Skip to main content

Sarcomere-Associated Cytoskeletal Lattices in Striated Muscle

Review and Hypothesis

  • Chapter
Book cover Cell and Muscle Motility

Abstract

The sarcomere, the basic contractile unit of striated muscle cells, is widely accepted as being constructed of two sets of parallel and interdigitated protein filaments that are discontinuous and inextensible. This two-filament sarcomere model provides a structural basis for the powerful sliding-filament theory of muscle contraction. Recent structural, biochemical, and immu-nocytochemical studies, however, have clearly indicated that the sarcomere has additional filamentous constituents besides thick and thin filament assemblies. The purpose of this chapter is to outline and develop key evidence that has led to the notion that the sarcomere contains two sets of distinct cytoskeletal filaments that are continuous and extensible. One set of cytoskeletal filaments coexists with thick and thin filaments within the sarcomere (an endosarcomeric lattice); the other set is an extensive network of intermediate filaments enveloping each sarcomere and interlinking other cellular organelles (an exosarcomeric lattice).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby, B., Frieden, C., and Bischoff, R., 1979, Immunofluorescent and histochemical localization of AMP deaminase in skeletal muscle, J. Cell Biol 81:361–373.

    PubMed  CAS  Google Scholar 

  • Ashhurst, D. E., 1967, Z-line of the flight muscle of belostomatid water bugs, J. Mol. Biol. 27:385 – 389.

    PubMed  CAS  Google Scholar 

  • Auber, J., and Couteaux, R., 1963, Ultrastructure de la striae Z dans des muscules de diptères, J. Microsc.2:309–316.

    Google Scholar 

  • Bechtel, P. J., 1979, Identification of a high molecular weight actin-binding protein in skeletal muscle, J. Biol. Chem.254:1755–1758.

    PubMed  CAS  Google Scholar 

  • Bennett, H. S., and Porter, K. R., 1953, An electron microscope study of sectioned muscle of the domestic fowl, Am. J. Anat.93:61–105.

    PubMed  CAS  Google Scholar 

  • Bullard, B., 1983, Contractile proteins of insect flight muscle, Trends Biochem. Sci.8:68–70.

    CAS  Google Scholar 

  • Bullard, B., Bell, J. L., and Luke, B. M., 1977a, Immunological investigation of proteins associated with thick filaments of insect flight muscle, in: Insect Flight Muscle (R. T. Tregear, ed.), pp. 41–52, Elsevier-North Holland Press, Amsterdam.

    Google Scholar 

  • Bullard, B., Hammond, K. S., and Luke, B. M., 1977b, The site of paramyosin in insect flight muscle and the presence of an unidentified protein between myosin filaments and Z-line, J. Mol. Biol. 115:417–440.

    PubMed  CAS  Google Scholar 

  • Carlesen, F., Knappeis, G. G., and Buchtal, F., 1961, Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch, J. Biophys. Biochem. Cytol.11:91–117.

    Google Scholar 

  • Chowrashi, P. K., and Pepe, F. A., 1982, The Z band: 85,000-dalton amorphin and alpha-actinin and their relation to structure, J. Cell Biol.94:565–573.

    PubMed  CAS  Google Scholar 

  • Collins, J. H., Greaser, M. L., Potter, J. D., and Horn, M. J., 1977, Determination of the amino acid sequence of troponin C from rabbit skeletal muscle, J. Biol. Chem.252:6356–6362.

    CAS  Google Scholar 

  • Cooke, P., 1976, A filamentous cytoskeleton in vertebrate smooth muscle fibers, J. Cell Biol.68:539–556.

    PubMed  CAS  Google Scholar 

  • Craig, R., 1977, Structure of α-segments from frog and rabbit skeletal muscle, J. Mol. Biol. 109:69–81.

    PubMed  CAS  Google Scholar 

  • Dayton, W. R., Goll, D. W., Zeece, M. G., Robson, R. M., and Reville, W. J., 1976, A Ca2 + — activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle, Biochemistry 15:2150–2158.

    CAS  Google Scholar 

  • Dos Remedios, C. G., and Gilmour, D., 1978, Is there a third type of filament in striated muscles?, J. Biochem.84:235–238.

    PubMed  Google Scholar 

  • Elzinga, M., Collins, J. H., Kueho, W. M., and Adelstein, R. S., 1973, Complete amino acid sequence of actin of rabbit skeletal muscle, Proc. Natl. Acad. Sci. USA 70:2687–2691.

    PubMed  CAS  Google Scholar 

  • Ernst, E., and Straub, F. B., 1968, Symposium on Muscle, Budapest, Adademiai, Kiado.

    Google Scholar 

  • Ernst, E., Kovacs, K., Metzger-Torok, G., and Trombitas, C., 1969, Longitudinal structure of the striated fibril, Acta Biochim. Biophys.4:177–186.

    CAS  Google Scholar 

  • Etlinger, J. D., Zak, R., and Fischman, D. A., 1976, Compositional studies of myofibrils from rabbit striated muscle, J. Cell Biol.68:123–141.

    PubMed  CAS  Google Scholar 

  • Frank, G., and Weeds, A. G., 1974, The amino acid sequence of the alkali light chains of rabbit skeletal muscle myosin, Eur. J. Biochem.44:317–334.

    PubMed  CAS  Google Scholar 

  • Franzini-Armstrong, C., 1970, Details of the I band structure as revealed by the localization of ferritin, Tissue Cell 2:327–338.

    PubMed  CAS  Google Scholar 

  • Fujii, K., and Kurosu, H., 1979, Age-related changes in the reducible cross-links of connectin from human skeletal muscle, Biochem. Biophys. Res. Commun.89:1026–1032.

    PubMed  CAS  Google Scholar 

  • Fujii, K., and Maruyama, K., 1982, Existence of lysine-derived cross-linking in connectin, an elastic protein in muscle, Biochem. Biophys. Res. Commun.104:633–640.

    PubMed  CAS  Google Scholar 

  • Fujii, K., Kimura, S., and Maruyama, K., 1978, Crosslinking of connectin, an elastic protein in muscle, Biochem. Biophys. Res. Commun.81:1248–1253.

    PubMed  CAS  Google Scholar 

  • Galey, F. R., 1969, Elastic properties of fixed and fresh muscle, J. Ultrastruct. Res.26:424–441.

    PubMed  CAS  Google Scholar 

  • Garamvolgyi, N., 1963, Observations preliminaires sur la structure de las striae Z dans le muscle alaire de l’Abeille, J. Microsc.2:107–112.

    Google Scholar 

  • Garamvolgyi, N., 1966, Elongation of the primary myofilaments in highly stretched insect flight muscle fibrils, Biochem. Biophys. Acta 1:89–100.

    CAS  Google Scholar 

  • Garamvolgyi, N., 1971, The functional morphology of muscle, in: Contractile Proteins and Muscle (K. Laki, ed.), pp. 1–96, Dekker, New York.

    Google Scholar 

  • Granger, B. L.,and Lazarides, E., 1978, The existence of an insoluble Z-disc scaffold in chicken skeletal muscle, Cell 15:1253–1268.

    PubMed  CAS  Google Scholar 

  • Granger, B. L., and Lazarides, E., 1980, Synemin: A new high molecular weight protein associated with desmin and vimentin filaments in muscle, Cell 22:727–738.

    PubMed  CAS  Google Scholar 

  • Grazia-Nunzi, M., and Franzini-Armstrong, C., 1980, Trabecular network in adult skeletal muscle, J. Ultrastruct. Res.73:21–26.

    Google Scholar 

  • Grove, B. K., Kurer, V., Lehner, C., Doetschman, T. C., Perriard, J-C., and Eppenberger, H. M., 1984, A new 185,000-dalton skeletal muscle protein detected by monoclonal antibodies, J. Cell Biol.98:518–524.

    PubMed  CAS  Google Scholar 

  • Gruen, L. C., King, N. L., Kurth, L., and McKenzie, I. J., 1982, Studies on the structure of connectin in muscle, Int. J. Peptide Protein Res.20:401–407.

    CAS  Google Scholar 

  • Guba, F., Harsanyi, V., Vadja, E., 1968a, Ultrastructure of myofibrils after selective proteins extraction, Acta Biochim. Biophys. Acad. Sci. Hung.3:433–440.

    CAS  Google Scholar 

  • Guba, F., Harsanyi, V., and Vajda, E., 1968b, Size of the filaments in relaxation and contraction, Acta Biochem. Biophys. Acad. Sci. Hung.3:441–448.

    Google Scholar 

  • Hanson, J., and Huxley, H. É, 1956, The structural basis of contraction in striated muscle, Symp. Soc. Exp. Biol.9:228–264.

    Google Scholar 

  • Harrington, W. F., 1979, Contractile proteins of muscle, in: The Proteins, 3rd ed., Vol. 4, pp. 245 – 409, Academic Press, New York.

    Google Scholar 

  • Heizmann, C. W., Müller, G., Jenny, E., Wilson, K. J., Landon, F., and Olomucki, A., 1981, Muscle ß-actinin and serum albumin of the chicken are indistinguishable by physicochemical and immunological criteria, Proc. Natl. Acad. Sci. USA 78:74–77.

    CAS  Google Scholar 

  • Hoyle, G., 1968, Untitled, in: Symposium on Muscle (E. Ernst and F. B. Straub, eds.), p. 34, Akademiai Kiado, Budapest.

    Google Scholar 

  • Hoyle, G., 1983, Muscles and Their Neural Control, Wiley, New York.

    Google Scholar 

  • Huxley, A. F., 1974, Muscular contraction, J. Physiol. (Lond.) 243:1–43.

    CAS  Google Scholar 

  • Huxley, A. F., and Niedergerke, R., 1954, Structure changes in muscle during contraction, Nature 173:971–972.

    PubMed  CAS  Google Scholar 

  • Huxley, A. F., and Peachey, L. D., 1961, The maximum length for contraction in vertebrate striated muscle, J. Physiol. (Lond.) 156:150–165.

    CAS  Google Scholar 

  • Huxley, H. E., 1968, Untitled, in: Symposium on Muscle (E. Ernst and F. B. Straub, eds.), p. 247, Akademiai Kiado, Budapest.

    Google Scholar 

  • Huxley, H. E., 1972, Molecular basis of contraction in cross-striated muscles, in: The Structure and Function of Muscle (G. H. Bourne, ed.), 2nd ed., Vol. 1, pp. 301–387, Academic Press, New York.

    Google Scholar 

  • Huxley, H. E., and Hanson, J., 1954, Changes in the cross striations of muscle during contraction and stretch and their structural interpretation, Nature 173:973–976.

    PubMed  CAS  Google Scholar 

  • Huxley, H. E., and Hanson, J., 1957, Quantitative studies on the structure of cross striated myofibrils. I. Investigations by interference microscopy, Biochim. Biophys. Acta 23:229–249.

    PubMed  CAS  Google Scholar 

  • Ikeya, H., Ohashi, K., and Maruyama, K., 1983, Immunofluorescent localization of connectin, muscle elastic protein, in chicken tissues, Biomed. Res.4:111–116.

    CAS  Google Scholar 

  • Kimura, S., and Maruyama, K., 1983a, Preparation of native connectin from chicken breast muscle, J. Biochem.94:2083–2005.

    CAS  Google Scholar 

  • Kimura, S., and Maruyama, K., 1983b, Interaction of native connection with myosin and actin, Biomed. Res.4:607–610.

    CAS  Google Scholar 

  • Kimura, S., Fujii, K., Kubota, M., and Maruyama, K., 1979, Carp connectin: Reducible crosslinks in native fibrils, Bull. Jpn. Soc. Sci. Fish.45:241–243.

    CAS  Google Scholar 

  • King, N. L., 1984, Breakdown of connectin during cooking of meat, Meat Sci. 10:in press.

    Google Scholar 

  • King, N. L., and Harris, P. V., 1982, Heat-induced tenderization of meat by endogenous carboxyl proteases, Meat Sci. 6:137–148.

    Google Scholar 

  • King, N. L., and Kurth, L., 1980, SDS gel electrophoresis studies of connectin, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 57–66, Academic Press, New York.

    Google Scholar 

  • King, N. L., Kurth, L., and Shorthose, W. R., 1981, Proteolytic degradation of connectin, a high molecular weight myofibrillar protein, during heating of meat, Meat Sci.5:389–396.

    PubMed  CAS  Google Scholar 

  • Knappeis, G. G., and Carlsen, F., 1968, The ultrastructure of the M line in skeletal muscle, J. Cell Biol.38:202–211.

    PubMed  CAS  Google Scholar 

  • Koretz, J. F., and Wang, K., 1984, Structural studies of titin aggregates, Biophys. J.45:104a.

    Google Scholar 

  • Krueger, J. W., and London, B., 1984, Contraction bands: Differences between physiologically vs. maximally activated single heart cells, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 119–134, Plenum Press, New York.

    Google Scholar 

  • Kuroda, M., and Maruyama, K., 1976, α-Actinin, a new regulatory protein from rabbit skeletal muscle. I. Purification and characterization, J. Biochem. (Tokyo) 80:315–322.

    CAS  Google Scholar 

  • Kuroda, M., Tanaka, T., and Masaki, T., 1981, Eu-actinin. A new structural protein of the Z-line of striated muscles, J. Biochem. (Tokyo) 89:297–310.

    CAS  Google Scholar 

  • La Salle, F., Robson, R. M., Lusby, M. L., Parrish, F. C., Stromer, M. H., and Huiatt, T. W., 1983, Localisation of titin in bovine skeletal muscle, J. Cell Biol.97:258a.

    Google Scholar 

  • Lazarides, E., 1982, Intermediate filaments: A chemically heterogeneous, developmentally regulated class of proteins, Annu. Rev. Biochem.51:219–250.

    PubMed  CAS  Google Scholar 

  • Lin, J. J. C., 1981, Monoclonal antibodies against myofibrillar components of rat skeletal muscle decorate intermediate filaments of cultured cells, Proc. Natl. Acad. Sci. USA 78:2335–2339.

    PubMed  CAS  Google Scholar 

  • Locker, R. H., 1984a, The role of gap filaments in muscle and in meat, Food Microstruct.3:17–32.

    Google Scholar 

  • Locker, R. H., 1984b, The N-lines of vertebrate muscle, J. Ultrastruct. Res. (in press).

    Google Scholar 

  • Locker, R. H., and Daines, G. J., 1980, Gap filaments—the third set in the myofibril, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 43–55, Academic Press, New York.

    Google Scholar 

  • Locker, R. H., and Leet, N. G., 1975, Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers, J. Ultrastruct. Res.52:64–75.

    PubMed  CAS  Google Scholar 

  • Locker, R. H., and Leet, N. G., 1976a, Histology of highly-stretched beef muscle, ll. Further evidence on the location and nature of gap filaments, J. Ultrastruct. Res.55:157–172.

    CAS  Google Scholar 

  • Locker, R. H., and Leet, N. G., 1976b, Histology of highly-stretched beef muscle. IV. Evidence for movement of gap filaments through the Z-line, using the N2-line and M-line as markers, J. Ultrastruct. Res.56:31–38.

    CAS  Google Scholar 

  • Locker, R. H., and Wild, D. J. C., 1982a, Yield point in raw beef muscle. The effects of aging, rigor, temperature and stretch, Meat Sci.7:93–107.

    CAS  Google Scholar 

  • Locker, R. H., and Wild, D. J. C., 1982b, Myofibrils of cooked meat are a continuum of gap filaments, Meat Sci.7:189–196.

    CAS  Google Scholar 

  • Locker, R. H., and Wild, D. J. C., 1984a, The fate of the large proteins of the myofibril during tenderising treatments, Meat Sci. 10:in press.

    Google Scholar 

  • Locker, R. H., and Wild, D. J. C., 1984b, Tenderisation of meat by pressure-heat treatment involves weakening of the gap filaments in the myofibril, Meat Sci. 10:in press.

    Google Scholar 

  • Locker, R. H., and Wild, D. J. C., 1984c, A comparative study of high molecular weight proteins in various types of muscle across the animal kingdom, Meat Sci. (in press).

    Google Scholar 

  • Locker, R. H., Daines, G. J., and Leet, N. G., 1976, Histology of highly stretched beef muscle. III. Abnormal contraction patterns in ox muscle, produced by overstretching during pre-rigor blending, J. Ultrastruct. Res.55:173–181.

    PubMed  CAS  Google Scholar 

  • Locker, R. H., Daines, G. J., Carse, W. A., and Leet, N. G., 1977, Meat tenderness and the gap filaments, Meat Sci.1:87–104.

    PubMed  CAS  Google Scholar 

  • Loewy, A. G., Wilson, F. J., Taggart, N. M., Greene, E. A., Frasca, P., Kaufman, H. S., and Sorrell, M. J., 1983, A covalently cross-linked matrix in skeletal muscle fibers, Cell Motil.3:463–483.

    PubMed  CAS  Google Scholar 

  • Lusby, M. L., Ridpath, J. F., Parrish, F. C., Jr., and Robson, R. M., 1983, Effect of postmortem storage on degradation of the recently discovered myofibrillar protein titin in bovine long- issimus muscle, J. Food Sci.48:1787–1790, 1795.

    Google Scholar 

  • Magid, A., Ting-Beall, H. P., Carvell, M., Kontis, T., and Lucaveche, C., 1984, Connecting filaments, core filaments, side struts: A proposal to add three new load-bearing structures to the sliding filament model, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 307–328, Plenum Press, New York.

    Google Scholar 

  • Maruyama, K., 1976, Connectin, an elastic protein from myofibrils, J. Biochem.80:405–407.

    PubMed  CAS  Google Scholar 

  • Maruyama, K., 1980, Elastic structure of connectin in muscle, in: Muscle Contraction: Its Regulatory Mechanisms (S. Ebashi, K. Maruyama, and M. Endo, eds.), pp. 485–496, Japanese Scientific Society Press, Tokyo.

    Google Scholar 

  • Maruyama, K., and Kimura, S., 1981, Muscle ß-actinin is not chicken serum albumin, J. Biochem. (Tokyo) 90:563–566.

    Google Scholar 

  • Maruyama, K., and Shimada, Y. 1978, Fine structure of the myotendinus junction of lathyritic rat muscle with special reference to connectin, a muscle elastic protein, Tissue and Cell, 10:741 – 748.

    Google Scholar 

  • Maruyama, K., Natori, R., and Nonomura, Y., 1976, New elastic protein from muscle, Nature 262:58–59.

    PubMed  CAS  Google Scholar 

  • Maruyama, K., Kunitomo, S., Kimura, S., and Ohashi, K., 1977a, I-protein, a new regulatory protein from vertebrate skeletal muscle. III. Function, J. Biochem.81:243–247.

    CAS  Google Scholar 

  • Maruyama, K., Matsubara, S., Natori, R., Nonomura, Y., Kimura, S., Ohashi, K., Murakami, F., Handa, S., and Eguchi, G., 1977b, Connectin, an elastic protein of muscle. Characterization and function, J. Biochem.82:317–337.

    CAS  Google Scholar 

  • Maruyama, K., Murakami, F., and Ohashi, K., 1977c. Connectin, an elastic protein of muscle. Comparative biochemistry, J. Biochem.82:339–345.

    CAS  Google Scholar 

  • Maruyama, K., Kimura, S., Kuroda, M., and Handa, S., 1977d, Connectin, an elastic protein of muscle. Its abundance in cardiac myofibrils, J. Biochem.82:347–350.

    CAS  Google Scholar 

  • Maruyama, K., Kimura, S., Toyota, N., and Ohashi, K., 1980, Connectin, an elastic protein of muscle, in: Fibrous Proteins: Scientific, Industrial, and Medical Aspects (D. A. D. Parry and L. K. Creamer, eds.), Vol. 2, pp. 33–41, Academic Press, New York.

    Google Scholar 

  • Maruyama, K., Kimura, S., Ohashi, K., and Kuwano, Y., 1981a, Connectin, an elastic protein of muscle. Identification of “titin” with connectin, J. Biochem.89:701–709.

    CAS  Google Scholar 

  • Maruyama, K., Kimura, M., Kimura, S., Ohashi, K., Suzuki, K., and Katanuma, N., 1981b, Connectin, an elastic protein of muscle. Effects of proteolytic enzymes in situ, J. Biochem.89:711–715.

    CAS  Google Scholar 

  • Maruyama, K., Yamada, N., Ikeya, H., and Kimura, S., 1983, Connectin, one million dalton elastic protein, of chicken breast muscle with a reference to dystrophic muscle, in: Muscular Dystrophy: Biomedical Aspects (S. Ebashi and E. Ozawa, eds.), pp. 201–208, Japanese Scientific Society Press, Tokyo and Springer-Verlag, Berlin.

    Google Scholar 

  • Masaki, T., and Takaiti, O., 1977, M-protein, J. Biochem. (Tokyo) 75:367–380.

    Google Scholar 

  • Maw, M., and Rowe, A. F., 1979, Reconstitution of the A band and A filaments of rabbit psoas muscle after dissolution in high ionic strength solution, J. Ultrastruct. Res.69:142–143.

    Google Scholar 

  • McNeill, P. A., and Hoyle, G., 1967, Evidence for superthin filaments, Am. Zool.7:483–498.

    Google Scholar 

  • Miyahara, M., Kishi, K., and Noda, H., 1980, F-Protein, a myofibrillar protein interacting with myosin, J. Biochem.87:1341–1345.

    PubMed  CAS  Google Scholar 

  • Morimoto, K., and Harrington, W. F., 1973, Isolation and composition of thick filaments from rabbit skeletal muscle, J. Mol. Biol.77:165–175.

    PubMed  CAS  Google Scholar 

  • Muller, G., and Heizmann, C. W., 1982, Albumin in chicken skeletal muscle, Eur. J. Biochem. 123:577–582.

    PubMed  CAS  Google Scholar 

  • Natori, R., 1980, Skinned fiber, past and present, in: Muscle Contraction: Its Regulatory Mechanisms (S. Ebashi, K. Maruyama and M. Endo, eds.), pp. 19–29, Japanese Scientific Society Press, Tokyo and Springer-Verlag, Berlin.

    Google Scholar 

  • Natori, R., Umazume, Y., and Natori, R., 1980, The elastic structure of sarcomere. The relation of connectin filaments with thick and thin filaments, Jikeikai Med. J.27:83–97.

    Google Scholar 

  • Niederman, R., and Peters, L. K., 1982, Native bare zone assemblage nucleates myosin filament assembly, J. Mol. Biol.161:505–517.

    PubMed  CAS  Google Scholar 

  • Obinata, T., Maruyama, K., Sugita, H., Kohama, K., and Ebashi, S., 1981, Dynamic aspects of structual proteins in vertebrate skeletal muscle, Muscle Nerve 1981:456–488.

    Google Scholar 

  • Offer, G., Moos, C., and Starr, R., 1973, A new protein of the thick filaments of vertebrate skeletal myofibrils. Extraction, purification and characterization, J. Mol. Biol.74:653–676.

    PubMed  CAS  Google Scholar 

  • Ohashi, K., and Maruyama, K., 1979, A new structural protein located in the Z-lines of chicken skeletal muscle, J. Biochem. (Tokyo) 85:1103–1105.

    CAS  Google Scholar 

  • Ohashi, K., Kimura, S., Deguchi, K., and Maruyama, K., 1977a, I-protein, a new regulatory protein from vertebrate skeletal muscle. I. Purification and characterization, J. Biochem.81:233–236.

    CAS  Google Scholar 

  • Ohashi, K., Masaki, T., and Maruyama, K., 1977b, I-protein, a new regulatory protein from vertebrate skeletal muscle. II. Localization, J. Biochem.81:237–242.

    CAS  Google Scholar 

  • Ohashi, K., Fischman, D. A., Obinata, T., and Maruyama, K., 1981, Immunofluorescent staining of A bands isolated from chicken breast muscle with antibodies against myosin rods, connectin and troponin T, Biomed. Res.2:330–333.

    CAS  Google Scholar 

  • Orcutt, M. W., and Dutson, T. R., 1984, Postmortem degradation of gap filaments at different postmortem pH and temperature, J. Food Sci. (in press). Organization of the Cytoplasm, Cold Spring Harbor Symposia on Quantitative Biology, Vol. 46, 1982, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • O’Shea, J. M., Robson, R. M., Hartzer, M. K., Huiatt, T. W., Rathbun, W. E., and Stromer, M. H., 1981, Purification of desmin from adult mammalian skeletal muscle, Biochem. J. 195:345 – 356.

    PubMed  Google Scholar 

  • Ozaki, K., and Maruyama, K., 1980, Connectin, an elastic protein of muscle. A connectin-like protein from the plasmodium Physarum polycephalum, J. Biochem. (Tokyo) 88:883–888.

    CAS  Google Scholar 

  • Page, S., and Huxley, H. E., 1963, Filament lengths in striated muscle, J. Cell Biol 19:369–391.

    PubMed  CAS  Google Scholar 

  • Page, S. G., 1968, Fine structure of tortoise skeletal muscle, J. Physiol. (Lond.) 197:709–715.

    CAS  Google Scholar 

  • Pardo, J. V., D’Angelo Siliciano, J., and Craig, S. W., 1982, A vinculin-containing cortical lattice in skeletal muscle: Transverse lattice elements (“costameres”) mark sites of attachment between myofibrils and sarcolemma, Proc. Natl. Acad. Sci. USA 80:1008–1012.

    Google Scholar 

  • Pardo, J. V., D’Angelo Siliciano, J., and Craig, S. W., 1983, Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers, J. Cell Biol.97:1081–1088.

    PubMed  CAS  Google Scholar 

  • Parson, S. C., and Porter, K. R., 1966, Muscle relaxation: Evidence for an intrafibrillar restoring force in vertebrate skeletal muscle, Science 153:426–427.

    Google Scholar 

  • Pearlstone, J. R., Johnson, P., Carpenter, M. R., and Smillie, L. B., 1977, Primary structure of rabbit skeletal muscle troponin-T. Sequence determination of the NH2-terminal fragment CB3 and the complete sequence of troponin-T, J. Biol. Chem.252:983–989.

    PubMed  CAS  Google Scholar 

  • Pierobon-Bormioli, S., 1982, Transverse sarcomere filamentous systems: Z cables and M cables, J. Muscle Res. Cell Motil.2:401–414.

    Google Scholar 

  • Pollack, G. H., 1983, The cross-bridge theory, Physiol. Rev.63:1049–1114.

    PubMed  CAS  Google Scholar 

  • Porzio, M. A., and Pearson, A. M., 1977, Improved resolution of myofibrillar proteins with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Biochim. Biophys. Acta 490:21–34.

    Google Scholar 

  • Price, M. G., and Sanger, J. W., 1983, Intermediate filaments in striated muscle. A review of structural studies in embryonic and adult skeletal and cardiac muscle, in: Cell and Muscle Motility (R. M. Dowben and J. W. Shay, eds.), Vol. 3, pp. 1–40, Plenum Press, New York.

    Google Scholar 

  • Pringle, J. W. S., 1978, Stretch activation of muscle: Function and mechanism, Proc. R. Soc. Lond. B 201:107–130.

    Google Scholar 

  • Reedy, M. K., and Lucaveche, C., 1984, α-band mass exceeds mass of its filament components by 30–45%, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 29–45, Plenum Press, New York.

    Google Scholar 

  • Reedy, M. K., Leonard, K. R., Freeman, R., and Arad, T., 1981, Thick myofilament mass determination by electron scattering measurements with the scanning transmission electron microscopy, J. Muscle Res. Cell Motil.2:45–64.

    PubMed  CAS  Google Scholar 

  • Richardson, F. L., Stromer, M. H., Huiatt, T. W., and Robson, R. M., 1981, Immunoelectron and fluorescence microscope localization of desmin in mature avian muscles, Eur.]. Cell Biol.26:91–161.

    CAS  Google Scholar 

  • Ridpath, J. F., Robson, R. M., Huiatt, T. W., Trenkle, A. H., and Lusby, M. L., 1982, Localization and rate of accumulation of nebulin in skeletal and cardiac muscle cell cultures, J. Cell Biol. 95:361a.

    Google Scholar 

  • Robins, S. P., and Rucklidge, G. J., 1980, Analysis of the reducible components of the muscle protein, connectin: Absence of lysine-derived cross-links, Biochem. Biophys. Res. Commun.96:1240–1247.

    PubMed  CAS  Google Scholar 

  • Robinson, T. F., and Cohen-Gould, L., 1984, Myofilament diameters: An ultrastructural re-evaluation, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 47–61, Plenum Press, New York.

    Google Scholar 

  • Robinson, T. F., Cohen-Gould, L., and Factor, S. M., 1983, Skeletal framework of mammalian heart muscle. Arrangement of inter- and pericellular connective tissue structures, Lab. Invest.49:482–498.

    PubMed  CAS  Google Scholar 

  • Robson, R. M., and Huiatt, T. W., 1983, Roles of the cytoskeletal proteins desmin, titin and nebulin in muscle, Proc. Recip. Meat. Conf. 36:in press.

    Google Scholar 

  • Robson, R. M., O’Shea, J. M., Hartzer, M. K., Rathbun, W. E., La Salle, F., Schreiner, P. J., Kasang, L. E., Stromer, M. H., Lusby, M. L., Ridpath, J. F., Pang, Y-Y., Evans, R. R., Zeece, M. G., Parrish, F. C., and Huiatt, T. W., 1983, Role of new cytoskeletal elements in maintenance of muscle integrity, J. Food Biochem. 7:in press.

    Google Scholar 

  • Rowe, A. J., and Maw, M. C., 1984, Symmetry and self-assembly in vertebrate α-filaments, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 5–20, Plenum Press, New York.

    Google Scholar 

  • Saide, J. D., 1981, Identification of a connecting filament protein in insect fibrillar flight muscle, J. Mol. Biol.153:661–679.

    PubMed  CAS  Google Scholar 

  • Sawada, H., Maruyama, K., and Kimura, S., 1984, Electron microscopic observations of connectin filaments in Kl-extracted residues of skeletal and cardiac muscles by the quick-freeze, deep-etch method, Biomed. Res.4:603–606.

    Google Scholar 

  • Sjöstrand, F., 1962, The connections between α- and I-band filaments in striated frog muscle, J. Ultrastruct. Res.7:225–246.

    PubMed  Google Scholar 

  • Somerville, L. L., and Wang, K., 1981, The ultrasensitive silver protein stain also detects nanograms of nucleic acids, Biochem. Biophys. Res. Commun.102:53–58.

    PubMed  CAS  Google Scholar 

  • Somerville, L. L., and Wang, K., 1983, Phosphorylation of titin and nebulin in vitro and in vivo, Biophys. J. 41:96a.

    Google Scholar 

  • Squire, J. M., 1981, The Structural Basis of Muscular Contraction, Plenum Press, New York.

    Google Scholar 

  • Stanley, D. W., 1983, A review of the muscle cell cytoskeleton and its possible relation to meat texture and sarcolemma emptying, Food Microstruct.2:99–109.

    Google Scholar 

  • Starr, R., and Offer, G., 1971, Polypeptide chains of intermediate molecular weight in myosin preparations, FEB S Letter.15:40–44.

    CAS  Google Scholar 

  • Starr, R., and Offer, G., 1983, Preparation of C-protein, H-protein, X-protein, and phosphofruc- tokinase, Methods Enzymol.85:130–138.

    Google Scholar 

  • Steiger, G. J., 1977, Stretch activation and tension transients in cardiac, skeletal and insect flight muscle, in: Insect Flight Muscle (R. T. Tregear, ed.), pp. 221–268, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Stone, D., and Smillie, L. B., 1978, The amino acid rabbit skeletal α-tropomyosin, the NH2- terminal half and complete sequence, J. Biol. Chem. 253:1137–1148.

    PubMed  CAS  Google Scholar 

  • Street, S. B., 1983, Lateral transmission of tension in frog myofibers: A myofibrillar network and transverse cytoskeletal connections are possible transmitters, J. Cell. Physiol.114:346–364.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Goll, D. E., Singh, I., Allen, R. E., Robson, R. M., and Stromer, M. H., 1976, Some properties of purified skeletal muscle α-actinin, J. Biol. Chem.251:6860–6870.

    PubMed  CAS  Google Scholar 

  • Suzuki, A., Saito, M., Okitani, A., and Nonami, Y., 1981, Z-nin, a new high molecular weight protein required for reconstitution of the Z-disk, Agric. and Biol. Chem.45:2535–2542.

    CAS  Google Scholar 

  • Takahashi, K., and Saito, H., 1979, Post-mortem changes in skeletal muscle connecting. Biochem.85:1539–1542.

    CAS  Google Scholar 

  • Tanaka, M., and Tanaka, H., 1977, Extraction and functional reformation of thick filaments in chemically skinned molluscean catch muscle fibers, J. Biochem. (Tokyo) 85:535–540.

    Google Scholar 

  • Tokuyasu, K. T., Dutton, A. H., and Singer, S. J., 1983, Immunoelectron microscope studies of desmin (skeletin) localisation and intermediate filament organisation in chicken skeletal muscle, J. Cell Biol.96:1727–1735.

    PubMed  CAS  Google Scholar 

  • Toyoda, N., and Maruyama, K., 1978, Fine structure of connectin nets in cardiac myofibrils, J. Biochem.84:239–241.

    PubMed  CAS  Google Scholar 

  • Traeger, L., Mackenzie, J. M., Jr., Epstein, H. F., and Goldstein, M. A., 1983, Transition in the thin-filament arrangement in rat skeletal muscle, J. Muscle Res. Cell Motil.4:353–366.

    PubMed  CAS  Google Scholar 

  • Tregear, R. T., 1977, Insect Flight Muscle, Elsevier/North Holland, Amsterdam.

    Google Scholar 

  • Trinick, J., and Lowey, S., 1977, M-protein from chicken pectoralis muscle: Isolation and characterization, J. Mol. Biol.113:343–368.

    PubMed  CAS  Google Scholar 

  • Trinick, J. A., 1981, End-filaments: A new structural element of vertebrate skeletal muscle thick filaments, J. Mol. Biol.151:309–314.

    PubMed  CAS  Google Scholar 

  • Trinick, J. A., 1982, Preparation of native thick filaments, Methods Enzymol.85:17–20.

    PubMed  Google Scholar 

  • Trinick, J. A., Knight, P., and Whiting, A., 1984, Purification and properties of native titin, J. Mol. Biol, (in press). Trombitas, K., 1984, Functional Morphology of the Insect Flight Muscle with Special Regard of the Role of the Connecting Filaments, Hungary (in press).

    Google Scholar 

  • Trombitas, K., and Tigyi-Sebes, A., 1974, Direct evidence for connecting C filaments in flight muscle of honey bee, Acta Biochim. Biophys. Acad. Sci. Hung.9:243–253.

    PubMed  CAS  Google Scholar 

  • Trombitas, K., and Tigyi-Sebes, A., 1979, The continuity of thick filaments between sarcomeres in honey bee flight muscle, Nature 281:319–320.

    PubMed  CAS  Google Scholar 

  • Ullrick, W. C., Toselli, P. A., Chase, D., and Dasse, K., 1977, Are there extensions of thick filaments to the Z line in vertebrate and invertebrate striated muscle?, J. Ultrastruct. Res.60:263–271.

    PubMed  CAS  Google Scholar 

  • Umazume, Y., 1974, Some observations in the extremely stretched skinned muscle fibers, Jpn.J. Physiol.38:469–471.

    Google Scholar 

  • Walcott, B., and Ridgway, E. B., 1967, The ultrastructure of myosin-extracted striated muscle fibers, Am. Zool.7:499–504.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., Turner, D. C., and Eppenberger, H. M., 1977, Localization of creatine kinase isoenzymes in myofibrils. I. Chicken skeletal muscle, J. Cell Biol.75:297–317.

    PubMed  CAS  Google Scholar 

  • Wang, K., 1981, Nebulin, a giant protein component of N2-line of striated muscle, J. Cell Biol. 91:355a.

    Google Scholar 

  • Wang, K., 1982a, Purification of titin and nebulin, Methods Enzymol.85:264–273.

    PubMed  CAS  Google Scholar 

  • Wang, K., 1982b, Myofilamentous and myofibrillar connections: Role of titin, nebulin and intermediate filaments, in: Muscle Development: Molecular and Cellular Control (M. L. Pearson and H. F. Epstein, eds.), pp. 439–452, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Wang, K., 1983, Membrane skeleton of skeletal muscle, Nature 304:485–486.

    Google Scholar 

  • Wang, K., 1984, Cytoskeletal matrix in striated muscle: The role of titin, nebulin and intermediate filaments, in: Contractile Mechanisms in Muscle (G. H. Pollack and H. Sugi, eds.), pp. 285–306, Plenum Press, New York.

    Google Scholar 

  • Wang, K., and McClure, J., 1978, Extremely large proteins of vertebrate striated muscle myofibrils, J. Cell Biol.79:334a.

    Google Scholar 

  • Wang, K., and Ramirez-Mitchell, R., 1979, Titin: Possible candidate as components of putative longitudinal filaments in striated muscle, J. Cell Biol.83:389a.

    Google Scholar 

  • Wang, K., and Ramirez-Mitchell, R., 1983a, A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle, J. Cell Biol.96:562–570.

    CAS  Google Scholar 

  • Wang, K., and Ramirez-Mitchell, R., 1983b, Ultrastructural morphology and epitope distribution of titin—a giant sarcomere-associated cytoskeletal protein, J. Cell Biol.97:257a.

    Google Scholar 

  • Wang, K., and Williamson, G. L., 1980, Identification of an N2-line protein of striated muscle, Proc. Natl. Acad. Sci. USA 77:3254–3258.

    PubMed  CAS  Google Scholar 

  • Wang, K., Ash, J. G., and Singer, S. J., 1975, Filamin, a new high molecular weight protein of smooth muscle and non-muscle cells, Proc. Natl. Acad. Sci. USA 72:4483–4486.

    PubMed  CAS  Google Scholar 

  • Wang, K., McClure, J., and Tu, A., 1979, Titin: Major myofibrillar components of striated muscle, Proc. Natl. Acad. Sci. USA 76:3698–3702.

    PubMed  CAS  Google Scholar 

  • Wang, K., Feramisco, J. R., and Ash, J. F., 1982, Fluorescent localization of contractile proteins, Methods Enzymol.85:514–562.

    PubMed  CAS  Google Scholar 

  • Wang, K., Ramirez-Mitchell, R., and Palter, D., 1984, Titin is an extraordinarily long, flexible and slender myofibrillar protein, Proc. Natl. Acad. Sci. USA 81:3685–3689.

    PubMed  CAS  Google Scholar 

  • Wang, S. M., Lim, S. S., Lemanski, L. F., and Greaser, M. L., 1983, Immunocytological localization of titin using a monoclonal antibody against bovine cardiac titin, J. Cell. Biol.97:258a.

    Google Scholar 

  • White, D. C. S., 1967, Doctoral thesis, Oxford University, Oxford, England.

    Google Scholar 

  • White, D. C. S., and Thorson, J., 1973, The kinetics of muscle contraction, Prog. Biophys. Mol. Biol.28:173–255.

    Google Scholar 

  • Wilkinson, J. M., and Grand, R.J. A., 1975, The amino acid sequence of troponin-T from rabbit skeletal muscle, Biochem. J.149:493–496.

    PubMed  CAS  Google Scholar 

  • Woodhead, J. L., and Lowey, S., 1983, An in vitro study of the interactions of skeletal muscle M- protein and creatine kinase with myosin and its subfragments, J. Mol. Biol.168:831–846.

    PubMed  CAS  Google Scholar 

  • Yarom, R., and Meiri, U., 1971, N lines in striated muscle: A site of intracellular Ca2 + , Nature New Biol.234:254–255.

    PubMed  CAS  Google Scholar 

  • Yates, L. D., and Greaser, M. L., 1983a, Quantitative determination of myosin and actin in rabbit skeletal muscle, J. Mol. Biol.168:123–141.

    CAS  Google Scholar 

  • Yates, L. D., and Greaser, M. L., 1983b, Troponin subunit stoichiometry and content in rabbit skeletal muscles and myofibrils, J. Biol. Chem.258:5770–5774.

    CAS  Google Scholar 

  • Yoshioka, T., Natori, R., and Umazume, Y., 1981, The elastic structure of sarcomere connecting structure of M lines and elastic skeleton of sarcomere, Jikeikai Med. J.28:153–158.

    Google Scholar 

  • Young, O. A., Graafhuis, A. E., and Davey, C. L., 1981, Postmortem changes in cytoskeletal proteins of muscle, Meat Sci.5:41–55

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, K. (1985). Sarcomere-Associated Cytoskeletal Lattices in Striated Muscle. In: Shay, J.W. (eds) Cell and Muscle Motility. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4723-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4723-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4725-6

  • Online ISBN: 978-1-4757-4723-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics