Locomotor Adaptations by Carnivores

  • Mark E. Taylor


Carnivores exhibit a wide range of locomotor behaviors. However, an animal’s morphology limits its range of movements and therefore provides a constraint to certain locomotor activities. For instance, the body proportions and morphology of the sea otter (Enhydra lutris) make it an excellent swimmer, whereas it has difficulty moving on land. Likewise, the arboreal specializations of the ringtail (Bassariscus astutus), which allow it to perform complex acrobatic movements, restrict its abilities for other forms of locomotion such as running or digging. Some carnivores improve the effect of their locomotor skills with behavioral modifications; for example, the group hunting behavior of the African lion (Panthera leo) and the gray wolf (Canis lupus) allows them to catch prey that they would not be able to catch as individuals (Mech 1970; Schaller 1972). Therefore, from an evolutionary viewpoint, one must recognize that behavioral adaptations may be as important as morphological adaptations. However, although the behavior of many carnivores is poorly known, it is possible to infer a great deal from their morphological adaptations and to use this information in a predictive way to understand their role in particular ecosystems.


Polar Bear Giant Panda Gray Wolf River Otter Terrestrial Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albignac, R. 1970. Notes ethologiques sur quelques carnivores malagaches: le Cryptoprocta ferox (Bennett). Terre Vie 24:395–402.Google Scholar
  2. Alexander, R. McN. 1984. Walking and running. Amer. Sci. 72:348–354.Google Scholar
  3. Alexander, R. McN., and Jayes, A. S. 1981. Estimates of the bending moments exerted by the lumbar and abdominal muscles of some mammals. J. Zool. (Lond.) 194:291–303.CrossRefGoogle Scholar
  4. Bisaillon, A., Piérard, J., and Larivière, N. 1976. Le segment cervical des carnivores (Mammalia: Carnivora) adaptés à la vie aquatique. Canadian J. Zool. 54:431–436.CrossRefGoogle Scholar
  5. Brown, J. C. and Yalden, D. W. 1973. The description of mammals—2: Limbs and locomotion of terrestrial mammals. Mamm. Rev. 3:107–134.CrossRefGoogle Scholar
  6. Cartmill, M. 1974. Pads and claws in arboreal locomotion. In F. A. Jenkins, Jr., ed. Primate Locomotion, pp. 45–83. New York: Academic Press.Google Scholar
  7. Cartmill, M. 1979. The volar skin of primates: Its frictional characteristics and their functional significance. Amer. J. Phys. Anthropol. 50:497–510.CrossRefGoogle Scholar
  8. Cartmill, M. 1985. Climbing. In: M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake, eds. Functional Vertebrate Morphology, pp. 73–88. Cambridge: Harvard Univ. Press.Google Scholar
  9. Dagg, A. I. 1973. Gaits in mammals. Mamm. Rev. 3:135–154.CrossRefGoogle Scholar
  10. Dagg, A. I. 1976. Running, Walking and Jumping: The Science of Locomotion. London: Taylor and Francis.Google Scholar
  11. Dagg, A. I. 1979. The walk of the large quadrupedal mammals. Candian J. Zool. 57:1157–1163.CrossRefGoogle Scholar
  12. Dagg, A. I., and Windsor, D. E. 1972. Swimming in northern terrestrial mammals. Canadian J. Zool. 50:117–130.CrossRefGoogle Scholar
  13. Davis, D. D. 1964. The giant panda: A morphological study of evolutionary mechanisms. Field. Zool. Mem. 31:1–339.Google Scholar
  14. DeMaster, D. P., and Stirling, I. 1981. Ursus maritimus. Mammalian Species no. 145. Lawrence, Kans.: American Society of Mammalogists.Google Scholar
  15. Dunstone, N. 1979. Swimming and diving behavior of the mink. Carnivore 2:56–61.Google Scholar
  16. Ewer, R. F. 1973. The Carnivores. Ithaca, N.Y.: Cornell Univ. Press.Google Scholar
  17. Fleagle, J. G., and Mittermeier, R. A. 1980. Locomotor behavior, body size and comparative ecology of seven Surinam monkeys. Amer. J. Phys. Anthrop. 52:301–314.CrossRefGoogle Scholar
  18. Gambaryan, P. P. 1974. How Mammals Run: Anatomical Adaptations. New York: John Wiley & Sons.Google Scholar
  19. Gilbert, B. M. 1973. Mammalian Osteo-Archaeology, Columbia: Missouri Archaeological Society.Google Scholar
  20. Gittleman J. L. 1985. Carnivore body size: Ecological and taxonomic correlates. Oecologica 67:540–554.CrossRefGoogle Scholar
  21. Gonyea, W. J. 1978. Functional implications of felid forelimb anatomy. Acta Anatomica 102:111–121.CrossRefGoogle Scholar
  22. Goslow, G. E., and Van de Graaff, K. 1982. Hindlimb joint angle changes and action of the primary ankle extensor muscles during posture and locomotion in the striped skunk (Mephitis mephitis). J. Zool. (Lond.) 1982:405–419.Google Scholar
  23. Gray, J. 1968. Animal Locomotion. New York: W. W. Norton.Google Scholar
  24. Gregory, W. K. 1912. Notes on the principles of quadrupedal locomotion and on the mechanism of the limbs in hoofed animals. Ann. New York Acad. Sci. 22:267–294.CrossRefGoogle Scholar
  25. Harris, C. J. 1968. Otters: A Study of the Recent Lutrinae. London: Wiedenfeld and Nicolson.Google Scholar
  26. Hildebrand, M. 1954. Comparative morphology of the body skeleton in recent Canidae. Univ. California Publ. Zool. 52:399–470.Google Scholar
  27. Hildebrand, M. 1959. Motions of the running cheetah and horse. J. Mamm. 40:481–495.CrossRefGoogle Scholar
  28. Hildebrand, M. 1961. Further studies on locomotion of the cheetah. J. Mamm. 42:84–91.CrossRefGoogle Scholar
  29. Hildebrand, M. 1976. Analysis of tetrapod gaits: General considerations and symmetrical gaits. In: R. M. Herman, S. Grillner, P. S. G. Stein, & D. G. Stuart, eds. Neural Control of Locomotion, pp. 203-236. New York: Plenum.Google Scholar
  30. Hildebrand, M. 1982. Analysis of Vertebrate Structure. New York: John Wiley & Sons.Google Scholar
  31. Hildebrand, M. 1985a. Digging of quadrupeds. In: M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake, eds. Functional Vertebrate Morphology, pp. 89–109. Cambridge: Harvard Univ. Press.Google Scholar
  32. Hildebrand, M. 1985b. Walking and running. In: M. Hildebrand, D. M. Bramble, K. F. Liem & D. B. Wake, eds. Functional Vertebrate Morphology, pp. 38–57. Cambridge: Harvard Univ. Press.Google Scholar
  33. Howard, L. D. 1973a. Muscular anatomy of the forelimb of the sea otter (Enhydra lutris). Proc. California Acad. Sci. 39:411–500.Google Scholar
  34. Howard, L. D. 1973b. Muscular anatomy of the hind limb of the otter Enhydra lutris. Proc. California Acad. Sci. 40:335–416.Google Scholar
  35. Howell, A. B. 1930. Aquatic Mammals: Their Adaptations to Life in the Water. Springfield, Ill.: Charles C Thomas.Google Scholar
  36. Howell, A. B. 1944. Speed in Animals. New York: Haffner.Google Scholar
  37. Hurrell, H. G. 1968. Pine martens. Forestry Commission: Forest Record No. 64. London: Her Majesty’s Stationery Office. 23 pp.Google Scholar
  38. Hurst, R. J., Leonard, M. L., Beckerton, P., and Oritsland, N. A. 1982. Polar bear locomotion: Body temperature and energetic cost. Canadian J. Zool. 60:222–228.CrossRefGoogle Scholar
  39. Jenkins, F. A. 1971. Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J. Zool. (Lond.) 165:303–315.CrossRefGoogle Scholar
  40. Jenkins, F. A. 1973. The functional anatomy and evolution of the mammalian humeroulnar articulation. Amer. J. Anat. 137:281–298.CrossRefGoogle Scholar
  41. Jenkins, F. A. 1974. The movement of the shoulder in claviculate and aclaviculate mammals. J. Morphol. 144:71–84.CrossRefGoogle Scholar
  42. Jenkins, F. A., and Camazine, S. M. 1977. Hip structure and locomotion in ambulatory and cursorial carnivores. J. Zool. (Lond.) 181:351–370.CrossRefGoogle Scholar
  43. Jenkins, F. A., and McClearn, D. 1984. Mechanisms of hind foot reversal in climbing mammals. J. Morphol. 182:197–219.CrossRefGoogle Scholar
  44. Kenyon, K. W. 1975. The Sea Otter in the Eastern Pacific Ocean. New York: Dover.Google Scholar
  45. Kingdon, J. 1977. East African Mammals: An Atlas of Evolution in Africa, vol. 3A: Carnivores. New York: Academic Press.Google Scholar
  46. Kirkpatrick, C. M., Stullken, D. E., and Jones, R. D. 1955. Notes on captive sea otters. Arctic 8:46–59.Google Scholar
  47. Lampe, R. S. 1976. Aspects of the predatory strategy of the North American badger, Taxidea taxus. Ph.D. dissert., Univ. Minnesota Minneapolis. 103 pp.Google Scholar
  48. Leach, D., and Dagg, A. I. 1976. The morphology of the femur in marten and fisher. Canadian J. Zool. 54:559–565.CrossRefGoogle Scholar
  49. Leach, D., and deKleer, V. S. 1978. The descriptive and comparative postcranial osteology of marten and fisher: The axial skeleton. Canadian J. Zool. 56:1180–1191.CrossRefGoogle Scholar
  50. Liers, E. E. 1951. Notes on the river otter (Lutra canadensis). J. Mamm. 32:1–9.CrossRefGoogle Scholar
  51. Lighthill, M. J. 1969. Hydrodynamics of aquatic animal propulsion. Ann. Rev. Fluid Mech. 1:413–446.CrossRefGoogle Scholar
  52. Long, C. A., and Killingley, C. A. 1983. The Badgers of the World. Springfield, Ill.: Charles C Thomas.Google Scholar
  53. Lynch, C. D. 1980. Ecology of the suricate, Suricata suricata, and yellow mongoose, Cynictis penicillata, with special reference to their reproduction. Memoirs of the National Museum Bloemfontein. 14:1–145.Google Scholar
  54. Mech, L. D. 1970. The Wolf. Garden City, N.Y.: Natural History Press.Google Scholar
  55. Murie, O. J. 1940. Notes on the sea otter. J. Mamm: 21:119–131.CrossRefGoogle Scholar
  56. Muybridge, E. 1887 (1957 rpt.). Animals in Motion. New York: Dover. 74 pp. and 183 plates.Google Scholar
  57. Neal, E. 1948. The Badger. London: Collins.Google Scholar
  58. Nowak, R. M., and Paradiso, J. L. 1983. Walker’s Mammals of the World, 4th ed, Baltimore: Johns Hopkins Univ. Press.Google Scholar
  59. Ondrias, J. C. 1960. Secondary sexual variation and body skeletal proportions in European Mustelidae. Arkiv för Zoologi. 12:577–583.Google Scholar
  60. Ondrias, J. C. 1961. Comparative osteological investigations on the front limbs of European Mustelidae. Arkiv för Zoologi. 13:311–320.Google Scholar
  61. Perry, M. L. 1939. Notes on a captive badger. Murrelet 20:49–53.CrossRefGoogle Scholar
  62. Peterson, R. L. 1966. The Mammals of Eastern Canada. Toronto: Oxford Univ. Press.Google Scholar
  63. Quaife, L. R. 1978. The form and function of the North American badger (Taxidea taxus) in relation to its fossorial way of life. M.Sc. thesis, Univ. of Calgary. 197 pp.Google Scholar
  64. Roberts, M. S., and Gittleman, J. L. 1984. Mammalian Species no. 222. Ailurus fulgens. Lawrence, Kans.: American Society of Mammalogists.Google Scholar
  65. Schaller, G. B. 1972. The Serengeti Lion: A Study of Predator-Prey Relationships. Chicago: Univ. Chicago Press.Google Scholar
  66. Severinghaus, C. W., and Tanck, J. E. 1947. Speed and gait of an otter. J. Mamm. 29:71.Google Scholar
  67. Smith, J. M., and Savage, R. J. G. 1956. Some locomotory adaptations in mammals. J. Linn. Soc. (Zoology). 42:603–622.CrossRefGoogle Scholar
  68. Sokolov, A. S., and Sokolov, I. I. 1970. Some special features of the locomotory organs of the river and sea otters associated with their mode of life. Byulleten Moskovskogo obshchestva ispytatelei prirody, Otdel biologicheskii 75:5–17.Google Scholar
  69. Sokolov, I. I., and Sokolov, A. S. 1971. Some features of the locomotory organs of Martes martes L. associated with its mode of life. Byulleten Moskovskogo obshchestva ispytatelei prirody, Otdel biologicheskii 76:40–51.Google Scholar
  70. Tarasoff, F. J. 1972. Comparative aspects of the hindlimbs of the river otter, sea otter, and harp seal. In: R. J. Harrison, ed. Functional Anatomy of Mammals, pp. 333–359. New York: Academic Press.Google Scholar
  71. Tarasoff, F. J., Bisaillon, A., Piérard, J., and Whitt, A. P. 1972. Locomotory patterns and external morphology of the river otter, sea otter, and harp seal (Mammalia). Canadian J. Zool. 50:915–927.CrossRefGoogle Scholar
  72. Taylor, M. E. 1970. Locomotion in some East African viverrids. J. Mamm. 51:42–51.CrossRefGoogle Scholar
  73. Taylor, M. E. 1971. The comparative anatomy of the limbs of East African Viverridae (Carnivora) and its relationship with locomotion. Ph.D. dissert., Univ. of Toronto. 233 pp.Google Scholar
  74. Taylor, M. E. 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). J. Morphol. 143:307–336.CrossRefGoogle Scholar
  75. Taylor, M. E. 1976. The functional anatomy of the hindlimb of some African Viverridae (Carnivora). J. Morphol. 148:227–254.CrossRefGoogle Scholar
  76. Taylor, W. P. 1914. The problem of aquatic adaptation in the Carnivora, as illustrated in the osteology and evolution of the sea otter. Univ. California Publ. Geol. 7:465–495.Google Scholar
  77. Trapp, G. R. 1972. Some anatomical and behavioral adaptations of ringtails, Bassariscus astutus. J. Mamm. 53:549–557.CrossRefGoogle Scholar
  78. van Valkenburgh, B. 1985. Locomotory diversity within past and present guilds of large predatory mammals. Paleobiology 11:406–428.Google Scholar
  79. van Valkenburgh, B. 1986. Skeletal indicators of locomotory behavior in living and extinct carnivores. J. Vert. Paleobiology 11:406–428.Google Scholar
  80. Wemmer, C. and Watling, D. 1986. Ecology and status of the Sulawesi Palm Civet Macrogalidia musschenbroekii Schlegel. Biol. Conserv. 35:1–17.CrossRefGoogle Scholar
  81. Williams, T. M. 1983. Locomotion in the north American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait patterns. J. Exp. Biol. 105:283–295.Google Scholar
  82. Wingerson, L. 1983. The lion, the spring and the pendulum. New Scientist 97:237–239.Google Scholar
  83. Wolffson, D. M. 1950. Scapula shape and muscle function, with special reference to the vertebral border. Amer. J. Phys. Anthropol. 8:331–338.CrossRefGoogle Scholar
  84. Yalden, D. W. 1970. The functional morphology of the carpal bones in carnivores. Acta Anat. 77:481–500.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Mark E. Taylor

There are no affiliations available

Personalised recommendations