Basal Rate of Metabolism, Body Size, and Food Habits in the Order Carnivora

  • Brian K. McNab


Organisms expend energy for a variety of tasks, including body maintenance, movement, resource acquisition, courtship, reproduction, and growth. Energy expenditure is greatest in species that have high costs of maintenance (e.g., endotherms), high activity levels (due either to extended periods of activity or to the use of expensive forms of locomotion, such as flight and elaborate courtship rituals), expensive means or extended periods of resource acquisition, high rates of reproduction, high postnatal growth rates, and extended periods of parental care.


Basal Rate Basal Metabolic Rate Food Habit Mixed Diet Mustela Vison 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Braestrup, F. W. 1941. A study on the Arctic fox in Greenland. Meddelelser om Grönland 131:1–101.Google Scholar
  2. Brown, J. H., and Lasiewski, R. C. 1972. Metabolism of weasels: the price of being long and thin. Ecology 53:939–943.CrossRefGoogle Scholar
  3. Casey, T. M., and Casey, K. K. 1979. Thermoregulation of Arctic weasels. Physiol. Zool. 52:153–164.Google Scholar
  4. Casey, T. M., Withers, P. C., and Casey, K. K. 1979. Metabolic and respiratory responses of Arctic mammals to ambient temperature during the summer. Comp. Biochem. Physiol. 64A:331–341.CrossRefGoogle Scholar
  5. Chevillard-Hugot, M.-C. Muller, E. F., and Kulzer, E. 1980. Oxygen consumption, body temperature, and heart rate in the coati (Nasua nasua). Comp. Biochem. Physiol. 65A:305–309.CrossRefGoogle Scholar
  6. Contreras, L. C. 1986. Bioenergetics and distribution of fossorial Spalacopus cyanus (Rodentia): Thermal stress, or cost of burrowing? Physiol. Zool. 59:20–28.Google Scholar
  7. Ebisu, R. J., and Whittow, G. C. 1976. Temperature regulation in the small Indian mongoose (Herpestes auropunctatus). Comp. Biochem. Physiol. 54A:309–313.CrossRefGoogle Scholar
  8. Elgar, M. A., and Harvey, P. H. 1987. Basal metabolic rates in mammals: Allometry, phylogeny and ecology. Funct. Ecol. 1:25–36.CrossRefGoogle Scholar
  9. Ewer, R. F. 1973. The Carnivores. Ithaca, N.Y.: Cornell Univ. Press.Google Scholar
  10. Farrell, D. J., and Wood A. J. 1968. The nutrition of the female mink (Mustela vison). I. The metabolic rate of the mink. Canadian J. Zool. 46:41–45.CrossRefGoogle Scholar
  11. Gittleman, J. L. 1985. Carnivore body size: Ecological and taxonomic correlates. Oecologia 67:540–554.CrossRefGoogle Scholar
  12. Gittleman, J. L., and Oftedal, O. T. 1987. Comparative growth and lactation energetics in carnivores. Symp. Zool. Soc. London 57:41–77.Google Scholar
  13. Gittleman, J. L., and Thompson, S. D. 1988. Energy allocation in mammalian reproduction. Amer. Zool. 28:863–875.Google Scholar
  14. Golightly, R. T., and Ohmart, R. D. 1983. Metabolism and body temperature of two desert canids: Coyotes and kit foxes. J. Mamm. 64:624–635.CrossRefGoogle Scholar
  15. Harlow, H. J. 1981. Metabolic adaptations to prolonged food deprivation by the American badger Taxidea taxus. Physiol. Zool. 54:276–284.Google Scholar
  16. Hayssen, V., and Lacy, R. C. 1985. Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass. Comp. Biochem. Physiol. 81A:741–754.CrossRefGoogle Scholar
  17. Hennemann, W. W., III, and Konecny, M. J. 1980. Oxygen consumption in large spotted genets, Genetta tigrina. J. Mamm. 61:747–750.CrossRefGoogle Scholar
  18. Hennemann, W. W., III, Thompson, S. D., and Konecny, M. J. 1983. Metabolism of crab-eating foxes, Cerdocyon thous: Ecological influences on the energetics of canids. Physiol. Zool. 56:319–324.Google Scholar
  19. Hulbert, A. J., and Dawson, T. J. 1974. Thermoregulation in perameloid marsupials from different environments. Comp. Biochem. Physiol. 47A:591–616.CrossRefGoogle Scholar
  20. Irving, L., Krog, H., and Monson, M. 1955. The metabolism of some Alaskan mammals in winter and summer. Physiol. Zool. 28:173–185.Google Scholar
  21. Iversen, J. A. 1972. Basal energy metabolism of mustelids. J. Comp. Physiol. 81:341–344.CrossRefGoogle Scholar
  22. Iversen, J. A., and Krog, J. 1973. Heat production and body surface area in seals and sea otters. Norwegian J. Zool. 21:51–54.Google Scholar
  23. Kamau, J. M. Z., Johansen, K., and Maloiy, G. M. O. 1979. Thermoregulation and standard metabolism of the slender mongoose (Herpestes sanguineus). Physiol. Zool. 52:594–602.Google Scholar
  24. Kanwisher, J., and Sundnes, G. 1965. Physiology of a small cetacean. Hvalrådets Skrifter 48:45–53.Google Scholar
  25. Kenyon K. W. 1969. The sea otter in the eastern Pacific Ocean. N. Amer. Fauna 68:1–352.CrossRefGoogle Scholar
  26. Kleiber, M. 1932. Body size and metabolism. Hilgardia 6:315–353.Google Scholar
  27. Kleiber, M. 1961. The Fire of Life. New York: J. Wiley.Google Scholar
  28. Konecny, M. 1988. Movement patterns and food habits of four sympatric carnivore species in Belize, Central America. Unpublished ms. Available from M. Konecny, University of Florida, Gainesville.Google Scholar
  29. Korhonen, H., and Harri, M. 1984. Seasonal changes in thermoregulation of the raccoon dog (Nyctereutes procyonoides Gray 1834). Comp. Biochem. Physiol. 77A:213–219.CrossRefGoogle Scholar
  30. Korhonen, H., Harri, M., and Asikainen, J. 1983. Thermoregulation of polecat and raccoon dog: A comparative study with stoat, mink and blue fox. Comp. Biochem. Physiol. 74A:225–230.CrossRefGoogle Scholar
  31. Kruuk, H. and Parish, T. 1981. Feeding specialization of the European badger Meles meles in Scotland. J. Anim. Ecol. 50:773–788.CrossRefGoogle Scholar
  32. Laurie, A., and Seidensticker, J. 1977. Behavioural ecology of the sloth bear (Melursus ursinus). J. Zool. (Lond.) 182:187–204.CrossRefGoogle Scholar
  33. Lavigne, D. M., Innes, S., Worthy, G. A. J., Kovacs, K. M., Schmitz, O. J., and Hickie, J. P. 1986. Metabolic rates of seals and whales. Canadian J. Zool. 64:279–284.CrossRefGoogle Scholar
  34. Lindstedt, L. S., and Calder, W. A. 1981. Body size, physiological time, and longevity of homeothermic animals. Quart. Rev. Biol. 56:1–16.CrossRefGoogle Scholar
  35. Loudon, A. S. I., and Racey, P. 1987. Reproductive Energetics in Mammals. Symposium no. 57. London: Zoological Society of London.Google Scholar
  36. McKenna, M. C. 1975. Toward a phylogenetic classification of the Mammalia. In: W. P. Luckett & F. S. Szalay, eds. Phylogeny of the Primates, A Multidisciplinary Approach, pp. 21–46. New York: Plenum Press.Google Scholar
  37. McNab, B. K. 1966. The metabolism of fossorial rodents: A study of convergence. Ecology 47:712–733.CrossRefGoogle Scholar
  38. McNab, B. K. 1969. The economics of temperature regulation in Neotropical bats. Comp. Biochem. Physiol. 31:227–268.CrossRefGoogle Scholar
  39. McNab, B. K. 1971. On the ecological significance of Bergmann’s rule. Ecology 52:845–854.CrossRefGoogle Scholar
  40. McNab, B. K. 1978. Energetics of arboreal folivores: Physiological problems and ecological consequences of feeding on an ubiquitous food supply. In: G. G. Montgomery, ed. The Ecology of Arboreal Folivores, pp. 153–162. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  41. McNab, B. K. 1979. The influence of body size on the energetics and distribution of fossorial and burrowing rodents. Ecology 60:1010–1021.CrossRefGoogle Scholar
  42. McNab, B. K. 1980. Food habits, energetics, and the population biology of mammals. Amer. Nat. 116:106–124.CrossRefGoogle Scholar
  43. McNab, B. K. 1983. Ecological and behavioral consequences of adaptation to various food resources. In: J. F. Eisenberg & D. G. Kleiman, eds. Advances in the Study of Mammalian Behavior, pp. 664–697. Special Publication no. 7. Lawrence, Kans.: American Society of Mammalogists.Google Scholar
  44. McNab, B. K. 1984. Physiological convergence amongst ant-eating and termite-eating mammals. J. Zool. (Lond.) 203:485–510.CrossRefGoogle Scholar
  45. McNab, B. K. 1986a. Food habits, energetics, and the reproduction of marsupials. J. Zool. (Lond.) 208:595–614.CrossRefGoogle Scholar
  46. McNab, B. K. 1986b. The influence of food habits on the energetics of eutherian mammals. Ecol. Monog. 56:1–19.CrossRefGoogle Scholar
  47. McNab, B. K. 1988a. Complications in scaling basal rate of metabolism in mammals. Quart. Rev. Biol. 63:25–54.CrossRefGoogle Scholar
  48. McNab, B. K. 1988b Energy conservation in a tree-kangaroo (Dendrolagus matschiei) and the red panda (Ailurus fulgens). Physiol. Zool. 61:280–292.Google Scholar
  49. McNab, B. K., and Morrison, P. R. 1963. Body temperature and metabolism in subspecies of Peromyscus from arid and mesic environments. Ecol. Monogr. 33:63–82.CrossRefGoogle Scholar
  50. Morrison, P. R. 1960. Some interrelations between weight and hibernation function. Bull. Mus. Comp. Zool. 124:75–91.Google Scholar
  51. Morrison, P. R., Rosenmann, M., and Estes, J. A. 1974. Metabolism and thermoregulation in the sea otter. Physiol. Zool. 47:218–229.Google Scholar
  52. Müller, E. F. 1985. Basal metabolic rates in primates—The possible role of phylogenetic and ecological factors. Comp. Biochem. Physiol. 81A:707–711.CrossRefGoogle Scholar
  53. Müller, E. F., and Kulzer, E. 1977. Body temperature and oxygen uptake in the kinkajou (Potos flavus, Schreber), a nocturnal tropical carnivore. Arch. Internat. Physiol. Biochem. 86:153–163.CrossRefGoogle Scholar
  54. Müller, E. F., and Lojewski, U. 1986. Thermoregulation in the meerkat (Suricata suricatta Schreber, 1776). Comp. Biochem. Physiol. 83A:217–224.CrossRefGoogle Scholar
  55. Noll-Banholzer, U. 1969. Body temperature, oxygen consumption, evaporative water loss and heart rate in fennec. Comp. Biochem. Physiol. 62A:585–592.Google Scholar
  56. Okarma, H., and Koteja, P. 1987. Basal metabolic rate in the gray wolf in Poland. J. Wild. Mgt. 51:800–801.CrossRefGoogle Scholar
  57. Scholander, P., Hock, R., Walters, V., and Irving, L. 1950. Adaptation to cold in Arctic and tropical mammals and birds in relation to body temperature, insulation, and basal metabolic rate. Biol. Bull. 99:259–271.CrossRefGoogle Scholar
  58. Shield, J. 1972. Acclimation and energy metabolism of the dingo, Canis dingo, and the coyote, Canis latrans. J. Zool. (Lond.) 168:483–501.CrossRefGoogle Scholar
  59. Shkolnik, A., and Schmidt-Nielsen, K. 1976. Temperature regulation in hedgehogs from temperate and desert environments. Physiol. Zool. 49:56–64.Google Scholar
  60. Smith, R. J. 1980. Rethinking allometry. J. Theor. Biol. 87:97–111.CrossRefGoogle Scholar
  61. Smith, R. J. 1984. Allometric scaling in comparative biology: Problems of concept and method. Amer. J. Physiol. 246:R152–R160.Google Scholar
  62. Taylor, C. R., and Roundtree, V. J. 1973. Temperature regulation and heat balance in running cheetahs: A strategy for sprinters? Amer. J. Physiol. 224:848–851.Google Scholar
  63. Taylor, C. R., Schmidt-Nielsen, K., Dmi’el, R., and Fedak, M. A. 1971. Effect of hyperthermia on heat balance during running in the African hunting dog. Amer. J. Physiol. 20:823–827.Google Scholar
  64. Watts, P. D. 1988. Whole body thermal conductance of denning ursids. J. Thermal Biol. In press.Google Scholar
  65. Worthen, G. L., and Kilgore, D. L., Jr. 1981. Metabolic rate of pine marten in relation to air temperature. J. Mamm. 62:624–628.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1989

Authors and Affiliations

  • Brian K. McNab

There are no affiliations available

Personalised recommendations