Cytoskeletal Events during Calcium- or EGF-Induced Initiation of DNA Synthesis in Cultured Cells

Role of Protein Phosphorylation and Clues in the Transformation Process
  • Normand Marceau
  • Sabine H. H. Swierenga


It is now apparent that calcium plays a major role in the regulation of cell growth, the most convincing evidence being that neoplastic transformation generally results in a reduced calcium requirement for the proliferation of various cultured cells of both mesenchymal and epithelial origin (Swierenga et al., 1980; Whitfield et al., 1980; Durham and Walton, 1982). The concentration of this divalent ion in the cytoplasm of mammalian cells is 103 times lower than that present in the extracellular medium, most of it being sequestered in specific organelles such as mitochondria and endoplasmic reticulum. Therefore, a transfer from the medium and/or intracellular storage sites can induce a relatively high transient change in the cytoplasmic calcium concentration and, as in the case of transient changes in cyclic adenosine monophosphate (cAMP) levels, it is generally interpreted as a control signal in the transduction of various external stimuli (Bygrave, 1978; Carafoli and Crompton, 1978; Kretsinger, 1979), including growth factors (McKeehan and MeKeehan, 1981). Moreover, because of its diversified yet crucial role in normal cell functioning, the many facets of the cellular metabolism of calcium have been studied extensively (Carafoli and Crompton, 1978), particularly its interaction with the intracellular transducer protein calmodulin, its relationship to cAMP metabolism, and its role in the activation of distinct protein kinases (Cheung, 1980; Scharff, 1981; Carafoli, 1981; Oldham, 1982; Means et al., 1982a).


Intermediate Filament Primary Cilium Cytoskeletal Element Calcium Medium Rous Sarcoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelstein, R. S., 1982, Calmodulin and the regulation of the actin-myosin interaction in smooth muscle and nonmuscle cells, Cell 30:349.PubMedGoogle Scholar
  2. Antoniades, H. N., 1981, Human platelet-derived growth factor (PDGF): Purification of PDGF-I and PDGF-II and separation of their reduced subunits, Proc. Natl. Acad. Sci. USA 78:7314.PubMedGoogle Scholar
  3. Anzano, M. A., Roberts, A. B., Smith, J. M., Sporn, M. B., and De Larco, J. E., 1983, Sarcoma growth factor from conditioned medium of virally transformed cells is composed of both type a and type b transforming growth factors, Proc. Natl. Acad. Sci. USA 80:6264.PubMedGoogle Scholar
  4. Aplin, J. D., Bardsley, W. G., and Niven, V. M., 1983, Kinetic analysis of cell spreading, J. Cell Sci. 61:375.PubMedGoogle Scholar
  5. Aubin, J. E., Alders, E., and Heersche, J. N. M., 1983, A primary role for microfilaments, but not microtubules, in hormone-induced cytoplasmic retraction, Exp. Cell Res. 143:439.PubMedGoogle Scholar
  6. Balk, S. D., Whitfield, J. F., Youdale, T., and Braun, A. C., 1973, Roles of calcium, serum, plasma, and folic acid in the control of proliferation of normal and Rous sarcoma virus-infected chicken fibroblasts, Proc. Natl. Acad. Sci. USA 70:657.Google Scholar
  7. Ball, E. H., and Singer, S. J., 1981, Association of microtubules and intermediate filaments in normal fibroblasts and its disruption upon transformation by a temperature-sensitive mutant of Rous sarcoma virus, Proc. Natl. Acad. Sci. USA 78:6986.PubMedGoogle Scholar
  8. Bannikov, G. A., Guelstein, V. I., Montesano, R., Tint, I. S., Tomatis, L., Troyanosvky, S. M., and Vasiliev, J. M., 1982, Cell shape and organization of cytoskeleton and surface fibronectin in non-tumorigenic and tumorigenic rat liver cultures, J. Cell Sci. 54:47.PubMedGoogle Scholar
  9. Barker, W. C., and Dayhoff, M. O., 1982, Viral src gene products are related to the catalytic chain of mammalian cAMP-dependent protein kinase, Proc. Natl. Acad. Sci. USA 79:2836.PubMedGoogle Scholar
  10. Barnes, D. W., 1982, Epidermal growth factor inhibits growth of A431 human epidermoid carcinoma in serum-free cell culture, J. Cell Biol. 93:1.PubMedGoogle Scholar
  11. Beersten, W., Heersche, J. N. M., and Aubin, J. E., 1982, Free and polymerized tubulin in cultured bone cells and Chinese hamster ovary cells: The influence of cold and hormones, J. Cell Biol. 95:387.Google Scholar
  12. Ben-Ze’ev, A., 1983, Cell configuration-related control of vimentin biosynthesis and phosphorylation in cultured mammalian cells, J. Cell Biol. 97:858.PubMedGoogle Scholar
  13. Berkowitz, S. A., and Wolff, J., 1981, Intrinsic calcium sensitivity of tubulin polymerization. The contributions of temperature, tubulin concentration, and associated proteins, J. Biol. Chem. 256:11216.PubMedGoogle Scholar
  14. Bloom, G. S., and Vallee, R. B., 1983, Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells, J. Cell Biol. 96:1523.PubMedGoogle Scholar
  15. Boynton, A. L., and Whitfield, J. F., 1976, Different calcium requirements for proliferation of conditionally and unconditionally tumorigenic mouse cells, Proc. Natl. Acad. Sci. USA 73:1651.PubMedGoogle Scholar
  16. Boynton, A. L., and Whitfield, J. F., 1978, Calcium requirements for the proliferation of cells infected with a temperature-sensitive mutant of Rous sarcoma virus, Cancer Res. 38:1237.PubMedGoogle Scholar
  17. Boynton, A. L., Whitfield, J. F., MacManus, J. P., Armato, U., Tsang, B. K., and Jones, A., 1981, Involvement of cAMP and cAMP-dependent protein kinase in the initiation of DNA synthesis by rat liver cells, Exp. Cell Res. 135:199.PubMedGoogle Scholar
  18. Boynton, A. L., MacManus, J. P., and Whitfield, J. F., 1982, Stimulation of liver cell DNA synthesis by oncomodulin, and MW 11500 calcium-binding protein from hepatoma, Exp. Cell Res. 138:454.PubMedGoogle Scholar
  19. Boynton, A. L., Whitfield, J. F., and Kleine, L. P., 1983, Ca2+ /phospholipid-dependent protein kinase activity correlates to the ability of transformed liver cells to proliferate in Ca2+ deficient medium, Biochem. Biophys. Res. Commun. 115:383.PubMedGoogle Scholar
  20. Bretscher, A., and Weber, K., 1980, Villin is a major protein of the microvillus cytoskeleton which binds both G and F actin in a calcium dependent manner, Cell 20:839.PubMedGoogle Scholar
  21. Britch, M., and Allen, T. D., 1980, The modulation of cellular contractility and adhesion by trypsin and EGTA, Exp. Cell Res. 125:221.PubMedGoogle Scholar
  22. Burridge, K., and Feramisco, J. R., 1980, Microinjection and localization of 130K protein in living fibroblasts: A relationship to actin and fibronectin, Cell 19:587.PubMedGoogle Scholar
  23. Burridge, K., and Feramisco, J. R., 1981, Non-muscle α-actinins are calcium sensitive actin binding proteins, Nature 294:565.PubMedGoogle Scholar
  24. Burridge, K., Kelly, T., and Mangeat, P., 1982, Nonerythrocyte spectrins: Actin-membrane attachment proteins occurring in many cell types, J. Cell Biol. 95:478.PubMedGoogle Scholar
  25. Bygrave, F., 1978, Mitochondria and the control of intracellular calcium, Biol. Rev. 53:43.PubMedGoogle Scholar
  26. Cairns, J., and Logan, J., 1983, Step by step into carcinogenesis, Nature 304:582.PubMedGoogle Scholar
  27. Carafoli, E., 1981, Calmodulin, collected papers and reviews, Cell Calcium 2:263.Google Scholar
  28. Carafoli, E., and Crompton, M., 1978, The regulation of intracellular calcium, in: Current Topics in Membranes and Transport (F. Bronner and A. Kleinzeller, eds.), pp. 151–216, Academic Press, New York.Google Scholar
  29. Carpenter, G., and Cohen, J., 1979, Epidermal growth factor, Annu. Rev. Biochem. 48:193.PubMedGoogle Scholar
  30. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847.PubMedGoogle Scholar
  31. Cheetham, B. F., 1983, An inhibitor of polyamine synthesis arrests cells at an earlier stage of G1 than does calcium deprivation, Mol. Cell. Biol. 3:480.PubMedGoogle Scholar
  32. Cheetham, B. F., and Bellett, A. J. D., 1982, A biochemical investigation of the adenovirus-induced G1 to S phase progression: thymidine kinase, ornithine decarboxylase, and inhibitors of polyamine biosynthesis, J. Cell. Physiol. 110:114.PubMedGoogle Scholar
  33. Cheng, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.Google Scholar
  34. Coffino, P., 1980, Cyclic adenosine monophosphate action in mouse lymphoma cells: Somatic genetic and biochemical analysis, Prog. Cancer Res. Ther. 14:287.Google Scholar
  35. Cooper, J. A., and Hunter, T., 1981, Similarities and differences between the effects of epidermal growth factor and Rous sarcoma virus, J. Cell Biol. 91:878.PubMedGoogle Scholar
  36. Cooper, J. A., and Hunter, T., 1983, Identification and characterization of cellular targets for tyrosine protein kinases, J. Biol. Chem. 258:1108.PubMedGoogle Scholar
  37. Cooper, J. A., Bowen-Pope, D. F., Raines, E., Ross, R., and Hunter, T., 1982, Similar effects of platelet-derived growth factor and epidermal growth factor on the phosphorylation of tyrosine in cellular proteins, Cell 31:263.PubMedGoogle Scholar
  38. Courtneidge, S. A., and Smith, A. E., 1983, Polyoma virus transforming protein associates with the product of the c-src cellular gene, Nature 303:435.PubMedGoogle Scholar
  39. Croy, R. G., and Pardee, A. B., 1983, Enhanced synthesis and stabilization of Mr 68,000 protein in transformed BALB/c-3T3 cells: Candidate for restriction point control of cell growth, Proc. Natl. Acad. Sci. USA 80:4699.PubMedGoogle Scholar
  40. Deuel, T. F., Huang, J. S., Proffitt, R. T., Baenziger, J. U., Chang, D., and Kennedy, B. B., 1981, Human platelet-derived growth factor, J. Biol. Chem. 256:8896.PubMedGoogle Scholar
  41. Deuel, T. F., Huang, J. S., Huang, S. S., Stroobant, P., and Waterfield, M. D., 1983, Expression of a platelet-derived growth factor-like protein in simian sarcoma virus transformed cells, Science 221:1348.PubMedGoogle Scholar
  42. Durham, A. C. H., and Walton, J. M., 1982, Calcium ions and the control of proliferation in normal and cancer cells, Biosci. Rep. 2:15.PubMedGoogle Scholar
  43. Durkin, J. P., Boynton, A. L., and Whitfield, J. F., 1981, The src gene product (pp60src) of avian sarcoma virus rapidly induces DNA synthesis and proliferation of calcium-deprived rat cells, Biochem. Biophys. Res. Commun. 103:233.PubMedGoogle Scholar
  44. Durkin, J. P., Brewer, L. M., and MacManus, J. P., 1983, Occurrence of the tumor-specific, calcium-binding protein, oncomodulin, in virally transformed normal rat kidney cells, Cancer Res. 43:5390.PubMedGoogle Scholar
  45. Edelman, G. M., 1976, Surface modulation in cell recognition and cell growth, Science 192:218.PubMedGoogle Scholar
  46. Erikson, E., Shealy, D. J., and Erikson, R. L., 1981, Evidence that viral transforming gene products and epidermal growth factor stimulate phosphorylation of the same cellular protein with similar specificity, J. Biol. Chem. 256:11381.PubMedGoogle Scholar
  47. Folkman, J., and Moscona, A., 1978, Role of cell shape in growth control, Nature 278:345.Google Scholar
  48. Folkman, J., and Tucker, R. W., 1980, Cell configuration, substratum and growth control, in: The Cell Surface: Mediator of Developmental Processes (S. Subtelny and N. K. Wessells, eds.), pp. 259–275, Academic Press, New York.Google Scholar
  49. Franke, W. W., Schmid, E., and Grund, C., 1982, Intermediate filament proteins in nonfilamen-tous structures: Transient disintegration and inclusion of subunit proteins in granular aggregates, Cell 30:103.PubMedGoogle Scholar
  50. Friedkin, M., and Rozengurt, E., 1980, The role of cytoplasmic microtubules in the regulation of the activity of peptide growth factors, in: Advances in Enzyme Regulation (G. Weber, ed.), Vol. 19, pp. 39–59, Pergamon Press, London.Google Scholar
  51. Geiger, B., and Singer, S. J., 1979, The participation of α-actinin in the capping of cell membrane components, Cell 16:213.PubMedGoogle Scholar
  52. Geiger, B., and Singer, S. J., 1980, Association of microtubules and intermediate filaments in chicken gizzard cells as detected by double immunofluroescence, Proc. Natl. Acad. Sci. USA 77:4769.PubMedGoogle Scholar
  53. Ghosh-Dastidar, P., and Fox, C. F., 1983, Epidermal growth factor and epidermal growth factor receptor-dependent phosphorylation of Mr = 34,000 protein substrate for pp60src , J. Biol. Chem. 258:2041.PubMedGoogle Scholar
  54. Ghysdael, J., 1983, Protein kinases specific for tyrosine residues and the role of tyrosine phosphorylation of proteins in cell transformation, in: Gene Expression in Normal and Transformed Cells (J. E. Celis and R. Bravo, eds.), Vol. 64, p. 209, Plenum Press, New York.Google Scholar
  55. Glenney, J. R., Jr., Glenney, P., and Weber, K., 1982, Erythroid spectrin, brain fodrin, and intestinal brush border protein (TW-260/240) are related molecules containing a common calmodulin-binding subunit bound to a variant cell type-specific subunit, Proc. Natl. Acad. Sci. USA 79:4002.PubMedGoogle Scholar
  56. Gospodarowicz, D., and Moran, J. S., 1976, Growth factors in mammalian cell culture, Annu. Rev. Biochem. 45:531.PubMedGoogle Scholar
  57. Griffith, L., and Pollard, T. D., 1978, Evidence for actin filament-microtubule interaction mediated by microtubules-associated proteins, J. Cell Biol. 78:958.PubMedGoogle Scholar
  58. Griffith, L., and Pollard, T. D., 1982, The interaction of actin filaments with microtubules and microtubule-associated proteins, J. Biol. Chem. 257:9143.PubMedGoogle Scholar
  59. Groffen, J., Heisterkamp, N., Reynolds, F. H., Jr., and Stephenson, J. R., 1983, Homology between phosphotyrosine acceptor site of human c-abl and viral oncogene products, Nature 304:167.PubMedGoogle Scholar
  60. Haddox, M. K., and Russell, D. H., 1981, Ornithin decarboxylase expression in normal and neoplastic growth, in: Advances in Polyamine Research (C. M. Caldarera, V. Zappia, and V. Bachrach, eds.), Vol. 3, p. 275, Raven Press, New York.Google Scholar
  61. Holley, R. S., 1975, Control of growth of mammalian cells in culture, Nature 258:487.PubMedGoogle Scholar
  62. Hynes, R., 1982, Phosphorylation of vinculin by pp60src. What might it mean? Cell 28:437.PubMedGoogle Scholar
  63. Jacobs, S., Sahyoun, N. E., Saltiel, A. R., and Cuatrecasas, P., 1983, Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C, Proc. Natl. Acad. Sci. USA 80:6211.PubMedGoogle Scholar
  64. Jimenez de Asua, L., 1980, An ordered sequence of temporal steps regulates the rate of initiation of DNA synthesis in cultured mouse cells, in: Control Mechanisms in Animal Cells, Specific Growth Factors (L.Jimenez de Asua, R. Levi-Montalcini, R. Shields, and S. Iacobelli, eds.), pp. 173–197, Raven Press, New York.Google Scholar
  65. Jimenez de Asua, L., Smith, C., and Otto, A. M., 1982, Insulin stimulates some initial events necessary for the initiation of DNA replication in Swiss 3T3 cells, Cell Biol. Int. Rep. 6:791.PubMedGoogle Scholar
  66. Jones, A., Boynton, A. L., MacManus, J. P., and Whitfield, J. F., 1982, Ca-Calmodulin mediates the DNA-synthetic response of calcium-deprived liver cells to the tumor promoter TPA, Exp. Cell Res. 138:87.PubMedGoogle Scholar
  67. Katoh, Y., and Takayama, S., 1982, Conversion of platelet-derived growth factor-dependent cells to growth factor-independent cells during chemical carcinogenesis in vitro, Carcinogenesis 3:867.PubMedGoogle Scholar
  68. Keski-Oja, J., Lehto, V. P., and Virtanen, I., 1981, Keratin filaments of mouse epithelial cells are rapidly affected by epidermal growth factor, J. Cell Biol. 90:537.PubMedGoogle Scholar
  69. Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., 1982, Calcium-activated, phospholipid-dependent protein kinase from rat-brain, J. Biol. Chem. 25:13341.Google Scholar
  70. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y., 1983, Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters, J. Biol. Chem. 258:11442.PubMedGoogle Scholar
  71. Klymkowsky, M. W., 1981, Intermediate filaments in 3T3 cells collapse after intracellular injection of a monoclonal anti-intermediate filament antibody, Nature 291:249.PubMedGoogle Scholar
  72. Klymkowsky, M. W., Miller, R. H., and Lane, E. G., 1983, Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization, J. Cell Biol. 96:494.PubMedGoogle Scholar
  73. Knapp, L. W., O’Guin, W. M., and Sawyer, R. H., 1983, Drug-induced alterations of cytokeratin organization in cultured epithelial cells, Science 219:501.PubMedGoogle Scholar
  74. Koenig, H., Goldstone, A., and Lu, C. Y., 1983, Polyamines regulate calcium fluxes in a rapid plasma membrane response, Nature 305:530.PubMedGoogle Scholar
  75. Kraft, A. S., and Anderson, W. B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature 301:621.PubMedGoogle Scholar
  76. Kretsinger, R. H., 1979, The informational role of calcium in the cytosol, Adv. Cyclic Nucleotide Res. 11:1.PubMedGoogle Scholar
  77. Land, H., Parada, L. F., and Weinberg, R. A., 1983, Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes, Nature 304:596.PubMedGoogle Scholar
  78. Lazarides, E., 1982, Intermediate filaments: Chemically heterogeneous developmentally regulated class of proteins, Annu. Rev. Biochem. 51:219.PubMedGoogle Scholar
  79. Lee, Y. C., and Wolff, J., 1982, Two opposing effects of calmodulin on microtubule assembly depend on the presence of microtubule-associated proteins, J. Biol. Chem. 257:6306.PubMedGoogle Scholar
  80. Lehto, W. P., Virtanen, I., Paasivuo, R., Ralston, R., and Alitalo, K., 1983, The p36 substrate of tyrosine-specific protein kinases co-localizes with non-erythrocyte a-spectrin antigen, p230, in surface lamina of cultured fibroblasts, Embo J. 2:1701.PubMedGoogle Scholar
  81. Levine, L., 1982, Effects of tumor promoters on arachidonic acid metabolism by cells in culture, in: Carcinogenesis (E. Hecker, N. E. Fusenig, W. Kunz, F. Marks, and H. W. Thielmann, eds.), pp. 477–494, Raven Press, New York.Google Scholar
  82. Levine, L., and Hassid, A., 1977, Epidermal growth factor stimulates prostaglandin biosynthesis by canine kidney (MDCK) cells, Biochem. Biophys. Res. Commun. 76:1181.PubMedGoogle Scholar
  83. Lin, J. J. C., and Feramisco, J. R., 1981, Disruption of the in vivo distribution of the intermediate filaments in fibroblasts through the microinjection of a specific monoclonal antibody, Cell 24:185.PubMedGoogle Scholar
  84. Loewenstein, W. R., 1981, Junctional intercellular communication; the cell-to-cell membrane channel. Physiol. Rev. 61:829.PubMedGoogle Scholar
  85. Lopez-Rivas, A., and Rozengurt, E., 1983, Serum rapidly mobilizes calcium from an intracellular pool in quiescent fibroblastic cells, Biochem. Biophys. Res. Commun. 114:240.PubMedGoogle Scholar
  86. MacManus, J. P., Whitfield, J. F., Boynton, A. L., Durkin, J. P., and Swierenga, S. H. H., 1982, Oncomodulin—a widely distributed, tumour-specific, calcium-binding protein, Oncodevelop. Biol. Med. 3:79.Google Scholar
  87. Malan-Shibley, L., and Iype, P. T., 1981, The influence of culture conditions on cell morphology and tyrosine aminotransferase levels in rat liver epithelial cell lines, Exp. Cell Res. 131:363.PubMedGoogle Scholar
  88. Marceau, N., Goyette, R., Deschenes, J., and Valet, J. P., 1980, Morphological differences between epithelial and fibroblast cells in rat liver cultures, and the roles of cell surface fibronectin and cytoskeletal element organization in cell shape, Ann. N.Y. Acad. Sci. 349:138.PubMedGoogle Scholar
  89. Marceau, N., Goyette, R., Pelletier, G., and Antakly, T., 1983, Hormonally-induced changes in the cytoskeleton organization of adult and newborn rat hepatocytes cultured in fibronectin precoated substratum: Effect of dexamethasone and insulin, Cell. Mol. Biol. 29:421.PubMedGoogle Scholar
  90. McKeehan, W. L., and McKeehan, K. A., 1980, Calcium, magnesium, and serum factors in multiplication of normal and transformed human lung fibroblasts, In Vitro, 16:475.PubMedGoogle Scholar
  91. McKeehan, W. L., and McKeehan, K. A., 1981, Growth factor control of cell proliferation by control of cellular nutrient requirements, in: The Immune System (C. M. Steinberg and I. Lefkovits, eds.), Vol. 1, pp. 383–390, Karger, Basel.Google Scholar
  92. McKeehan, W. L., McKeehan, K. A., and Calkins, D., 1982, Epidermal growth factor modifies Ca2+, Mg2+ and 2-oxocarboxylic acid, but not K+ and phosphate ion requirement for multiplication of human fibroblasts, Exp. Cell Res. 140:25.PubMedGoogle Scholar
  93. Means, A. R., Lagace, L., Guerriero, V., Jr., and Chafouleas, J. G., 1982a, Calmodulin as a mediator of hormone action and cell regulation, J. Cell. Biochem. 20:317.Google Scholar
  94. Means, A. R., Tash, J. S., Chafouleas, G. J., Lagace, L., and Guerriero, V., 1982b, Regulation of the cytoskeleton by Ca2+-calmodulin and cAMP. Part II. Endocytosis and cytoskeleton, Ann. N.Y. Acad. Sci. 383:69.Google Scholar
  95. Moll, R., Franke, W. W., Schiller, D. L., Geiger, B., and Krepier, R., 1982, The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumors and cultured cells, Cell 31:11.PubMedGoogle Scholar
  96. Moolenaar, W. H., Tsien, R. Y., van der Saag, P. T., and de Laat, S. W., 1983, Na+ /H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts, Nature 304:645.PubMedGoogle Scholar
  97. Nelson, W. J., and Traub, P., 1982, Purification and further characterization of the Ca2+-activated proteinase specific for the intermediate filament proteins vimentin and desmin, J. Biol. Chem. 257:5544.PubMedGoogle Scholar
  98. Nelson, W. J., and Traub, P., 1983, Proteolysis of vimentin and desmin by the Ca2+ activated proteinase specific for these intermediate filament proteins, Mol. Cell. Biol. 3:1146.PubMedGoogle Scholar
  99. Newbold, R. F., and Overell, R. W., 1983, Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene, Nature 304:648.PubMedGoogle Scholar
  100. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifies with protein kinase C, Proc. Natl. Acad. Sci. USA 80:36.PubMedGoogle Scholar
  101. Nigg, E. A., Cooper, J. A., and Hunter, T., 1983, Immunofluorescent localization of a 39,000-dalton substrate of tyrosine protein kinases to the cytoplasmic surface of the plasma membrane, J. Cell Biol. 96:1601.PubMedGoogle Scholar
  102. Nimmo, H. G., and Cohen, P., 1977, Cyclic nucleotide research. Hormonal control of proteins phosphorylation. Adv. Cyclic Nucleotide Res. 8:145.PubMedGoogle Scholar
  103. Nishimura, J., Huang, J. S., and Deuel, T. F., 1982, Platelet-derived growth factor stimulates tyrosine-specific protein kinase activity in Swiss mouse 3T3 cell membranes, Proc. Natl. Acad. Sci. USA 79:4303.PubMedGoogle Scholar
  104. O’Connor, C. M., Gard, D. L., and Lazarides, E., 1981, Phosphorylation of intermediate filament proteins by cAMP-dependent protein kinases, Cell 23:135.PubMedGoogle Scholar
  105. Oldham, S. B., 1982, Calmodulin: Its role in calcium-mediated cellular regulation, Mineral Electrolyte Metab. 8:1.Google Scholar
  106. Otto, A. M., 1982, Mini review, Microtubules and the regulation of DNA synthesis in fibroblastic cells, Cell Biol. Int. Rep. 6:1.PubMedGoogle Scholar
  107. Owen, N. E., and Villereal, M. L., 1982, Evidence for a role of calmodulin in serum stimulation of Na+ influx in human fibroblasts, Proc. Natl. Acad. Sci. USA 79:3537.PubMedGoogle Scholar
  108. Parsons, P. G., 1978, Selective proliferation of human tumour cells in calcium-depleted medium, Aust. J. Exp. Biol. Med. Sci. 56:297.PubMedGoogle Scholar
  109. Paul, D., and Ristow, H. J., 1979, Cell cycle control by Ca2+ ions in transformed 3T3 cells, J. Cell Physiol. 98:31.PubMedGoogle Scholar
  110. Pierre, M., and Nunez, J., 1983, Multisite phosphorylation oft proteins from rat brain, Biochem. Biophys. Res. Commun. 115:212.PubMedGoogle Scholar
  111. Pike, L. J., Gallis, B., Casnellie, J. E., Bornstein, P., and Krebs, E. G., 1982, Epidermal growth factor stimulates the phosphorylation of synthetic tyrosine-containing peptides by A431 cell membranes, Proc. Natl. Acad. Sci. USA 79:1443.PubMedGoogle Scholar
  112. Pledger, W. J., Stiles, C. D., Antoniades, H. N., and Scher, C. D., 1978, A ordered sequence of events is required before Balb/c 3T3 cells become committed to DNA synthesis, Proc. Natl. Acad. Sci. USA 75:2839.PubMedGoogle Scholar
  113. Puck, T. T., 1977, Cyclic AMP, the microtubule-microfilament system, and cancer, Proc. Natl. Acad. Sci. USA 74:4491.PubMedGoogle Scholar
  114. Raz, A., and Geiger, B., 1982, Altered organization of cell-substrate contacts and membrane-associated cytoskeleton in tumor cell variants exhibiting different metastatic capabilities, Cancer Res. 42:5183.PubMedGoogle Scholar
  115. Ross, R., Glomset, J., Kariya, B., and Harker, L., 1974, A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro, Proc. Natl. Acad. Sci. USA 71:2107.Google Scholar
  116. Rozengurt, E., 1980, Stimulation of DNA synthesis in quiescent cultured cells: Exogenous agents, internal signals, and early events, Curr. Top. Cell. Regul. 17:59.PubMedGoogle Scholar
  117. Rozengurt, E., Stroobant, P., Waterfield, M. D., Deuel, T. F., and Keehan, M., 1983, Platelet-derived growth factor elicits cyclic AMP accumulation in Swiss 3T3 cells: Role of prostaglandin production, Cell 34:265.PubMedGoogle Scholar
  118. Ruley, H. E., 1983, Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture, Nature 304:602.PubMedGoogle Scholar
  119. Savion, N., Vlodavsky, I., Greenberg, G., and Gospodarowicz, D., 1982, Synthesis and distribution of cytoskeletal elements in endothelial cells as a function of cell growth and organization, J. Cell. Physiol. 110:129.PubMedGoogle Scholar
  120. Scharff, O., 1981, Calmodulin—and its role in cellular activation, Cell Calcium 2:1.Google Scholar
  121. Scher, C. D., Shepard, R. C., Antoniades, H. N., and Stiles, C. D., 1979, Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle, Biochem. Biophys. Acta 560:217.PubMedGoogle Scholar
  122. Schlessinger, J., and Geiger, B., 1981, Epidermal growth factor induces redistribution of actin and α-actinin in human epidermal carcinoma cells, Exp. Cell Res. 134:273.PubMedGoogle Scholar
  123. Schlessinger, J., Schreiber, A. B., Levi, A., Lax, L, Libermann, T., and Yarden, Y., 1982, Regulation of cell proliferation by epidermal growth factor, CRC Crit. Rev. Biochem. 14:93.Google Scholar
  124. Seiden, S. C., and Pollard, T. D., 1983, Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments, J. Biol. Chem. 258:7064.Google Scholar
  125. Sefton, B. M., Hunter, T., Ball, E. H., and Singer, S. J., 1981, Vinculin: A cytoskeletal target of the transforming protein of Rous sarcoma virus, Cell 24:165.PubMedGoogle Scholar
  126. Sherline, P., and Mascardo, R. N., 1982, Epidermal growth factor induces rapid centrosomal separation in HeLa and 3T3 cells, J. Cell Biol. 93:507.PubMedGoogle Scholar
  127. Sluder, G., and Begg, D. A., 1983, Control mechanisms of the cell cycle: Role of the spatial arrangement of spindle components in the timing of mitotic events, J. Cell Biol. 97:877.PubMedGoogle Scholar
  128. Spruil, W. A., Zysk, J. R., Tres, L. L., and Kierszenbaum, A. L., 1983, Calcium/calmodulin-dependent phosphorylation of vimentin in rat sertoli cells, Proc. Natl. Acad. Sci. USA 80:760.Google Scholar
  129. Streb, H., Irvine, R. F., Berridge, M. J., and Schulz, I., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate, Nature 306:67.PubMedGoogle Scholar
  130. Sunkara, P. S., and Rao, P. N., 1981, Differential cell cycle response of normal and transformed cells to polyamine limitation, in: Advances in Polyamine Research (C. M. Caldarera, V. Zappia, and V. Bachrach, eds.), Vol. 3, p. 347, Raven Press, New York.Google Scholar
  131. Swierenga, S. H. H., 1984, Use of Low Calcium Medium in Carcinogenicity TestingStudies with Rat Liver Cells, CRC Press, Boca Raton, Florida.Google Scholar
  132. Swierenga, S. H. H., Whitfield, J. F., and Gillan, D. J., 1976, Alteration of malignant transformation of the calcium requirements for cell proliferation in vitro, J. Natl. Cancer Inst. 57:125.PubMedGoogle Scholar
  133. Swierenga, S. H. H., Whitfield, J. F., and Morris, H. P., 1978, The reduced extracellular calcium requirement for proliferation by neoplastic hepatocytes, In Vitro 14:527.PubMedGoogle Scholar
  134. Swierenga, S. H. H., Whitfield, J. F., Boynton, A. L., MacManus, J. P., Rixon, R. H., Sikorska, M., Tsang, B. K., and Walker, P. R., 1980, Regulation of proliferation of normal and neoplastic rat liver cells by calcium and cyclic AMP, Ann. N.Y. Acad. Sci. 349:294.PubMedGoogle Scholar
  135. Swierenga, S. H. H., Goyette, R., and Marceau, N., 1981, Changes in cell surface morphology, fibronectin-matrix formation, and cytoskeleton organization of normal and tumorigenic rat liver cells cultured in low calcium medium, Proc. Can. Fed. Biol. Soc. 24:265.Google Scholar
  136. Swierenga, S. H. H., Marceau, N., and Goyette, R., 1983a, Cytoskeletal events during calcium or EGF-induced initiation of DNA synthesis in rat liver cells, In Vitro 19:254.Google Scholar
  137. Swierenga, S. H. H., Auesperg, N., and Wong, K. S., 1983b, Effects of calcium deprivation on the proliferation and ultrastructure of cultured human carcinoma cells, Cancer Res. 43:6012.Google Scholar
  138. Swierenga, S. H. H., Goyette, R., and Marceau, N., 1984, Differential effects of calcium deprivation on the cytoskeleton of non-tumorigenic and tumorigenic rat liver cells in culture, Exp. Cell Res. 153:39.PubMedGoogle Scholar
  139. Taffet, S. M., Greenfield, A. R. L., and Haddox, M. K., 1983, Retinal inhibits TPA activated, calcium-dependent, phospholipid-dependent protein kinase (“C” kinase), Biochem. Biophys. Res. Commun. 114:1194.PubMedGoogle Scholar
  140. Todaro, G. J., Matsuya, Y., Bloom, S., Robbins, A., and Green, H., 1967, Stimulation of RNA synthesis and cell division in resting cells by a factor present in serum, in: Growth Regulating Substances for Animal Cells in Culture (A. Defendi and M. Stocker, eds.), pp. 87–98, Wistar Institute Press, Philadelphia.Google Scholar
  141. Tucker, R. W., 1982, Role of microtubules and centrioles in growth regulation of mammalian cells, in: Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.), pp. 259–295, Plenum Press, New York.Google Scholar
  142. Tucker, R. W., and Pardee, A. B., 1981, Primary cilia and their role in the regulation of DNA replication and mitosis, in: Cell Growth (C. Nicolini, ed.), pp. 365–376, Plenum Press, New York.Google Scholar
  143. Vallee, R. B., DiBartolomeis, M. J., and Theurkauf, W. E., 1981, A protein kinase bound to the projection portion of MAP 2 (microtubule-associated protein 2), J. Cell Biol. 90:568.PubMedGoogle Scholar
  144. Vasiliev, J. M., and Gelfand, I. M. 1981, Neoplastic and Normal Cells in Culture, Cambridge University Press, New York.Google Scholar
  145. Vogel, K. G., 1978, Effects of Hyaluronidase, trypsin, and EDTA on surface composition and topography during detachment of cells in culture, Exp. Cell Res. 113:345.PubMedGoogle Scholar
  146. Weatherbee, J. A., 1981, Membranes and cell movement: Interactions of membranes with the proteins of the cytoskeleton, Int. Rev. Cytol. (Suppl. 12): 113.Google Scholar
  147. Weinstein, I. B., 1983, Protein kinase, phospholipid and control of growth, Nature 302:750.PubMedGoogle Scholar
  148. Westermark, B., and Porter, K. R., 1982, Hormonally induced changes in the cytoskeleton of human thyroid cells in culture, J. Cell Biol. 94:42.PubMedGoogle Scholar
  149. Whitfield, J. F., Boynton, A. L., MacManus, J. P., Rison, R. H., A Sikorska, M., Tsang, B., Walker, P. R., and Swierenga, S. H. H., 1980, The roles of calcium and cyclic AMP in cell proliferation, Ann. N.Y. Acad. Sci. 339:216.PubMedGoogle Scholar
  150. Whitfield, J. F., MacManus, J. P., Boynton, A. L., Durkin, J., and Jones, A., 1982, Futures of calcium, calcium-binding proteins, cyclic AMP and protein kinases in the quest for an understanding of cell proliferation and cancer, in: Functional Regulation at the Cellular and Molecular Levels (E. A. Corradino, ed.), pp. 61–87, Elsevier Biomedical Press, New York.Google Scholar
  151. Wiener, E. C., and Loewenstein, W. R., 1983, Correction of cell-cell communication defect by introduction of a protein kinase into mutant cells, Nature 305:433.PubMedGoogle Scholar
  152. Wilkins, J. A., and Lin, S., 1982, High-affinity interaction of vinculin with actin filaments in vitro, Cell 28:83.PubMedGoogle Scholar
  153. Wille, J. J., and Scott, R. E., 1982, Topography of the predifferentiation GD growth arrest state relative to other growth arrest states in the G1 phase of the cell cycle, J. Cell. Physiol. 112:115.PubMedGoogle Scholar
  154. Yen, A., and Riddle, V. G. H., 1979, Plasma and platelet associated factors act in Gt from their high serum requirement, Exp. Cell Res. 116:103.Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Normand Marceau
    • 1
  • Sabine H. H. Swierenga
    • 2
  1. 1.Cancer Research Center, Hôtel-Dieu Hospital, Department of MedicineLaval UniversityQuebecCanada
  2. 2.Drug Toxicology DivisionHealth and WelfareOttawaCanada

Personalised recommendations