Molecular and Biochemical Evolution of the Carnivora

  • Robert K. Wayne
  • Raoul E. Benveniste
  • Dianne N. Janczewski
  • Stephen J. O’Brien


The fissiped carnivores include eight distinct families that are traditionally grouped into two superfamilies: the Canoidea (or Arctoidea) and the Feloidea (or Aeluroidea). The Canoidea include the bear, dog, raccoon, and weasel families; and the Feloidea include the cat, hyena, mongoose, and civet families. Both groups are extremely heterogeneous with respect to the morphology and life history of their constituents. They include taxa that are entirely carnivorous, insectivorous, and omnivorous and that have cursorial, arboreal, fossorial, and aquatic habits. Such wide-ranging adaptations have led to several instances of parallel and convergent evolution of morphologic traits which have confounded the efforts of taxonomists to relate certain taxa.


Biochemical Evolution Giant Panda Snow Leopard Maned Wolf African Lion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. B. 1979. The cheetah: Native American. Science 205:1155–1158.CrossRefGoogle Scholar
  2. Arnason, U. 1986. Pinniped phylogeny enlightened by molecular hybridizations using highly repetitive DNA. Mol Biol. Evol. 3:356–365.Google Scholar
  3. Avise, J. C., and Aquadro, C. F. 1981. A comparative summary of genetic distance in vertebrates. Evol Biol 14:114–126.Google Scholar
  4. Ayala, F. J. 1986. On the virtues and pitfalls of the molecular evolutionary clock. J. Hered. 77:226–235.Google Scholar
  5. Baskin, J. A. 1982. Tertiary Procyoninae of North America. J. Vert. Paleo. 2:71–93.CrossRefGoogle Scholar
  6. Benveniste, R. E. 1976. Evolution of type C viral genes: Evidence for an Asian origin of man. Nature 261:101–108.CrossRefGoogle Scholar
  7. Benveniste, R. E. 1985. The contributions of retroviruses to the study of mammalian evolution. In: R. J. MacIntyre, ed. Molecular Evolutionary Genetics, pp. 359–417. New York: Plenum.CrossRefGoogle Scholar
  8. Benveniste, R. E., Callahan, R., Sherr, C. J., Chapman, V., and Todaro, G. J. 1977. Two distinct endogenous type C viruses isolated from the Asian rodent Mus cervicolor: Conservation of virogene sequences in related rodent species. J. Virol. 21:849–852.Google Scholar
  9. Benveniste, R. E., Sherr, C. J., and Todaro, G. J. 1975. Evolution of type C viral genes: Origin of feline leukemia virus. Science 190:886–888.CrossRefGoogle Scholar
  10. Benveniste, R. E., and Todaro, G. J. 1974a. Multiple divergent copies of endogenous C-type virogenes in mammalian cells. Nature 252:170–173.CrossRefGoogle Scholar
  11. Benveniste, R. E., and Todaro, G. J. 1974b. Evolution of C-type viral genes: Inheritance of exogenously acquired viral genes. Nature 252:456–459.CrossRefGoogle Scholar
  12. Berta, A. 1979. Quarternary evolution and biogeography of the larger South American Canidae (Mammalia: Carnivora). Ph.D. dissert. Univ. California, Berkeley. 262 pp.Google Scholar
  13. Berta, A. 1981. Evolution of large canids in South America. Anais II Congresso Latino-Americano de Paleontologia. Porte Alegre 2:835–845.Google Scholar
  14. Berta, A. 1984. The Pleistocene bush dog. Speothos pacivorus (Canidae) from the Lagoa Santa caves, Brazil. J. Mamm. 65:549–559.CrossRefGoogle Scholar
  15. Britten, R. J. 1986. Rates of DNA sequence evolution differ between taxonomic groups. Science 231:1393–1398.CrossRefGoogle Scholar
  16. Brownell, E. 1983. DNA/DNA hybridization studies of muroid rodents: Symmetry and rates of molecular evolution. Evolution 37:1034–1051.CrossRefGoogle Scholar
  17. Clutton-Brock, J., Corbett, G. B., and Hills, M. 1976. A review of the family Canidae with a classification by numerical methods. Bull. British Mus. Zool 29:119–199.Google Scholar
  18. Collier, G. E., and O’Brien, S. J. 1985. A molecular phylogeny of the Felidae: Immunological distance. Evolution 39:473–487.CrossRefGoogle Scholar
  19. Couturier, J., Razafimahatratra, E., Dutrillaux, B., Warter, S., and Rumpler, Y. 1986. Chromosome evolution in the Malagasy Carnivora. I. R-banding studies of Cryptoprocta ferox, Fossa fossa, Galidia elegans, and Mungotictis decemlineata. Cytogenet. Cell Genet. 41:1–8.CrossRefGoogle Scholar
  20. Davis, D. 1964. The giant panda: A morphological study of evolutionary mechanisms. Fieldiana Zoology Memoirs. 3:1–339.Google Scholar
  21. Dayhoff, M. O. 1976. Survey of new data and computer methods of analysis. In: M. O. Dayhoff, ed. Atlas of Protein Sequence and Structure, vol. 5, supp. 2, pp. 1-8. Washington, D.C.: National Biomedical Research Foundation.Google Scholar
  22. de Jong, W. W. 1986. Protein sequence evidence for monophyly of the Carnivore families Procyonidae and Mustelidae. Mol. Biol Evol 3:276–281.Google Scholar
  23. Diamond, J. M. 1984. Historic extinctions: A Rosetta Stone for understanding pre-historic extinctions. In P. S. Martin & R. G. Klein, eds. Quaternary Extinctions. Tucson: Univ. Arizona Press.Google Scholar
  24. Dutrillaux, B., and Couturier, J. 1983. The ancestral karyotype of Carnivora: Comparison with that of Platyrrhine monkeys. Cytogenet. Cell Genet. 35:200–208.CrossRefGoogle Scholar
  25. Ewer, R. F. 1973. The Carnivores. Ithaca, N.Y.: Cornell Univ. Press.Google Scholar
  26. Fagan, R. M., and Wiley, K. S. 1978. Felid paedomorphosis with special reference to Leopardus. Carnivore 1:72–81.Google Scholar
  27. Fitch, W. M. 1981. A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18:30–37.CrossRefGoogle Scholar
  28. Fitch, W. M., and Margoliash, E. 1967. Construction of phylogenetic trees. Science 155:279–284.CrossRefGoogle Scholar
  29. Flynn, J. M., and Galiano, H. 1982. Phylogeny of early Tertiary Carnivora, with a description of a new species of Protictis from the middle Eocene of Northwestern Wyoming. Amer. Mus. Novitates 2632:1–16.Google Scholar
  30. Giles, E. 1960. Multivariate analysis of Pleistocene and Recent coyotes (Canis latrans) from California. Univ. California Publ. Geol. Sci. 36:369–90.Google Scholar
  31. Gingerich, P. G. 1984. Pleistocene extinctions in the context of origination-extinction equilibria in cenozoic mammals. In: P. S. Martin & R. G. Klein, eds. Quaternary Extinctions, pp. 211–222. Tucson: Univ. Arizona Press.Google Scholar
  32. Gittleman, J. L. 1986a. Carnivore brain size, behavioral ecology and phylogeny. J. Mamm. 67:23–36.CrossRefGoogle Scholar
  33. Gittleman, J. L. 1986b. Carnivore life history patterns: Allometric, phylogenetic and ecological associations. Amer. Nat. 127:744–771.CrossRefGoogle Scholar
  34. Glass, G. E., and Martin, L.D. 1978. A multivariate comparison of some extant and fossil Felidae. Carnivore 1:80–87.Google Scholar
  35. Goldman, D., O’Brien, S. J., and Giri, P. R. 1988. The molecular phylogeny of the bears as indicated by two-dimensional electrophoresis. Evolution. In press.Google Scholar
  36. Gregory, W. K., and Hellman, M. 1939. On the evolution and major classification of the civets and allied fossil and recent Carnivora: A phylogenetic study of skull and dentition. Proc. Amer. Philos. Soc. 81:309–392.Google Scholar
  37. Gribbin, J., and Cherfas, J. 1982. The Monkey Puzzle: Reshaping the Evolutionary Tree. New York: Pantheon Books.Google Scholar
  38. Guilday, J. E. 1984. Pleistocene extinctions and environmental change: Case study of the Appalachians. In: P. S. Martin & R. G. Klein, eds. Quaternary Extinctions. Tucson: Univ. Arizona Press.Google Scholar
  39. Hall, E. R. 1981. The Mammals of North America (2nd ed.). New York: John Wiley and Sons.Google Scholar
  40. Harrison, J. A. 1983. The Carnivora of the Edson Local Fauna (Late Hemphillian), Kansas. Smithsonian Contributions to Paleobiology 54:26–42.Google Scholar
  41. Hemmer, H. 1976. Fossil history of the living Felidae. In: R. L. Eaton, ed. The World’s Cats, vol. 3, no. 2: Contributions to Biology, Ecology, Behavior and Evolution, pp. 1-14. Seattle: Carnivore Research Institute.Google Scholar
  42. Hemmer, H. 1978. The evolutionary systematics of the living Felidae. Present status and current problems. Carnivore 1:71–79.Google Scholar
  43. Herrington, S. J. 1983. Systematics of the Felidae: A quantitative analysis. M.S. thesis, Univ. Oklahoma, Norman. 136 pp.Google Scholar
  44. Hsu, K. J., la Brecque, J., Percival, S. F., Wright, R. C., Gombose, A. M., Pisciotto, K., Tucker, P., Peterson, N., McKenzie, J. A., Weissert, H., Karpoff, A. M., Carman, M. F. Jr., and Schreiber, E. 1984. Numerical age of the Cenozoic biostratigraphic datum levels: Results of the South Atlantic drilling. Geological Society of America Bull. 95:863–876.CrossRefGoogle Scholar
  45. Hunt, R. M., Jr. 1974. The auditory bulla in Carnivora: An anatomical basis for reappraisal of carnivora evolution. J. Morph. 143:21–76.CrossRefGoogle Scholar
  46. Huxley, T. H. 1880. On the cranial and dental characters of the Canidae. Proc. Zool. Soc. London 16:238–288.Google Scholar
  47. Kohne, D. E., Chiscon, S. A., and Hoyer, B. H. 1972. Evolution of primate DNA sequences. J. Hum. Evol. 1:627–644.CrossRefGoogle Scholar
  48. Kurtén, B. 1964. The evolution of the polar bear, Ursus maritimus Phipps. Acta Zool. Fennica 108:1–26.Google Scholar
  49. Kurtén, B. 1965. On the evolution of the European wild cat, Felis silvestris Schreber. Acta Zool. Fennica 111:1–29.Google Scholar
  50. Kurtén, B. 1966. Pleistocene bears of North America. I. Genus Tremactos, spectacled bears. Acta ZooL Fennica 115:1–120.Google Scholar
  51. Kurtén, B. 1968. Pleistocene Mammals of Europe. Chicago: Aldine.Google Scholar
  52. Kurtén, B. 1974. A history of coyote-like dogs in North America (Canidae, Mammalia). Acta ZooL Fennica 140:1–38.Google Scholar
  53. Kurtén, B. 1986. Reply to “A molecular solution to the riddle of the giant panda’s phylogeny“. Nature 318:487.CrossRefGoogle Scholar
  54. Kurtén, B., and Anderson, E. 1980. Pleistocene Mammals of North America. New York: Columbia Univ. Press.Google Scholar
  55. Langguth, A. 1969. Die südamerikanischen Canidae unter besonderer Berücksichtigung des Mähenwolfes Chrysocyon brachyurus Illiger. Zeitschrift für wissenschaftliche Zoologie 179:1–88.Google Scholar
  56. Langguth, A. 1975. Ecology and evolution in the South American canids. In: M. W. Fox, ed. The Wild Canids, pp. 192–206. New York: Van Nostrand Reinhold.Google Scholar
  57. Lawrence, B., and Bossert, W. H. 1967. Multiple character analysis of Canis lupus, latrans and familiaris with a discussion of the relationship of Canis niger. Amer. Zool. 7:223–232.Google Scholar
  58. Martin, L. D., Gilbert, B. M., and Adams, D. B. 1977. A cheetah-like cat in the North American Pleistocene. Science 195:981–982.CrossRefGoogle Scholar
  59. Maxson, L. R., and Wilson, A. C. 1975. Albumin evolution and organismal evolution in tree frogs (Hylidae). Syst. Zool. 24:1–15.CrossRefGoogle Scholar
  60. Nash, W. G., and O’Brien, S. J. 1982. Conserved regions of homologous G-banded chromosomes between orders in mammalian evolution: Carnivores and primates. Proc. Natl. Acad. Sci. 79:6631–6635.CrossRefGoogle Scholar
  61. Nash, W. G., and O’Brien, S. J. 1987. A comparative chromosome banding analysis of the Ursidae and their relationship to other Carnivores. Cytogenet. Cell Genet., 45:206–12.CrossRefGoogle Scholar
  62. Neff, N. A. 1982. The Big Cats. New York: Abrams Inc.Google Scholar
  63. Nei, M. 1972. Genetic distances between populations. Amer. Nat. 106:283–292.CrossRefGoogle Scholar
  64. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.Google Scholar
  65. Nowak, R. M. 1979. North American Quaternary Canis. Mongr. Mus. Nat. Hist. Univ. Kansas 6:154.Google Scholar
  66. Nowak, R. M., and Paradiso, J. L. 1983. Walker’s Mammals of the World (4th ed.), vol. 2. Baltimore: Johns Hopkins Univ. Press.Google Scholar
  67. O’Brien, S. J., Collier, G. E., Benveniste, R. E., Nash, W. G., Newman, A. K., Simonson, J. M., Eichelberger, M. A., Seal, U. S., Bush, M., and Wildt, D. E. 1987. Setting the molecular clock in Felidae: The great cats, Panthera. In: R. L. Tilson, ed. Tigers of the World. pp. 10–27. Park Ridge, N.J.: Noyes Publications.Google Scholar
  68. O’Brien, S. J., and Nash, W. G. 1982. Genetic mapping in mammals: Chromosome map of domestic cat. Science 216:257–265.CrossRefGoogle Scholar
  69. O’Brien, S. J., Nash, W. G., Wildt, D. E., Bush, M. E., and Benveniste, R. E. 1985. A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317:140–144.CrossRefGoogle Scholar
  70. Olsen, S. J. 1985. Origins of the Domestic Dog: The fossil record. Tucson: Univ. Arizona Press.Google Scholar
  71. Patterson, B., and Pascual, R. 1972. The fossil mammal: Fauna of South America. In: A. Keast, F. C. Erk & B. Blass, eds. Evolution, Mammals and Southern Continents, pp. 247–309. Albany: State Univ. New York Press.Google Scholar
  72. Radinsky, L. 1977. Brains of early Carnivores. Paleobiology 3:333–349.Google Scholar
  73. Radinsky, L. 1978. Do albumin clocks run on time? Science 200:1182–1185.CrossRefGoogle Scholar
  74. Radinsky, L. 1982. Evolution of skull shape in carnivores. 3: The origin and early radiation of the modern carnivore families. Paleobiology 8:177–195.Google Scholar
  75. Reeves, R. H., and O’Brien, S. J. 1984. Molecular genetic characterization of the RD-114 gene family of endogenous feline retroviral sequences. J. Virol. 52:164–171.Google Scholar
  76. Rohlf, F. J. 1982. Consensus indices for comparing classifications. Math. Biosci. 59:131–144.CrossRefGoogle Scholar
  77. Romer, A. S. 1968. Notes and Comments on Vertebrate Paleontology. Chicago: Univ. Chicago Press.Google Scholar
  78. Sarich, V. 1969a. Pinniped origins and the rate of evolution of carnivore albumins. Syst. Zool. 18:286–295.CrossRefGoogle Scholar
  79. Sarich, V. 1969b. Pinniped phylogeny. Syst. Zool. 18:416–422.CrossRefGoogle Scholar
  80. Sarich, V. 1973. The giant panda is a bear. Nature 245:218–220.CrossRefGoogle Scholar
  81. Savage, D. E., and Russell, D. E. 1983. Mammalian Paleofaunas of the World. London: Addison-Wesley.Google Scholar
  82. Savage, R. J. G. 1957. The anatomy of Potamotherium an Oligocene lutrine. Proc. Zool. Soc. London 129:151–244.CrossRefGoogle Scholar
  83. Savage, R. J. G. 1978. Carnivora. In: V. J. Maglio & H. B. S. Cooke, eds. Evolution of African Mammals, pp. 249–267. Cambridge: Harvard Univ. Press.Google Scholar
  84. Seal, U. S., Phillips, N. I., and Erickson, A. W. 1970. Carnivora systematics: Immunological relationships of bear albumins. Comp. Biochem. Physiol. 32:33–48.CrossRefGoogle Scholar
  85. Sibley, C. G., and Ahlquist, J. E. 1983. Phylogeny and classification of birds based on the date of DNA-DNA hybridization. In: R. F. Johnston, ed. Current Ornithology, 1:245-288. New York.: Plenum Press.Google Scholar
  86. Simpson, G. G. 1945. The principles of classification and a classification of the mammals. Bull. Amer. Mus. Nat. Hist. 85:1–350.Google Scholar
  87. Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. San Francisco: W. H. Freeman.Google Scholar
  88. Stains, H. J. 1984. Carnivores. S. Anderson & J. K. Jones, eds. Orders and Families of Recent Mammals of the World, pp. 491–522. New York: Wiley and Sons.Google Scholar
  89. Tedford, R. H. 1975. Relationships of Pinnipeds to other carnivores (Mammalia). Syst. Zool. 25:363–374.CrossRefGoogle Scholar
  90. Thenius, E. 1979. Zur systematischen und phylogenetischen Stellung des Bambusbären: Ailuropoda melanoleuca David (Carnivora, Mammalia). Z. Säugetierk. 44:286–305.Google Scholar
  91. Thorpe, J. P. 1982. The molecular clock hypothesis: Biochemical evolution, genetic differentiation and systematics. Ann. Rev. Ecol. Syst. 13:139–168.CrossRefGoogle Scholar
  92. van Valen, L. M. 1986. Palaeontological and molecular views of panda phylogeny. Nature 319:428.CrossRefGoogle Scholar
  93. van Valkenburgh, B. 1985. Locomotor diversity in past and present guilds of large predator mammals. Paleobiology 11:406–428.Google Scholar
  94. van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. J. Vert. Paleo. 7:162–182.CrossRefGoogle Scholar
  95. Wayne, R. K. 1986a. Cranial morphology of domestic and wild canids: The influence of development on morphologic change. Evolution 40:243–261.CrossRefGoogle Scholar
  96. Wayne, R. K. 1986b. Limb morphology of domestic and wild canids: The influence of development on morphologic change. J. Morphol. 187:301–319.CrossRefGoogle Scholar
  97. Wayne, R. K., Nash, W. G., and O’Brien, S. J. 1987a. Chromosomal evolution of the Canidae: I. Species with high diploid numbers. Cytogenet. Cell Genet. 44:123–133.CrossRefGoogle Scholar
  98. Wayne, R. K., Nash, W. G., and O’Brien, S. J. 1987b. Chromosomal evolution of the Canidae. II. Species with low diploid numbers. Cytogenet. Cell Genet. 44:134–141.CrossRefGoogle Scholar
  99. Wayne, R. K., and O’Brien, S. J. 1987. Allozyme divergence within the Canidae. Syst. Zool. 36:339–355.CrossRefGoogle Scholar
  100. Weiss, R., Teich, N., Varmus, H., and Coffin, J. 1982. RNA Tumor Viruses. New York: Cold Spring Harbor Press.Google Scholar
  101. Werdelin, L. 1981. The evolution of lynxes. Ann. Zool. Fennici 18:37–71.Google Scholar
  102. Werdelin, L. 1985. Small Pleistocene felines of North America. J. Vert. Paleo. 5:194–210.CrossRefGoogle Scholar
  103. Wilson, A. C., Carlson, S. S., and White, T. J. 1977. Biochemical evolution. Ann. Rev. Biochem. 46:573–639.CrossRefGoogle Scholar
  104. Wozencraft, W. C. 1984. A phylogenetic reappraisal of the Viverridae and its relationship to other Carnivora. Ph.D. dissert., Univ. Kansas, Lawrence. 1108 pp.Google Scholar
  105. Wurster-Hill, D. H. 1975. The interrelationship of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet. Cell Genet. 15:306–331.CrossRefGoogle Scholar
  106. Wurster-Hill, D. H., and Centerwall, W. R. 1982. The interrelationships of chromosome banding patterns in canids, mustelids, hyena, and felids. Cytogenet. Cell Genet. 34:178–192.CrossRefGoogle Scholar
  107. Wurster-Hill, D. H., and Gray, C. W. 1973. Giemsa banding patterns in the chromosomes of twelve species of cats (Felidae). Cytogenet. Cell Genet. 12:377–397.CrossRefGoogle Scholar
  108. Wurster-Hill, D. H., and Gray, C. W. 1975. The interrelationships of chromosome banding patterns in procyonids, viverrids, and felids. Cytogenet. Cell Genet. 15:306–331.CrossRefGoogle Scholar
  109. Yoshida, M. A., Takagi, N., and Sasaki, M. 1983. Karyotypic kinship between the blue fox (Alopex lagopus Linn.) and the silver fox (Vulpes vulpes Desm.). Cytogenet. Cell Genet. 35:190–194.CrossRefGoogle Scholar
  110. Zuckerkandl, E., and Pauling, L. 1962. Molecular disease, evolution, and genic heterogeneity. In: M. Kasha & B. Pullman, eds. Horizons in Biochemistry, pp. 189–225. New York: Academic Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Robert K. Wayne
  • Raoul E. Benveniste
  • Dianne N. Janczewski
  • Stephen J. O’Brien

There are no affiliations available

Personalised recommendations