in Peptide and Protein Sequence Analysis (C. Birr, ed.), pp. 213–224, Elsevier Science Publ., New York.Google Scholar
  29. Epstein, H. F., Waterston, R. H., and Brenner, S., 1974, A mutant affecting the heavy chain of myosin in Caenorhabditis elegans, J. Mol. Biol. 90:291–300.PubMedGoogle Scholar
  30. Epstein, H. F., Miller, D. M., III, Gossett, L. A., and Hecht, R. M., 1982a, Immunological studies of myosin isoforms in nematode embryos, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 7–14, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  31. Epstein, H. F., Berman, S. A., and Miller, D. M., III, 1982b, Myosin synthesis and assembly in nematode body wall muscle, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 419–427, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  32. Epstein, H. F., and Miller, D. M., III, 1983, Different locations of two myosin isoforms paramyosin, and core filaments within nematode thick filaments, J. Cell Biol. 97:2642.Google Scholar
  33. Fabian, F., and Muhlrad, A., 1968, Effect of trinitrophenylation on myosin ATPase, Biochim. Biophys. Acta 162:596–603.PubMedGoogle Scholar
  34. Files, J. G., and Hirsh, D., 1981, Ribosomal DNA of Caenorhabditis elegans, J. Mol. Biol. 149:223 – 240.PubMedGoogle Scholar
  35. Files, J. G., Carr, S., and Hirsh, D., 1983, Actin gene family in Caenorhabditis elegans, J. Mol. Biol. 164:355–375.PubMedGoogle Scholar
  36. Flicker, P. F., Nalliman, T., and Vibert, P., 1983, Electron microscopy of Scallop myosin: Location of regulatory light chains, J. Mol. Biol. 169:723–741.PubMedGoogle Scholar
  37. Frank, G., and Weeds, A., 1974, The amino acid sequence of the alkali light chains of rabbit skeletal-muscle myosin, Eur. J. Biochem. 44:317–334.PubMedGoogle Scholar
  38. Fraser, R. D. B., and MacRae, T. P., 1973, Conformation in Fibrous Proteins, Academic Press, New York.Google Scholar
  39. Garcea, R. L., Schachat, F., and Epstein, H. F., 1978, Coordinate synthesis of two myosins in wild-type and mutant nematode muscle during larval development, Cell 15:421.PubMedGoogle Scholar
  40. Gilbert, W., 1978, Why genes in pieces?, Nature 271:501.PubMedGoogle Scholar
  41. Gossett, L. M., and Hecht, R. M., 1980, A squash technique demonstrating nuclear cleavage of the nematode, Caenorhabditis elegans, J. Histochem. Cytochem. 28:507–510.Google Scholar
  42. Hanahan, D., and Meselson, M., 1980, A protocol for high density screening of plasmids in chi 1776, Gene 10:63–67.PubMedGoogle Scholar
  43. Hardwicke, P. M. D., Wallimann, T., Szent-Györgyi, A. G., 1983, Light-chain movement and regulation in scallop myosin, Nature 301:478–482.PubMedGoogle Scholar
  44. Harris, H. E., and Epstein, H. F., 1977, Myosin and paramyosin of Caenorhabditis elegans: Biochemical and structural properties of wild-type and mutant proteins, Cell 10:421 – 428.Google Scholar
  45. Heidecker, G., Messing, J., and Gronenborn, B., 1980, A versatile primer for DNA sequencing in the M13mp2 cloning system, Gene 10:69–73.PubMedGoogle Scholar
  46. Hirsh, D., Files, J. G., and Carr, S. H., 1982, Isolation and genetic mapping of the actin genes of Caenorhabditis elegans, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 77–86, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  47. Hozumi, T., and Muhlrad, A., 1981, Reactive lysyl of myosin subfragment 1 : Location on the 27K fragment and labeling properties, Biochemistry 20:2945–2950.PubMedGoogle Scholar
  48. Hulmes, D. H., Miller, A., Parry, A. D., Piez, K. A., and Woodhead-Galloway, J., 1973, Analysis of the primary structure of collagen for the origins of molecular packing, J. Mol. Biol. 79:137 – 148.PubMedGoogle Scholar
  49. Huxley, H. E., 1969, The mechanism of muscular contraction, Science 164:1356–1366.PubMedGoogle Scholar
  50. Huxley, H. E., and Brown, W., 1967, The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor, J. Mol. Biol. 30:383–434.PubMedGoogle Scholar
  51. Hvidt, S., Nestler, F. H. M., Greaser, M. L., and Ferry, J. D., 1982, Flexibility of myosin rod determined from dilute solution viscoelastic measurements, Biochemistry 21:4064–4072.PubMedGoogle Scholar
  52. Karn, J., Brenner, S., Barnett, L., and Cesareni, G., 1980, Novel bacteriophage lambda cloning vector, Proc. Natl. Acad. Sci. USA 77:5172–5176.PubMedGoogle Scholar
  53. Karn, J., McLachlan, A. D., and Barnett, L., 1982, unc-54 myosin heavy chain gene of Caenorhabditis elegans; genetics, sequence, structure, in: Muscle Development (M. Pearson and H. Epstein, eds.), pp. 129–142, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  54. Karn, H., Brenner, S., and Barnett, L., 1983a, Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns, Proc. Natl. Acad. Sci. USA 80:4253–4257.PubMedGoogle Scholar
  55. Karn, J., Brenner, S., and Barnett, L., 1983b, New bacteriophage lambda vectors with positive selection for cloned inserts, Methods Enzymol. 101:1–19.Google Scholar
  56. Kavinsky, C. J., Emeda, P. K., Sinha, A. M., Elzinga, M., Tong, S. W., Zak, R., Jakovicic, S., and Rabinowitz, M., 1983, Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle, Biol. Chem. 258:5196–5205.Google Scholar
  57. Kendrick-Jones, J., Szentkiralyi, E. M., Szent-Györgyi, A. G., 1976, Regulatory light chains in myosins, J. Mol. Biol. 104:747–779.PubMedGoogle Scholar
  58. Kensler, R. W., and Levine, R. J. C., 1982, An electron microscopic and optical diffraction analysis of the structure of similar felson muscle thick filaments, J. Cell Biol. 92:443–45.PubMedGoogle Scholar
  59. Kensler, R. W., and Stewart, M., 1983, Frog skeletal muscle thick filaments are three-stranded, J. Cell. Biol. 96:1797–1802.PubMedGoogle Scholar
  60. Kramer, J. M., Cox, G. N., and Hirsh, D., 1982, Comparisons of the complete sequences of two collagen genes from Caenorhabditis elegans, Cell 30:599–606.PubMedGoogle Scholar
  61. Kubo, S., Tokura, S., and Tonomura, Y., 1960, On the active site of myosin α-adenosine triphosphatase. I. Reaction of the enzyme with trinitrobenzenesulfonate, J. Biol. Chem. 235:2835–2839.PubMedGoogle Scholar
  62. Kubo, S., Tokuyama, H., and Tonomura, Y., 1965, On the active site of myosin α-adenosine triphosphatase. V. Partial solution of the chemical structure around the binding site of trinitrobenzenesulfonate, Biochim. Biophys, Acta 100:459–470.Google Scholar
  63. Labbe, J. P., Mornet, D., Roseau, G., and Kassab, R., 1982, Cross-linking of F-actin to skeletal muscle myosin subfragment 1 with bis(imido esters): Further evidence for the interaction of myosin-head heavy chain with an actin dimer, Biochemistry 21:6897–6902.PubMedGoogle Scholar
  64. Levine, R.J. C., Kensler, R. W., Reedy, M. C., Hofman, W., and King, H. A., 1983, Structure and paramyosin content of tanantula thick filaments, J. Cell Biol. 97:186–195.PubMedGoogle Scholar
  65. Lewin, R., 1982, On the origin of introns, Science 217:921–922.PubMedGoogle Scholar
  66. Lewis, J. A., Wu, C.-H., Berg, H., and Levine, H. H., 1980a, The genetics of levamisole resistance in the nematode Caenorhabditis elegans, Genetics 95:905–928.PubMedGoogle Scholar
  67. Lewis, J. A., Wu, C.-H., Levine, J. H., and Berg, H., 1980b, Levamisole resistant mutants of the nematode Caenorhabditis elegans appear to lack pharmacological acetylcholine receptors, Neuroscience 5:967–989.PubMedGoogle Scholar
  68. Lowey, S., Slayter, H. S., Weeds, A., and Baker, H., 1969, Substructure of the myosin molecule I. Subfragments of myosin by enzymic degradation, J. Mol. Biol. 42:1–29.PubMedGoogle Scholar
  69. Lu, R. C., 1980, Identification of a region susceptible to proteolysis in myosin subfragment-2, Proc. Natl. Acad. Sci. USA 77:2010–2013.PubMedGoogle Scholar
  70. Lu, R. C., and Wong, A., 1982, The primary structure of the susceptible region of long S-2, Biophys. J. 37:52a.Google Scholar
  71. MacKenzie, J. M., Jr., and Epstein, H. F., 1980, Paramyosin is necessary for determination of nematode thick filament length in vivo, Cell 22:747–765.PubMedGoogle Scholar
  72. MacKenzie, J. M., Jr., and Epstein, H. F., 1981, Electron microscopy of nematode thick filaments, J. Ultrastruct. Res. 76:277–285.PubMedGoogle Scholar
  73. MacKenzie, J. M., Jr., Garcea, R. L., Zengel, J. M., and Epstein, H. F., 1978a, Muscle development in Caenorhabditis elegans; mutants exhibiting retarded sarcomere construction, Cell 15:751–762.PubMedGoogle Scholar
  74. MacKenzie, J. M., Jr., Schachat, F., and Epstein, H. F., 1978b, Immunocytochemical localization of two myosins within the same muscle cells in Caenorhabditis elegans, Cell 15:413–419.PubMedGoogle Scholar
  75. MacLeod, A. R., Waterston, R. H., and Brenner, S., 1977a, An internal deletion mutant of a myosin heavy chain in Caenorhabditis elegans, Proc. Natl. Acad. Sci. USA 74:5336–5340.PubMedGoogle Scholar
  76. MacLeod, A. R., Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977b, Identification of the structural gene for a myosin heavy chain in Caenorhabditis elegans, J. Mol. Biol. 114:133–140.PubMedGoogle Scholar
  77. MacLeod, A. R., Karn, J., Waterston, R. H., and Brenner, S., 1979, The unc-54 myosin heavy chain gene of Caenorhabditis elegans; a model system for the study of genetic suppression in higher eukaryotes, in: Nonsense Mutations and tRNA Suppressors (J. E. Celis and J. D. Smith, eds.), pp. 301–311, Academic Press, New York.Google Scholar
  78. MacLeod, A. R., Karn, J., and Brenner, S., 1981, Molecular analysis of the unc-54 myosin heavy chain gene of Caenorhabditis elegans, Nature 291:386–390.PubMedGoogle Scholar
  79. McLachlan, A. D., and Karn, J., 1982, Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle, Nature 299:226–231.PubMedGoogle Scholar
  80. McLachlan, A. D., and Karn, J., 1983, Periodic features in the amino acid sequence of nematode myosin rod, J. Mol. Biol. 164:605–626.PubMedGoogle Scholar
  81. McLachlan, A. D., and Stewart, M., 1975, Tropomyosin coiled-coil interactions: Evidence for an unstaggered structure, J. Mol. Biol. 98:293–304.PubMedGoogle Scholar
  82. McLachlan, A. D., and Stewart, M., 1976, The 14-fold periodicity in α-tropomyosin and the interaction with actin, J. Mol. Biol. 103:271–298.PubMedGoogle Scholar
  83. Mendelson, R. A., Morales, M. F., and Botts, J., 1973, Segmental flexibility of the S-l moiety of myosin, Biochemistry 12:2250–2255.PubMedGoogle Scholar
  84. Messing, J., Crea, B., and Seeburg, P. H., 1981, A system for shotgun DNA sequencing, Nucleic Acids Res. 9:309–321.PubMedGoogle Scholar
  85. Miller, A., and Tregear, R. T., 1972, Structure of insect fibrillas flight muscle in the presence and absence of ATP, J. Mol. Biol. 70:85–104.PubMedGoogle Scholar
  86. Miller, D. M., III, MacKenzie, J. M., Bolton, L. H., and Epstein, H. F., 1981, Monoclonal antibodies to nematode myosin heavy chain isoenzymes, J. Cell Biol. 91:20023a.Google Scholar
  87. Miller, D. M., III, Ortiz, I., Berliner, G. C., and Epstein, H. F., 1983, Differential localization of two myosins within nematode thick filaments, Cell 34:477–490.PubMedGoogle Scholar
  88. Moerman, D. G., and Baillie, D. L., 1979, Genetic organization in Caenorhabditis elegans; fine structure analysis of the unc-22 gene, Genetics 91:95–103.PubMedGoogle Scholar
  89. Moerman, D. G., Plurad, S., Waterston, R. H., and Baillie, D. L., 1982, Mutations in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure, Cell 29:773–781.PubMedGoogle Scholar
  90. Mornet, D., Pantel, P., Audemard, E., and Kassab, R., 1979, The limited tryptic cleavage of chymotryptic S-l: An approach to the characterization of the actin site in myosin heads, Biochem. Biophys. Res. Commun. 89:925–932.PubMedGoogle Scholar
  91. Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981a, Structure of the actin-myosin interface, Nature 292:301–306.PubMedGoogle Scholar
  92. Mornet, D., Bertrand, R., Pantel, P., Audemard, E., and Kassab, R., 1981b, Proteolytic approach to structure and function of actin recognition site in myosin heads, Biochemistry 20:2110–2120.PubMedGoogle Scholar
  93. Mount, S. M., 1982, A catalogue of splice junction sequences, Nucleic Acids Res. 10:459–472.PubMedGoogle Scholar
  94. Niederman, R., and Peters, L. K., 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol. 161:505–517.PubMedGoogle Scholar
  95. Offer, G. C., Moos, C., and Starr, R., 1973, A new protein of the thick filaments. Extraction, purification, and characterization, J. Mol. Biol. 74:653–676.PubMedGoogle Scholar
  96. Okamoto, Y., and Yount, R. G., 1983, Identification of an active site peptide of myosin after photoaffinity labeling, Biophys. J. 41:298a.Google Scholar
  97. Pai, E. G., Sachsenheimer, W., Schirmer, R. H., and Schulz, G. E., 1977, Substrate positions and induced-fit in crystalline adenylate kinase, J. Mol. Biol. 114:37–45.PubMedGoogle Scholar
  98. Parry, D. A. D., 1978, Fibrinogen: A preliminary analysis of the amino acid sequences of the portions of the a, ß, and 4- chains postulated to form the interdomainal link between globular regions of the molecule, J. Mol. Biol. 120:545–551.Google Scholar
  99. Parry, D. A. D., 1981, Structure of rabbit skeletal myosin analysis of the amino acid sequences of two fragments from the rod region, J. Mol. Biol. 153:459–464.PubMedGoogle Scholar
  100. Parry, D. A. D., Crewther, W. G., Fraser, R. D. B., and MacRae, T. P., 1977, Structure of α- keratin: Structural implication of the amino acid sequences of the type I and type II chain segments, J. Mol. Biol. 113:449–454.PubMedGoogle Scholar
  101. Pepe, F. A., 1967, The myosin filament. II. Interaction between myosin and actin filaments observed using antibody staining in fluorescent and electron microscopy, J. Mol. Biol. 27:227–236.PubMedGoogle Scholar
  102. Reisler, E., Smith, C., and Seegan, G., 1980, Myosin minifilaments, J. Mol. Biol. 143:129–145.PubMedGoogle Scholar
  103. Riddle, D. L., and Brenner, S., 1978, Indirect suppression in Caenorhabditis elegans, Genetics 89:299–314.PubMedGoogle Scholar
  104. Rüther, U., Koenen, M., Sippel, A. E., and Muller-Hill, B., 1982, Exon cloning: Immunoenzy- matic identification of exons of the chicken lysozyme gene, Proc. Natl. Acad. Sci. USA 79:6852–6855.PubMedGoogle Scholar
  105. Rüther, U., and Muller-Hill, B., 1983, Easy identification of cDNA clones, EMBO J. 2:1791 – 1794.PubMedGoogle Scholar
  106. Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain terminating inhibitors, Proc. Natl. Acad. Sci. USA 74:5463–5467.PubMedGoogle Scholar
  107. Sanger, F., Coulson, A. R., Barreli, B. G., Smith, A.J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143:161–178.PubMedGoogle Scholar
  108. Sanger, F., Coulson, Ar. R., Hong, G. F., Hill, D. F., and Petersen, G. B., 1982, Nucleotide sequence of bacteriophage lambda DNA, J. Mol. Biol. 162:729–773.PubMedGoogle Scholar
  109. Schachat, F. H., Harris, H. E., and Epstein, H. F., 1977, Two homogeneous myosins in body-wall muscle of Caenorhabditis elegans, Cell 10:721–728.PubMedGoogle Scholar
  110. Schachat, F. H., Garcea, R. L., and Epstein, H. F., 1978, Myosins exist as homodimers of heavy chains: Demonstration with specific antibody purified by nematode mutant myosin afinity chromatography, Cell 15:405–411.PubMedGoogle Scholar
  111. Sivaramakrishnan, M., and Burke, M., 1982, The free heavy chain of vertebrate skeletal myosin subfragments shows full enzymatic activity, J. Biol. Chem. 257:1102–1105.PubMedGoogle Scholar
  112. Sjöström, M., and Squire, J. M., 1977, Fine structure of the α-band in cryo-sections. The structure of the α-band of human skeletal muscle fibres from ultra-thin cryo sections negatively stained, J. Mol. Biol. 109:49–68.PubMedGoogle Scholar
  113. Squire, J. M., 1981, The Structural Basis of Molecular Contraction, Plenum Press, New York.Google Scholar
  114. Staden, R., 1980, Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing, Nucleic Acids Res. 10:141–156.Google Scholar
  115. Starr, R., and Offer, G., 1973, Polarity of the myosin molecule, J. Mol. Biol. 81:17–31.PubMedGoogle Scholar
  116. Starr, R., and Offer, G., 1983, H-protein and X-protein. Two new components of the thick filaments of vertebrate skeletal muscle, J. Mol. Biol. 170:675–698.PubMedGoogle Scholar
  117. Suiston, J. E., and Horvitz, H. R., 1977, Postembryonic cell lineages of the nematode Caenorhabditis elegans, Dev. Biol. 56:100–156.Google Scholar
  118. Suiston, J. E., Schierenberg, E., White, J. G., and Thomson, J. N., 1983, The embryonic cell lineage of the nematode Caenorhabditis elegans, Dev. Biol. 100:64–119.Google Scholar
  119. Szent-Györgyi, A. G., Cohen, C., and Kendrick-Jones, J., 1971, Paramyosin and the filaments of Mulluscan catch muscles. II. Native filaments: Isolation and characterization. J. Mol. Biol. 56:239–258.PubMedGoogle Scholar
  120. Takahashi, K., 1978, Topography of the myosin molecule as visualised by an improved negative staining method, J. Biochem. (Tokyo) 83:905–908.Google Scholar
  121. Takashi, R., Mulrad, A., and Botts, J., 1982, Spatial relationship between a fast-reacting thiol and a reactive lysine residue of myosin subfragment 1, Biochemistry 21:5661–5668.PubMedGoogle Scholar
  122. Thomas, D. D., Scidel, J. C., Hyde, J. S., and Gergely, J., 1975, Motion of subfragment-1 in myosin and its supramolecular complexes: Saturation transfer electron paramagnetic resonance, Proc. Natl. Acad. Sci. USA 72:1729–1733.PubMedGoogle Scholar
  123. Thomas, D. D., Ishiwata, S., Scidel, J. C., and Gergely, J., 1980, Submillisecond rotational dynamics of spin-labelled myosin heads in myofibrils, Biophys. J. 32:873–889.PubMedGoogle Scholar
  124. Towbin, H., Staehelm, T., and Gordon, J., 1979, Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: Procedure and some applications, Proc. Natl. Acad. Sci. USA 76:4350–4354.PubMedGoogle Scholar
  125. Vibert, P., and Craig, R., 1983, Electron microscopy and image analysis of myosin filaments from scallop studied muscle. J. Mol. Biol. 165:303–320.PubMedGoogle Scholar
  126. Wagner, P. D., and Giniger, E., 1981, Hydrolysis of ATP and reversible binding to F-actin by myosin heavy chains free of all light chains, Nature 292:560–562.PubMedGoogle Scholar
  127. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N.J., 1982, Distantly related sequences in the a- and ß-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1:945–951.PubMedGoogle Scholar
  128. Waterston, R. H., 1981, A second informational suppressor, sup-7X, in Caenorhabditis elegans, Genetics 97:307–325.Google Scholar
  129. Waterston, R. H., and Brenner, S., 1978, A suppressor mutation in the nematode acting on specific alleles of many genes, Nature 275:715–719.PubMedGoogle Scholar
  130. Waterston, R. H., Fishpool, R. M., and Brenner, S., 1977, Mutants affecting paramyosin in Caenorhabditis elegans, J. Mol. Biol. 117:825–842.Google Scholar
  131. Waterston, R. H., Thomson, J. N., and Brenner, S., 1980, Mutant with altered muscle structure in Caenorhabditis elegansDev. Biol. 77:271–302.PubMedGoogle Scholar
  132. Waterston, R. H., Smith, K. C., and Moerman, D. G., 1982a, A genetic fine structure analysis of the myosin heavy chain gene unc-54 Caenorhabditis elegans, J. Mol. Biol. 158:1 – 15.PubMedGoogle Scholar
  133. Waterston, R. H., Bolton, S., Sive, H. L., and Moerman, D. G., 1982b, Mutationally altered myosins in Caenorhabditis elegans, in Muscle Development (M. Pearson and H. E. Epstein, eds.), pp. 119–129, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  134. Weeds, A. G., and Lowey, S., 1971, Substructure of the myosin molecule. II. The light chains of myosin, J. Mol. Biol. 61:701–725.PubMedGoogle Scholar
  135. Weeds, A. G., and Pope, B., 1977, Studies on the chymotryptic digestion of myosin effects of divalent cations on proteolytic susceptibility, J. Biol. Chem. 255:1598–1602.Google Scholar
  136. Wells, J., and Yount, R. G., 1979, Active site trapping of nucletides by crosslinking two sulfhy- dryls in myosin subfragment-1, Proc. Natl. Acad. Sci. USA 76:4966–4970.PubMedGoogle Scholar
  137. Wells, J., and Yount, R. G., 1980, Magnesium nucleotide is stoichiometrically trapped at the active site of myosins and its active proteolytic fragments by thiol cross-linking reagents, J. Biol. Chem. 255:1598–1602.PubMedGoogle Scholar
  138. Wills, N., Gesteland, R. F., Kam, J., Barnett, L., Bolten, S., and Waterston, R. H., 1983, The genes sup-1 X and sup-b III of C. elegans suppress amber nonsense mutations via altered transfer RNA, Cell 33:575–583.PubMedGoogle Scholar
  139. Wozney, J., Hanahan, D., Morimoto, R., Boedtker, H., and Doty, P., 1981, Fine structural analysis of the chicken pro-α-2-collagen gene, Proc. Natl. Acad. Sci. USA 78:712–716.PubMedGoogle Scholar
  140. Wray, J. S., 1979, Structure of the backbone in myosin filaments of muscle, Nature 277:37–40.PubMedGoogle Scholar
  141. Young, R. A., and Davis, R. W., 1983, Yeast RNA polymerase II genes: Isolation with antibody probes, Science 222:778–782.PubMedGoogle Scholar
  142. Zengel, J. M., and Epstein, H. F., 1980a, Mutants altering coordinate synthesis of specific myosins during nematode muscle development, Proc. Natl. Acad. Sci. USA 77:852–856.PubMedGoogle Scholar
  143. Zengel, J. M., and Epstein, H. F., 1980b, Identification of genetic elements associated with muscle structure in the nematode Caenorhabditis elegans, Cell Motu. 1:73–97.Google Scholar
  144. Zelgel, J. M., and Epstein, H. F., 1980c, Muscle development in Caenorhabditis elegans: A molecular genetic approach, in: Nematodes as Biological Models (B. Zuckerman, ed.), pp. 73–126, Academic Press, New York.Google Scholar
  145. Zweig, S. E., 1981, The muscle specificity and structure of two closely related fast-twitch white myosin heavy chain isozymes, J. Biol. Chem. 256:11847–11853.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Jonathan Karn
    • 1
  • Nick J. Dibb
    • 1
  • David M. Miller
    • 1
  1. 1.MRC Laboratory of Molecular BiologyUniversity Postgraduate Medical SchoolCambridgeEngland

Personalised recommendations