Sarcomere-Associated Cytoskeletal Lattices in Striated Muscle

Review and Hypothesis
  • Kuan Wang


The sarcomere, the basic contractile unit of striated muscle cells, is widely accepted as being constructed of two sets of parallel and interdigitated protein filaments that are discontinuous and inextensible. This two-filament sarcomere model provides a structural basis for the powerful sliding-filament theory of muscle contraction. Recent structural, biochemical, and immu-nocytochemical studies, however, have clearly indicated that the sarcomere has additional filamentous constituents besides thick and thin filament assemblies. The purpose of this chapter is to outline and develop key evidence that has led to the notion that the sarcomere contains two sets of distinct cytoskeletal filaments that are continuous and extensible. One set of cytoskeletal filaments coexists with thick and thin filaments within the sarcomere (an endosarcomeric lattice); the other set is an extensive network of intermediate filaments enveloping each sarcomere and interlinking other cellular organelles (an exosarcomeric lattice).


Intermediate Filament Thin Filament Sarcomere Length Myofibrillar Protein Flight Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ashby, B., Frieden, C., and Bischoff, R., 1979, Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle, J. Cell Biol 81:361–373.PubMedGoogle Scholar
  2. Ashhurst, D. E., 1967, Z-line of the flight muscle of belostomatid water bugs, J. Mol. Biol. 27:385 – 389.PubMedGoogle Scholar
  3. Auber, J., and Couteaux, R., 1963, Ultrastructure de la striae Z dans des muscules de diptères, J. Microsc.2:309–316.Google Scholar
  4. Bechtel, P. J., 1979, Identification of a high molecular weight actin-binding protein in skeletal muscle, J. Biol. Chem.254:1755–1758.PubMedGoogle Scholar
  5. Bennett, H. S., and Porter, K. R., 1953, An electron microscope study of sectioned muscle of the domestic fowl, Am. J. Anat.93:61–105.PubMedGoogle Scholar
  6. Bullard, B., 1983, Contractile proteins of insect flight muscle, Trends Biochem. Sci.8:68–70.Google Scholar
  7. Bullard, B., Bell, J. L., and Luke, B. M., 1977a, Immunological investigation of proteins associated with thick filaments of insect flight muscle, in: Insect Flight Muscle (R. T. Tregear, ed.), pp. 41–52, Elsevier-North Holland Press, Amsterdam.Google Scholar
  8. Bullard, B., Hammond, K. S., and Luke, B. M., 1977b, The site of paramyosin in insect flight muscle and the presence of an unidentified protein between myosin filaments and Z-line, J. Mol. Biol. 115:417–440.PubMedGoogle Scholar
  9. Carlesen, F., Knappeis, G. G., and Buchtal, F., 1961, Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch, J. Biophys. Biochem. Cytol.11:91–117.Google Scholar
  10. Chowrashi, P. K., and Pepe, F. A., 1982, The Z band: 85,000-dalton amorphin and alpha-actinin and their relation to structure, J. Cell Biol.94:565–573.PubMedGoogle Scholar
  11. Collins, J. H., Greaser, M. L., Potter, J. D., and Horn, M. J., 1977, Determination of the amino acid sequence of troponin C from rabbit skeletal muscle, J. Biol. Chem.252:6356–6362.Google Scholar
  12. Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol.68:539–556.PubMedGoogle Scholar
  13. Craig, R., 1977, Structure of α-segments from frog and rabbit skeletal muscle, J. Mol. Biol. 109:69–81.PubMedGoogle Scholar
  14. Dayton, W. R., Goll, D. W., Zeece, M. G., Robson, R. M., and Reville, W. J., 1976, A Ca2 + — activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle, Biochemistry 15:2150–2158.Google Scholar
  15. Dos Remedios, C. G., and Gilmour, D., 1978, Is there a third type of filament in striated muscles?, J. Biochem.84:235–238.PubMedGoogle Scholar
  16. Elzinga, M., Collins, J. H., Kueho, W. M., and Adelstein, R. S., 1973, Complete amino acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 70:2687–2691.PubMedGoogle Scholar
  17. Ernst, E., and Straub, F. B., 1968, Symposium on Muscle, Budapest, Adademiai, Kiado.Google Scholar
  18. Ernst, E., Kovacs, K., Metzger-Torok, G., and Trombitas, C., 1969, Longitudinal structure of the striated fibril, Acta Biochim. Biophys.4:177–186.Google Scholar
  19. Etlinger, J. D., Zak, R., and Fischman, D. A., 1976, Compositional studies of myofibrils from rabbit striated muscle, J. Cell Biol.68:123–141.PubMedGoogle Scholar
  20. Frank, G., and Weeds, A. G., 1974, The amino acid sequence of the alkali light chains of rabbit skeletal muscle myosin, Eur. J. Biochem.44:317–334.PubMedGoogle Scholar
  21. Franzini-Armstrong, C., 1970, Details of the I band structure as revealed by the localization of ferritin, Tissue Cell 2:327–338.PubMedGoogle Scholar
  22. Fujii, K., and Kurosu, H., 1979, Age-related changes in the reducible cross-links of connectin from human skeletal muscle, Biochem. Biophys. Res. Commun.89:1026–1032.PubMedGoogle Scholar
  23. Fujii, K., and Maruyama, K., 1982, Existence of lysine-derived cross-linking in connectin, an elastic protein in muscle, Biochem. Biophys. Res. Commun.104:633–640.PubMedGoogle Scholar
  24. Fujii, K., Kimura, S., and Maruyama, K., 1978, Crosslinking of connectin, an elastic protein in muscle, Biochem. Biophys. Res. Commun.81:1248–1253.PubMedGoogle Scholar
  25. Galey, F. R., 1969, Elastic properties of fixed and fresh muscle, J. Ultrastruct. Res.26:424–441.PubMedGoogle Scholar
  26. Garamvolgyi, N., 1963, Observations preliminaires sur la structure de las striae Z dans le muscle alaire de l’Abeille, J. Microsc.2:107–112.Google Scholar
  27. Garamvolgyi, N., 1966, Elongation of the primary myofilaments in highly stretched insect flight muscle fibrils, Biochem. Biophys. Acta 1:89–100.Google Scholar
  28. Garamvolgyi, N., 1971, The functional morphology of muscle, in: Contractile Proteins and Muscle (K. Laki, ed.), pp. 1–96, Dekker, New York.Google Scholar
  29. Granger, B. L.,and Lazarides, E., 1978, The existence of an insoluble Z-disc scaffold in chicken skeletal muscle, Cell 15:1253–1268.PubMedGoogle Scholar
  30. Granger, B. L., and Lazarides, E., 1980, Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle, Cell 22:727–738.PubMedGoogle Scholar
  31. Grazia-Nunzi, M., and Franzini-Armstrong, C., 1980, Trabecular network in adult skeletal muscle, J. Ultrastruct. Res.73:21–26.Google Scholar
  32. Grove, B. K., Kurer, V., Lehner, C., Doetschman, T. C., Perriard, J-C., and Eppenberger, H. M., 1984, A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies, J. Cell Biol.98:518–524.PubMedGoogle Scholar
  33. Gruen, L. C., King, N. L., Kurth, L., and McKenzie, I. J., 1982, Studies on the structure of connectin in muscle, Int. J. Peptide Protein Res.20:401–407.Google Scholar
  34. Guba, F., Harsanyi, V., Vadja, E., 1968a, Ultrastructure of myofibrils after selective proteins extraction, Acta Biochim. Biophys. Acad. Sci. Hung.3:433–440.Google Scholar
  35. Guba, F., Harsanyi, V., and Vajda, E., 1968b, Size of the filaments in relaxation and contraction, Acta Biochem. Biophys. Acad. Sci. Hung.3:441–448.Google Scholar
  36. Hanson, J., and Huxley, H. É, 1956, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol.9:228–264.Google Scholar
  37. Harrington, W. F., 1979, Contractile proteins of muscle, in: The Proteins, 3rd ed., Vol. 4, pp. 245 – 409, Academic Press, New York.Google Scholar
  38. Heizmann, C. W., Müller, G., Jenny, E., Wilson, K. J., Landon, F., and Olomucki, A., 1981, Muscle ß-actinin and serum albumin of the chicken are indistinguishable by physicochemical and immunological criteria, Proc. Natl. Acad. Sci. USA 78:74–77.Google Scholar
  39. Hoyle, G., 1968, Untitled, in: Symposium on Muscle (E. Ernst and F. B. Straub, eds.), p. 34, Akademiai Kiado, Budapest.Google Scholar
  40. Hoyle, G., 1983, Muscles and Their Neural Control, Wiley, New York.Google Scholar
  41. Huxley, A. F., 1974, Muscular contraction, J. Physiol. (Lond.) 243:1–43.Google Scholar
  42. Huxley, A. F., and Niedergerke, R., 1954, Structure changes in muscle during contraction, Nature 173:971–972.PubMedGoogle Scholar
  43. Huxley, A. F., and Peachey, L. D., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol. (Lond.) 156:150–165.Google Scholar
  44. Huxley, H. E., 1968, Untitled, in: Symposium on Muscle (E. Ernst and F. B. Straub, eds.), p. 247, Akademiai Kiado, Budapest.Google Scholar
  45. Huxley, H. E., 1972, Molecular basis of contraction in cross-striated muscles, in: The Structure and Function of Muscle (G. H. Bourne, ed.), 2nd ed., Vol. 1, pp. 301–387, Academic Press, New York.Google Scholar
  46. Huxley, H. E., and Hanson, J., 1954, Changes in the cross striations of muscle during contraction and stretch and their structural interpretation, Nature 173:973–976.PubMedGoogle Scholar
  47. Huxley, H. E., and Hanson, J., 1957, Quantitative studies on the structure of cross striated myofibrils. I. Investigations by interference microscopy, Biochim. Biophys. Acta 23:229–249.PubMedGoogle Scholar
  48. Ikeya, H., Ohashi, K., and Maruyama, K., 1983, Immunofluorescent localization of connectin, muscle elastic protein, in chicken tissues, Biomed. Res.4:111–116.Google Scholar
  49. Kimura, S., and Maruyama, K., 1983a, Preparation of native connectin from chicken breast muscle, J. Biochem.94:2083–2005.Google Scholar
  50. Kimura, S., and Maruyama, K., 1983b, Interaction of native connection with myosin and actin, Biomed. Res.4:607–610.Google Scholar
  51. Kimura, S., Fujii, K., Kubota, M., and Maruyama, K., 1979, Carp connectin: Reducible crosslinks in native fibrils, Bull. Jpn. Soc. Sci. Fish.45:241–243.Google Scholar
  52. King, N. L., 1984, Breakdown of connectin during cooking of meat, Meat Sci. 10:in press.Google Scholar
  53. King, N. L., and Harris, P. V., 1982, Heat-induced tenderization of meat by endogenous carboxyl proteases, Meat Sci. 6:137–148.Google Scholar
  54. King, N. L., and Kurth, L., 1980, SDS gel electrophoresis studies of connectin, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 57–66, Academic Press, New York.Google Scholar
  55. King, N. L., Kurth, L., and Shorthose, W. R., 1981, Proteolytic degradation of connectin, a high molecular weight myofibrillar protein, during heating of meat, Meat Sci.5:389–396.PubMedGoogle Scholar
  56. Knappeis, G. G., and Carlsen, F., 1968, The ultrastructure of the M line in skeletal muscle, J. Cell Biol.38:202–211.PubMedGoogle Scholar
  57. Koretz, J. F., and Wang, K., 1984, Structural studies of titin aggregates, Biophys. J.45:104a.Google Scholar
  58. Krueger, J. W., and London, B., 1984, Contraction bands: Differences between physiologically vs. maximally activated single heart cells, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 119–134, Plenum Press, New York.Google Scholar
  59. Kuroda, M., and Maruyama, K., 1976, α-Actinin, a new regulatory protein from rabbit skeletal muscle. I. Purification and characterization, J. Biochem. (Tokyo) 80:315–322.Google Scholar
  60. Kuroda, M., Tanaka, T., and Masaki, T., 1981, Eu-actinin. A new structural protein of the Z-line of striated muscles, J. Biochem. (Tokyo) 89:297–310.Google Scholar
  61. La Salle, F., Robson, R. M., Lusby, M. L., Parrish, F. C., Stromer, M. H., and Huiatt, T. W., 1983, Localisation of titin in bovine skeletal muscle, J. Cell Biol.97:258a.Google Scholar
  62. Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem.51:219–250.PubMedGoogle Scholar
  63. Lin, J. J. C., 1981, Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate intermediate filaments of cultured cells, Proc. Natl. Acad. Sci. USA 78:2335–2339.PubMedGoogle Scholar
  64. Locker, R. H., 1984a, The role of gap filaments in muscle and in meat, Food Microstruct.3:17–32.Google Scholar
  65. Locker, R. H., 1984b, The N-lines of vertebrate muscle, J. Ultrastruct. Res. (in press).Google Scholar
  66. Locker, R. H., and Daines, G. J., 1980, Gap filaments—the third set in the myofibril, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 43–55, Academic Press, New York.Google Scholar
  67. Locker, R. H., and Leet, N. G., 1975, Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers, J. Ultrastruct. Res.52:64–75.PubMedGoogle Scholar
  68. Locker, R. H., and Leet, N. G., 1976a, Histology of highly-stretched beef muscle, ll. Further evidence on the location and nature of gap filaments, J. Ultrastruct. Res.55:157–172.Google Scholar
  69. Locker, R. H., and Leet, N. G., 1976b, Histology of highly-stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers, J. Ultrastruct. Res.56:31–38.Google Scholar
  70. Locker, R. H., and Wild, D. J. C., 1982a, Yield point in raw beef muscle. The effects of aging, rigor, temperature and stretch, Meat Sci.7:93–107.Google Scholar
  71. Locker, R. H., and Wild, D. J. C., 1982b, Myofibrils of cooked meat are a continuum of gap filaments, Meat Sci.7:189–196.Google Scholar
  72. Locker, R. H., and Wild, D. J. C., 1984a, The fate of the large proteins of the myofibril during tenderising treatments, Meat Sci. 10:in press.Google Scholar
  73. Locker, R. H., and Wild, D. J. C., 1984b, Tenderisation of meat by pressure-heat treatment involves weakening of the gap filaments in the myofibril, Meat Sci. 10:in press.Google Scholar
  74. Locker, R. H., and Wild, D. J. C., 1984c, A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom, Meat Sci. (in press).Google Scholar
  75. Locker, R. H., Daines, G. J., and Leet, N. G., 1976, Histology of highly stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during pre-rigor blending, J. Ultrastruct. Res.55:173–181.PubMedGoogle Scholar
  76. Locker, R. H., Daines, G. J., Carse, W. A., and Leet, N. G., 1977, Meat tenderness and the gap filaments, Meat Sci.1:87–104.PubMedGoogle Scholar
  77. Loewy, A. G., Wilson, F. J., Taggart, N. M., Greene, E. A., Frasca, P., Kaufman, H. S., and Sorrell, M. J., 1983, A covalently cross-linked matrix in skeletal muscle fibers, Cell Motil.3:463–483.PubMedGoogle Scholar
  78. Lusby, M. L., Ridpath, J. F., Parrish, F. C., Jr., and Robson, R. M., 1983, Effect of postmortem storage on degradation of the recently discovered myofibrillar protein titin in bovine long- issimus muscle, J. Food Sci.48:1787–1790, 1795.Google Scholar
  79. Magid, A., Ting-Beall, H. P., Carvell, M., Kontis, T., and Lucaveche, C., 1984, Connecting filaments, core filaments, side struts: A proposal to add three new load-bearing structures to the sliding filament model, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 307–328, Plenum Press, New York.Google Scholar
  80. Maruyama, K., 1976, Connectin, an elastic protein from myofibrils, J. Biochem.80:405–407.PubMedGoogle Scholar
  81. Maruyama, K., 1980, Elastic structure of connectin in muscle, in: Muscle Contraction: Its Regulatory Mechanisms (S. Ebashi, K. Maruyama, and M. Endo, eds.), pp. 485–496, Japanese Scientific Society Press, Tokyo.Google Scholar
  82. Maruyama, K., and Kimura, S., 1981, Muscle ß-actinin is not chicken serum albumin, J. Biochem. (Tokyo) 90:563–566.Google Scholar
  83. Maruyama, K., and Shimada, Y. 1978, Fine structure of the myotendinus junction of lathyritic rat muscle with special reference to connectin, a muscle elastic protein, Tissue and Cell, 10:741 – 748.Google Scholar
  84. Maruyama, K., Natori, R., and Nonomura, Y., 1976, New elastic protein from muscle, Nature 262:58–59.PubMedGoogle Scholar
  85. Maruyama, K., Kunitomo, S., Kimura, S., and Ohashi, K., 1977a, I-protein, a new regulatory protein from vertebrate skeletal muscle. III. Function, J. Biochem.81:243–247.Google Scholar
  86. Maruyama, K., Matsubara, S., Natori, R., Nonomura, Y., Kimura, S., Ohashi, K., Murakami, F., Handa, S., and Eguchi, G., 1977b, Connectin, an elastic protein of muscle. Characterization and function, J. Biochem.82:317–337.Google Scholar
  87. Maruyama, K., Murakami, F., and Ohashi, K., 1977c. Connectin, an elastic protein of muscle. Comparative biochemistry, J. Biochem.82:339–345.Google Scholar
  88. Maruyama, K., Kimura, S., Kuroda, M., and Handa, S., 1977d, Connectin, an elastic protein of muscle. Its abundance in cardiac myofibrils, J. Biochem.82:347–350.Google Scholar
  89. Maruyama, K., Kimura, S., Toyota, N., and Ohashi, K., 1980, Connectin, an elastic protein of muscle, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 33–41, Academic Press, New York.Google Scholar
  90. Maruyama, K., Kimura, S., Ohashi, K., and Kuwano, Y., 1981a, Connectin, an elastic protein of muscle. Identification of “titin” with connectin, J. Biochem.89:701–709.Google Scholar
  91. Maruyama, K., Kimura, M., Kimura, S., Ohashi, K., Suzuki, K., and Katanuma, N., 1981b, Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ, J. Biochem.89:711–715.Google Scholar
  92. Maruyama, K., Yamada, N., Ikeya, H., and Kimura, S., 1983, Connectin, one million dalton elastic protein, of chicken breast muscle with a reference to dystrophic muscle, in: Muscular Dystrophy: Biomedical Aspects (S. Ebashi and E. Ozawa, eds.), pp. 201–208, Japanese Scientific Society Press, Tokyo and Springer-Verlag, Berlin.Google Scholar
  93. Masaki, T., and Takaiti, O., 1977, M-protein, J. Biochem. (Tokyo) 75:367–380.Google Scholar
  94. Maw, M., and Rowe, A. F., 1979, Reconstitution of the A band and A filaments of rabbit psoas muscle after dissolution in high ionic strength solution, J. Ultrastruct. Res.69:142–143.Google Scholar
  95. McNeill, P. A., and Hoyle, G., 1967, Evidence for superthin filaments, Am. Zool.7:483–498.Google Scholar
  96. Miyahara, M., Kishi, K., and Noda, H., 1980, F-Protein, a myofibrillar protein interacting with myosin, J. Biochem.87:1341–1345.PubMedGoogle Scholar
  97. Morimoto, K., and Harrington, W. F., 1973, Isolation and composition of thick filaments from rabbit skeletal muscle, J. Mol. Biol.77:165–175.PubMedGoogle Scholar
  98. Muller, G., and Heizmann, C. W., 1982, Albumin in chicken skeletal muscle, Eur. J. Biochem. 123:577–582.PubMedGoogle Scholar
  99. Natori, R., 1980, Skinned fiber, past and present, in: Muscle Contraction: Its Regulatory Mechanisms (S. Ebashi, K. Maruyama and M. Endo, eds.), pp. 19–29, Japanese Scientific Society Press, Tokyo and Springer-Verlag, Berlin.Google Scholar
  100. Natori, R., Umazume, Y., and Natori, R., 1980, The elastic structure of sarcomere. The relation of connectin filaments with thick and thin filaments, Jikeikai Med. J.27:83–97.Google Scholar
  101. Niederman, R., and Peters, L. K., 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol.161:505–517.PubMedGoogle Scholar
  102. Obinata, T., Maruyama, K., Sugita, H., Kohama, K., and Ebashi, S., 1981, Dynamic aspects of structual proteins in vertebrate skeletal muscle, Muscle Nerve 1981:456–488.Google Scholar
  103. Offer, G., Moos, C., and Starr, R., 1973, A new protein of the thick filaments of vertebrate skeletal myofibrils. Extraction, purification and characterization, J. Mol. Biol.74:653–676.PubMedGoogle Scholar
  104. Ohashi, K., and Maruyama, K., 1979, A new structural protein located in the Z-lines of chicken skeletal muscle, J. Biochem. (Tokyo) 85:1103–1105.Google Scholar
  105. Ohashi, K., Kimura, S., Deguchi, K., and Maruyama, K., 1977a, I-protein, a new regulatory protein from vertebrate skeletal muscle. I. Purification and characterization, J. Biochem.81:233–236.Google Scholar
  106. Ohashi, K., Masaki, T., and Maruyama, K., 1977b, I-protein, a new regulatory protein from vertebrate skeletal muscle. II. Localization, J. Biochem.81:237–242.Google Scholar
  107. Ohashi, K., Fischman, D. A., Obinata, T., and Maruyama, K., 1981, Immunofluorescent staining of A bands isolated from chicken breast muscle with antibodies against myosin rods, connectin and troponin T, Biomed. Res.2:330–333.Google Scholar
  108. Orcutt, M. W., and Dutson, T. R., 1984, Postmortem degradation of gap filaments at different postmortem pH and temperature, J. Food Sci. (in press). Organization of the Cytoplasm, Cold Spring Harbor Symposia on Quantitative Biology, Vol. 46, 1982, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  109. O’Shea, J. M., Robson, R. M., Hartzer, M. K., Huiatt, T. W., Rathbun, W. E., and Stromer, M. H., 1981, Purification of desmin from adult mammalian skeletal muscle, Biochem. J. 195:345 – 356.PubMedGoogle Scholar
  110. Ozaki, K., and Maruyama, K., 1980, Connectin, an elastic protein of muscle. A connectin-like protein from the plasmodium Physarum polycephalum, J. Biochem. (Tokyo) 88:883–888.Google Scholar
  111. Page, S., and Huxley, H. E., 1963, Filament lengths in striated muscle, J. Cell Biol 19:369–391.PubMedGoogle Scholar
  112. Page, S. G., 1968, Fine structure of tortoise skeletal muscle, J. Physiol. (Lond.) 197:709–715.Google Scholar
  113. Pardo, J. V., D’Angelo Siliciano, J., and Craig, S. W., 1982, A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma, Proc. Natl. Acad. Sci. USA 80:1008–1012.Google Scholar
  114. Pardo, J. V., D’Angelo Siliciano, J., and Craig, S. W., 1983, Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers, J. Cell Biol.97:1081–1088.PubMedGoogle Scholar
  115. Parson, S. C., and Porter, K. R., 1966, Muscle relaxation: Evidence for an intrafibrillar restoring force in vertebrate skeletal muscle, Science 153:426–427.Google Scholar
  116. Pearlstone, J. R., Johnson, P., Carpenter, M. R., and Smillie, L. B., 1977, Primary structure of rabbit skeletal muscle troponin-T. Sequence determination of the NH2-terminal fragment CB3 and the complete sequence of troponin-T, J. Biol. Chem.252:983–989.PubMedGoogle Scholar
  117. Pierobon-Bormioli, S., 1982, Transverse sarcomere filamentous systems: Z cables and M cables, J. Muscle Res. Cell Motil.2:401–414.Google Scholar
  118. Pollack, G. H., 1983, The cross-bridge theory, Physiol. Rev.63:1049–1114.PubMedGoogle Scholar
  119. Porzio, M. A., and Pearson, A. M., 1977, Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 490:21–34.Google Scholar
  120. Price, M. G., and Sanger, J. W., 1983, Intermediate filaments in striated muscle. A review of structural studies in embryonic and adult skeletal and cardiac muscle, in: Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.), Vol. 3, pp. 1–40, Plenum Press, New York.Google Scholar
  121. Pringle, J. W. S., 1978, Stretch activation of muscle: Function and mechanism, Proc. R. Soc. Lond. B 201:107–130.Google Scholar
  122. Reedy, M. K., and Lucaveche, C., 1984, α-band mass exceeds mass of its filament components by 30–45%, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 29–45, Plenum Press, New York.Google Scholar
  123. Reedy, M. K., Leonard, K. R., Freeman, R., and Arad, T., 1981, Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscopy, J. Muscle Res. Cell Motil.2:45–64.PubMedGoogle Scholar
  124. Richardson, F. L., Stromer, M. H., Huiatt, T. W., and Robson, R. M., 1981, Immunoelectron and fluorescence microscope localization of desmin in mature avian muscles, Eur.]. Cell Biol.26:91–161.Google Scholar
  125. Ridpath, J. F., Robson, R. M., Huiatt, T. W., Trenkle, A. H., and Lusby, M. L., 1982, Localization and rate of accumulation of nebulin in skeletal and cardiac muscle cell cultures, J. Cell Biol. 95:361a.Google Scholar
  126. Robins, S. P., and Rucklidge, G. J., 1980, Analysis of the reducible components of the muscle protein, connectin: Absence of lysine-derived cross-links, Biochem. Biophys. Res. Commun.96:1240–1247.PubMedGoogle Scholar
  127. Robinson, T. F., and Cohen-Gould, L., 1984, Myofilament diameters: An ultrastructural re-evaluation, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 47–61, Plenum Press, New York.Google Scholar
  128. Robinson, T. F., Cohen-Gould, L., and Factor, S. M., 1983, Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures, Lab. Invest.49:482–498.PubMedGoogle Scholar
  129. Robson, R. M., and Huiatt, T. W., 1983, Roles of the cytoskeletal proteins desmin, titin and nebulin in muscle, Proc. Recip. Meat. Conf. 36:in press.Google Scholar
  130. Robson, R. M., O’Shea, J. M., Hartzer, M. K., Rathbun, W. E., La Salle, F., Schreiner, P. J., Kasang, L. E., Stromer, M. H., Lusby, M. L., Ridpath, J. F., Pang, Y-Y., Evans, R. R., Zeece, M. G., Parrish, F. C., and Huiatt, T. W., 1983, Role of new cytoskeletal elements in maintenance of muscle integrity, J. Food Biochem. 7:in press.Google Scholar
  131. Rowe, A. J., and Maw, M. C., 1984, Symmetry and self-assembly in vertebrate α-filaments, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 5–20, Plenum Press, New York.Google Scholar
  132. Saide, J. D., 1981, Identification of a connecting filament protein in insect fibrillar flight muscle, J. Mol. Biol.153:661–679.PubMedGoogle Scholar
  133. Sawada, H., Maruyama, K., and Kimura, S., 1984, Electron microscopic observations of connectin filaments in Kl-extracted residues of skeletal and cardiac muscles by the quick-freeze, deep-etch method, Biomed. Res.4:603–606.Google Scholar
  134. Sjöstrand, F., 1962, The connections between α- and I-band filaments in striated frog muscle, J. Ultrastruct. Res.7:225–246.PubMedGoogle Scholar
  135. Somerville, L. L., and Wang, K., 1981, The ultrasensitive silver protein stain also detects nanograms of nucleic acids, Biochem. Biophys. Res. Commun.102:53–58.PubMedGoogle Scholar
  136. Somerville, L. L., and Wang, K., 1983, Phosphorylation of titin and nebulin in vitro and in vivo, Biophys. J. 41:96a.Google Scholar
  137. Squire, J. M., 1981, The Structural Basis of Muscular Contraction, Plenum Press, New York.Google Scholar
  138. Stanley, D. W., 1983, A review of the muscle cell cytoskeleton and its possible relation to meat texture and sarcolemma emptying, Food Microstruct.2:99–109.Google Scholar
  139. Starr, R., and Offer, G., 1971, Polypeptide chains of intermediate molecular weight in myosin preparations, FEB S Letter.15:40–44.Google Scholar
  140. Starr, R., and Offer, G., 1983, Preparation of C-protein, H-protein, X-protein, and phosphofruc- tokinase, Methods Enzymol.85:130–138.Google Scholar
  141. Steiger, G. J., 1977, Stretch activation and tension transients in cardiac, skeletal and insect flight muscle, in: Insect Flight Muscle (R. T. Tregear, ed.), pp. 221–268, Elsevier/North Holland, Amsterdam.Google Scholar
  142. Stone, D., and Smillie, L. B., 1978, The amino acid rabbit skeletal α-tropomyosin, the NH2- terminal half and complete sequence, J. Biol. Chem. 253:1137–1148.PubMedGoogle Scholar
  143. Street, S. B., 1983, Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters, J. Cell. Physiol.114:346–364.PubMedGoogle Scholar
  144. Suzuki, A., Goll, D. E., Singh, I., Allen, R. E., Robson, R. M., and Stromer, M. H., 1976, Some properties of purified skeletal muscle α-actinin, J. Biol. Chem.251:6860–6870.PubMedGoogle Scholar
  145. Suzuki, A., Saito, M., Okitani, A., and Nonami, Y., 1981, Z-nin, a new high molecular weight protein required for reconstitution of the Z-disk, Agric. and Biol. Chem.45:2535–2542.Google Scholar
  146. Takahashi, K., and Saito, H., 1979, Post-mortem changes in skeletal muscle connecting. Biochem.85:1539–1542.Google Scholar
  147. Tanaka, M., and Tanaka, H., 1977, Extraction and functional reformation of thick filaments in chemically skinned molluscean catch muscle fibers, J. Biochem. (Tokyo) 85:535–540.Google Scholar
  148. Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1983, Immunoelectron microscope studies of desmin (skeletin) localisation and intermediate filament organisation in chicken skeletal muscle, J. Cell Biol.96:1727–1735.PubMedGoogle Scholar
  149. Toyoda, N., and Maruyama, K., 1978, Fine structure of connectin nets in cardiac myofibrils, J. Biochem.84:239–241.PubMedGoogle Scholar
  150. Traeger, L., Mackenzie, J. M., Jr., Epstein, H. F., and Goldstein, M. A., 1983, Transition in the thin-filament arrangement in rat skeletal muscle, J. Muscle Res. Cell Motil.4:353–366.PubMedGoogle Scholar
  151. Tregear, R. T., 1977, Insect Flight Muscle, Elsevier/North Holland, Amsterdam.Google Scholar
  152. Trinick, J., and Lowey, S., 1977, M-protein from chicken pectoralis muscle: Isolation and characterization, J. Mol. Biol.113:343–368.PubMedGoogle Scholar
  153. Trinick, J. A., 1981, End-filaments: A new structural element of vertebrate skeletal muscle thick filaments, J. Mol. Biol.151:309–314.PubMedGoogle Scholar
  154. Trinick, J. A., 1982, Preparation of native thick filaments, Methods Enzymol.85:17–20.PubMedGoogle Scholar
  155. Trinick, J. A., Knight, P., and Whiting, A., 1984, Purification and properties of native titin, J. Mol. Biol, (in press). Trombitas, K., 1984, Functional Morphology of the Insect Flight Muscle with Special Regard of the Role of the Connecting Filaments, Hungary (in press).Google Scholar
  156. Trombitas, K., and Tigyi-Sebes, A., 1974, Direct evidence for connecting C filaments in flight muscle of honey bee, Acta Biochim. Biophys. Acad. Sci. Hung.9:243–253.PubMedGoogle Scholar
  157. Trombitas, K., and Tigyi-Sebes, A., 1979, The continuity of thick filaments between sarcomeres in honey bee flight muscle, Nature 281:319–320.PubMedGoogle Scholar
  158. Ullrick, W. C., Toselli, P. A., Chase, D., and Dasse, K., 1977, Are there extensions of thick filaments to the Z line in vertebrate and invertebrate striated muscle?, J. Ultrastruct. Res.60:263–271.PubMedGoogle Scholar
  159. Umazume, Y., 1974, Some observations in the extremely stretched skinned muscle fibers, Jpn.J. Physiol.38:469–471.Google Scholar
  160. Walcott, B., and Ridgway, E. B., 1967, The ultrastructure of myosin-extracted striated muscle fibers, Am. Zool.7:499–504.PubMedGoogle Scholar
  161. Wallimann, T., Turner, D. C., and Eppenberger, H. M., 1977, Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle, J. Cell Biol.75:297–317.PubMedGoogle Scholar
  162. Wang, K., 1981, Nebulin, a giant protein component of N2-line of striated muscle, J. Cell Biol. 91:355a.Google Scholar
  163. Wang, K., 1982a, Purification of titin and nebulin, Methods Enzymol.85:264–273.PubMedGoogle Scholar
  164. Wang, K., 1982b, Myofilamentous and myofibrillar connections: Role of titin, nebulin and intermediate filaments, in: Muscle Development: Molecular and Cellular Control (M. L. Pearson and H. F. Epstein, eds.), pp. 439–452, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  165. Wang, K., 1983, Membrane skeleton of skeletal muscle, Nature 304:485–486.Google Scholar
  166. Wang, K., 1984, Cytoskeletal matrix in striated muscle: The role of titin, nebulin and intermediate filaments, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 285–306, Plenum Press, New York.Google Scholar
  167. Wang, K., and McClure, J., 1978, Extremely large proteins of vertebrate striated muscle myofibrils, J. Cell Biol.79:334a.Google Scholar
  168. Wang, K., and Ramirez-Mitchell, R., 1979, Titin: Possible candidate as components of putative longitudinal filaments in striated muscle, J. Cell Biol.83:389a.Google Scholar
  169. Wang, K., and Ramirez-Mitchell, R., 1983a, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J. Cell Biol.96:562–570.Google Scholar
  170. Wang, K., and Ramirez-Mitchell, R., 1983b, Ultrastructural morphology and epitope distribution of titin—a giant sarcomere-associated cytoskeletal protein, J. Cell Biol.97:257a.Google Scholar
  171. Wang, K., and Williamson, G. L., 1980, Identification of an N2-line protein of striated muscle, Proc. Natl. Acad. Sci. USA 77:3254–3258.PubMedGoogle Scholar
  172. Wang, K., Ash, J. G., and Singer, S. J., 1975, Filamin, a new high molecular weight protein of smooth muscle and non-muscle cells, Proc. Natl. Acad. Sci. USA 72:4483–4486.PubMedGoogle Scholar
  173. Wang, K., McClure, J., and Tu, A., 1979, Titin: Major myofibrillar components of striated muscle, Proc. Natl. Acad. Sci. USA 76:3698–3702.PubMedGoogle Scholar
  174. Wang, K., Feramisco, J. R., and Ash, J. F., 1982, Fluorescent localization of contractile proteins, Methods Enzymol.85:514–562.PubMedGoogle Scholar
  175. Wang, K., Ramirez-Mitchell, R., and Palter, D., 1984, Titin is an extraordinarily long, flexible and slender myofibrillar protein, Proc. Natl. Acad. Sci. USA 81:3685–3689.PubMedGoogle Scholar
  176. Wang, S. M., Lim, S. S., Lemanski, L. F., and Greaser, M. L., 1983, Immunocytological localization of titin using a monoclonal antibody against bovine cardiac titin, J. Cell. Biol.97:258a.Google Scholar
  177. White, D. C. S., 1967, Doctoral thesis, Oxford University, Oxford, England.Google Scholar
  178. White, D. C. S., and Thorson, J., 1973, The kinetics of muscle contraction, Prog. Biophys. Mol. Biol.28:173–255.Google Scholar
  179. Wilkinson, J. M., and Grand, R.J. A., 1975, The amino acid sequence of troponin-T from rabbit skeletal muscle, Biochem. J.149:493–496.PubMedGoogle Scholar
  180. Woodhead, J. L., and Lowey, S., 1983, An in vitro study of the interactions of skeletal muscle M- protein and creatine kinase with myosin and its subfragments, J. Mol. Biol.168:831–846.PubMedGoogle Scholar
  181. Yarom, R., and Meiri, U., 1971, N lines in striated muscle: A site of intracellular Ca2 + , Nature New Biol.234:254–255.PubMedGoogle Scholar
  182. Yates, L. D., and Greaser, M. L., 1983a, Quantitative determination of myosin and actin in rabbit skeletal muscle, J. Mol. Biol.168:123–141.Google Scholar
  183. Yates, L. D., and Greaser, M. L., 1983b, Troponin subunit stoichiometry and content in rabbit skeletal muscles and myofibrils, J. Biol. Chem.258:5770–5774.Google Scholar
  184. Yoshioka, T., Natori, R., and Umazume, Y., 1981, The elastic structure of sarcomere connecting structure of M lines and elastic skeleton of sarcomere, Jikeikai Med. J.28:153–158.Google Scholar
  185. Young, O. A., Graafhuis, A. E., and Davey, C. L., 1981, Postmortem changes in cytoskeletal proteins of muscle, Meat Sci.5:41–55Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Kuan Wang
    • 1
  1. 1.Clayton Foundation Biochemical Institute, Department of Chemistry, and Cell Research InstituteThe University of TexasAustinUSA

Personalised recommendations