Gene Expression in Normal and Neoplastic Breast Tissue

  • Jeffrey Rosen


Most structural gene sequences in mammalian cells represent less than one millionth of the information contained in the genomic DNA. Because of this enormous complexity of genetic information in higher organisms, an understanding of the mechanisms regulating gene expression requires the study of specific genes. Fortunately, considerable progress has been made in the last decade in the development of techniques for the isolation of individual eukaryotic messenger RNAs (mRNAs) and the synthesis of their complementary DNA copies (cDNAs) (for a general review, see Rosen and Monahan(1)). These molecular hybridization probes have been utilized successfully to study gene expression in a number of model systems, notably the control of globin gene expression during erythroid differentiation(2) and steroid hormone induction of ovalbumin mRNA(3) and the other egg-white protein mRNAs(4) in the chick oviduct. These studies have recently been culminated by the determination of the entire nucleic acid sequence of the rabbit ß-globin mRNA.(5) However, the precise mechanism controlling the expression of any single eukaryotic gene remains to be established.


Mammary Gland Milk Protein mRNA Activity Casein Gene Milk Protein Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. M. Rosen and J. Monahan, Messenger RNA isolation, characterization and hybridization analysis, in: Laboratory Methods Manual for Hormone Action and Molecular Endocrinology (W. T. Schrader and B. W. O’Malley, eds.), pp. 4–1–4–52, Department of Cell Biology, Baylor College of Medicine, Houston (1977).Google Scholar
  2. 2.
    J. Ross, Y. Ikawa, and P. Leder, Globin messenger-RNA induction during erythroid differentiation of cultured leukemia cells, Proc. Natl Acad. Sci. U.S.A. 69, 3620–3623 (1972).PubMedPubMedCentralGoogle Scholar
  3. 3.
    S. E. Harris, J. M. Rosen, A. R. Means, and B. W. O’Malley, Use of a specific probe for ovalbumin messenger RNA to quantitate estrogen-induced gene transcripts, Biochemistry 14, 2072–2080 (1975).PubMedGoogle Scholar
  4. 4.
    R. D. Palmiter, P. B. Moore, E. R. Mulvihill, and S. Emtage, A significant lag in the induction of ovalbumin messenger RNA by steroid hormones: A receptor translocation hypothesis, Cell 8, 557–572 (1976).PubMedGoogle Scholar
  5. 5.
    A. Efstratiadis, F. C. Kafatos, and T. Maniatis, The primary structure of rabbit ß-globin mRNA as determined from cloned DNA, Cell 10, 571–585 (1977).PubMedGoogle Scholar
  6. 6.
    G. Schutz, M. Beato, and P. Feigelson, Messenger RNA for hepatic tryptophan oxygenase: Its partial purification, its translation in a heterologous cell-free system, and its control by glucocorticoid hormones, Proc. Natl. Acad. Sci. U.S.A. 70,1218–1221 (1973).PubMedPubMedCentralGoogle Scholar
  7. 7.
    A. E. Sippel, P. Feigelson, and A. K. Roy, Hormonal regulation of hepatic messenger RNA levels for α2U globulin, Biochemistry 14, 825–829 (1975).PubMedGoogle Scholar
  8. 8.
    G. U. Ryffel, W. Wahli, and R. Weber, Quantitation of vitellogenin messenger RNA in the liver of male Xenopus toads during primary and secondary stimulation by estrogen, Cell 11, 213–221 (1977).PubMedGoogle Scholar
  9. 9.
    W. P. Parks, J. C. Ranson, H. A. Young, and E. M. Scolnick, Mammary tumor virus induction by glucocorticoids: Characterization of specific transcriptional regulation, J. Biol. Chem. 250, 3330–3336 (1975).PubMedGoogle Scholar
  10. 10.
    G. M. Ringold, K. R. Yamamoto, G. M. Tomkins, J. M. Bishop, and H. E. Varmus, Dexamethasone-mediated induction of mouse mammary tumor virus RNA: A system for studying glucocorticoid action, Cell 6, 299–305 (1975).PubMedGoogle Scholar
  11. 11.
    H. A. Young, T.’Y. Shih, E. M. Scolnick, and W. P. Parks, Steroid induction of mouse mammary tumor virus: Effect upon synthesis and degradation of viral RNA, J. Virol. 21, 139–146 (1977).PubMedPubMedCentralGoogle Scholar
  12. 12.
    G. M. Ringold, K. R. Yamamoto, J. M. Bishop, and H. E. Varmus, Glucocorticoid-stimulated accumulation of mouse mammary tumor virus RNA: Increased rate of synthesis of viral RNA, Proc. Natl. Acad. Sci. U.S.A. 74, 2879–2883 (1977).PubMedPubMedCentralGoogle Scholar
  13. 13.
    F. Vignon and H. Rochefort, Regulation of estrogen receptors in ovarian-dependent rat mammary tumors. I. Effects of castration and prolactin, Endocrinology 98, 722–729 (1976).PubMedGoogle Scholar
  14. 14.
    B. S. Leung and G. H. Sasaki, Prolactin and progesterone effect on specific estradiol binding in uterine and mammary tissues in vitro, Biochem. Biophys. Res. Commun. 55, 1180–1187 (1973).Google Scholar
  15. 15.
    M. R. Banerjee, Responses of mammary cells to hormones, Int. Rev. Cytol. 47, 1–97 (1976).PubMedGoogle Scholar
  16. 16.
    R. Hilf, J. T. Harmon, R. J. Matusik, and M. B. Ringler, Hormonal control of mammary cancer, in: Control Mechanisms in Cancer (W. E. Criss, T. Ono, and J. R. Sabine, eds.), pp. 1–24, Raven Press, New York (1976).Google Scholar
  17. 17.
    R. K. Craig and P. N. Campbell, Molecular aspects of milk protein biosynthesis, in: Lactation, Vol. 4 (B. Larsen, ed.), Academic Press, New York (in press).Google Scholar
  18. 18.
    T. P. H. Tse and J. M. Taylor, Translation of albumin messenger RNA in a cell-free protein-synthesizing system derived from wheat germ, J. Biol. Chem. 252, 1272–1278 (1977).PubMedGoogle Scholar
  19. 19.
    L. A. Weber, E. D. Hickey, D. L. Nuss, and C. Baglioni, 5’-Terminal 7-methyl-guanosine and mRNA function: Influence of potassium concentration on translation in vitro, Proc. Natl. Acad. Sci. U.S.A. 74, 3254–3258 (1977).Google Scholar
  20. 20.
    G. Taborsky, Phosphoproteins, in: Advances in Protein Chemistry (C. B. Anfinsen, J. T. Edsall, and F. M. Richards, eds.), Vol. 28, pp. 91–125, Academic Press, New York (1974).Google Scholar
  21. 21.
    J. M. Rosen, S. L. C. Woo, and J. P. Comstock, Regulation of casein messenger RNA during the development of the rat mammary gland, Biochemistry 14, 2895–2902 (1975).PubMedGoogle Scholar
  22. 22.
    K. Weber and M. Osborn, The reliability of molecular weight determinations by dodecyl sulfate Polyacrylamide gel electrophoresis, J. Biol. Chem. 244, 4406–4412 (1969).PubMedGoogle Scholar
  23. 23.
    U. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature (London) 227, 680–685 (1970).Google Scholar
  24. 24.
    J. M. Rosen, Isolation and characterization of purified rat casein messenger ribonucleic acids, Biochemistry 15, 5263–5271 (1976).PubMedGoogle Scholar
  25. 25.
    R. K. Craig, P. A. Brown, O. S. Harrison, D. Mcllreavy, and P. N. Campbell, Isolation and characterization of messenger ribonucleic acids from lactating mammary gland and identification of caseins and pre-α-lactalbumin as translation products in heterologous cell-free systems, Biochem. J. 160, 57–74 (1976).PubMedPubMedCentralGoogle Scholar
  26. 26.
    P. M. Terry, R. Ganguly, E. M. Ball, and M. R. Banerjee, Murine mammary gland RNA directed synthesis of casein in a heterologous cell-free protein synthesis system, Cell Differ. 4, 113–122 (1975).PubMedGoogle Scholar
  27. 27.
    P. Gaye and L. M. Houdebine, Isolation and characterization of casein mRNAs from lactating ewe mammary glands, Nucleic Acids Res. 2, 707–722 (1975).PubMedPubMedCentralGoogle Scholar
  28. 28.
    D. S. Shields, G. Blobel, and J. M. Rosen, unpublished observations.Google Scholar
  29. 29.
    P. N. Campbell, D. Mcllreavy, and D. Tarin, The detection of the messenger ribonucleic acid for the α-lactalbumin of guinea-pig milk, Biochem. J. 134, 345–347 (1973).PubMedPubMedCentralGoogle Scholar
  30. 30.
    T. Zehavi-Willner and C. Lane, Subcellular compartmentation of albumin and globin made in oocytes under the direction of injected messenger RNA, Cell 11, 683–693 (1977).PubMedGoogle Scholar
  31. 31.
    L.-M. Houdebine and P. Gaye, Regulation of casein synthesis in the rabbit mammary gland: Titration of mRNA activity for casein under prolactin and progesterone treatments, Mol Cell. Endocrinol. 3, 37–55 (1975).PubMedGoogle Scholar
  32. 32.
    P. K. Chakrabartty and P. K. Qasba, Partial purification of rat a-lactalbumin mRNA, Nucleic Acids Res. 4, 2065–2074 (1977).PubMedPubMedCentralGoogle Scholar
  33. 33.
    L.-M. Houdebine and P. Gaye, Purification of mRNAs for ewe αs-casein and ß-casein by immunoprecipitation of polysomes, Eur. J. Biochem. 63, 9–14 (1976).PubMedGoogle Scholar
  34. 34.
    L.-M. Houdebine, P. Gaye, and A. Favre, Lack of poly(A) sequence in half of the messenger RNA coding for ewe as-casein, Nucleic Acids Res. 1, 413–425 (1974).PubMedPubMedCentralGoogle Scholar
  35. 35.
    J. Gielen, H. Aviv, and P. Leder, Characteristics of rabbit globin mRNA purification by oligo(dT) cellulose chromatography, Arch. Biochem. Biophys. 163, 146–154 (1974).PubMedGoogle Scholar
  36. 36.
    J. M. Rosen, S. L. C. Woo, J. W. Holder, A. R. Means, and B. W. O’Malley, Preparation and preliminary characterization of purified ovalbumin messenger RNA from the hen oviduct, Biochemistry 14, 69–78 (1975).PubMedGoogle Scholar
  37. 37.
    Y. Suzuki and D. D. Brown, Isolation and identification of the messenger RNA for silk fibroin from Bombyx mori, J. Mol. Biol. 63, 409–429 (1972).Google Scholar
  38. 38.
    R. Palacios, D. Sullivan, N. M. Summers, M. L. Kiely, and R. T. Schimke, Purification of ovalbumin messenger ribonucleic acid by specific immunoadsorption of ovalbumin-synthesizing polysomes and millipore partition of ribonucleic acid, J. Biol. Chem. 248, 540–548 (1973).PubMedGoogle Scholar
  39. 39.
    J. M. Taylor and T. P. H. Tse, Isolation of rat liver albumin messenger RNA, J. Biol. Chem. 251, 7461–7467 (1976).PubMedGoogle Scholar
  40. 40.
    L.-M. Houdebine, Synthesis of DNA complementary to the mRNAs for milk proteins by E. coli DNA polymerase I, Nucleic Acids Res. 3, 615–630 (1976).PubMedPubMedCentralGoogle Scholar
  41. 41.
    B. G. Forget, D. Housman, E. J. Benz, Jr., and R. P. McCaffrey, Synthesis of DNA complementary to separated human alpha and beta globin messenger RNAs, Proc. Natl. Acad. Sci. U.S.A. 72, 984–988 (1975).PubMedPubMedCentralGoogle Scholar
  42. 42.
    A. Ullrich, J. Shine, J. Chirgwin, R. Pictet, E. Tischer, W. J. Rutter, and H. M. Goodman, Rat insulin genes: Construction of plasmids containing the coding sequences, Science 196, 1313–1318 (1977).PubMedGoogle Scholar
  43. 43.
    S. L. C. Woo, J. M. Rosen, C. D. Liarakos, Y. C. Choi, H. Busch, A. R. Means, B. W. O’Malley, and D. L. Robberson, Physical and chemical characterization of purified ovalbumin messenger RNA, J. Biol. Chem. 250, 7027–7039 (1975).PubMedGoogle Scholar
  44. 44.
    N. T. Van, J. W. Holder, S. L. C. Woo, A. R. Means, and B. W. O’Malley, Secondary structure of ovalbumin messenger RNA, Biochemistry 15, 2054–2061 (1976).PubMedGoogle Scholar
  45. 45.
    D. Sheiness, L. Puckett, and J. E. Darnell, Possible relationship of poly(A)-shortening to mRNA turnover, Proc. Natl. Acad. Sci. U.S.A. 72, 1077–1081 (1975).PubMedPubMedCentralGoogle Scholar
  46. 46.
    L.-M. Houdebine, Absence of poly(A) in a large part of newly synthesized casein mRNA, FEBS Lett. 66, 110–113 (1976).PubMedGoogle Scholar
  47. 47.
    M. Salditt-Georgieff, W. Jelinek, J. E. Darnell, Y. Furuichi, M. Morgan, and A. Shatkin, Methyl labeling of HeLa cell hnRNA: A comparison with mRNA, Cell 7, 227–237 (1976).PubMedGoogle Scholar
  48. 48.
    R. P. Perry and D.E. Kelley, Kinetics of formation of 5’ terminal caps in mRNA, Cell 8, 433–442 (1976).PubMedGoogle Scholar
  49. 49.
    A. J. Shatkin, Capping of eucaryotic mRNAs, Cell 9, 645–653 (1976).PubMedGoogle Scholar
  50. 50.
    Y. Furuichi, A. LaFiandra, and A. J. Shatkin, 5’ Terminal structure and mRNA stability, Nature (London) 266, 235–239 (1977).Google Scholar
  51. 51.
    G. W. Both, A. K. Banerjee, and A. J. Shatkin, Methylation-dependent translation of viral messenger RNAs in vitro, Proc. Natl. Acad. Sci. U.S.A. 72, 1189–1193 (1975).Google Scholar
  52. 52.
    E. D. Hickey, L. A. Weber, and C. Baglioni, Inhibition of initiation of protein synthesis by 7-methylguanosine-5’-monophosphate, Proc. Natl. Acad. Sci. U.S.A. 73, 19–23 (1976).PubMedPubMedCentralGoogle Scholar
  53. 53.
    D. A. Shafritz, J. A. Weinstein, B. Safer, W. C. Merrick, L. A. Weber, E. D. Hickey, and C. Baglioni, Evidence for role of m7G5’-phosphate group in recognition of eukaryotic mRNA by initiation factor IF-M3, Nature (London) 261, 291–294 (1976).Google Scholar
  54. 54.
    J. M. Rosen, unpublished observations.Google Scholar
  55. 55.
    H. F. Lodish and J. K. Rose, Relative importance of 7-methylguanosine in ribosome binding and translation of vesicular stomatitis virus mRNA in wheat germ and reticulocyte cell-free systems, J. Biol. Chem. 252, 1181–1188 (1977).PubMedGoogle Scholar
  56. 56.
    N. J. Nardacci and W. L. McGuire, Casein and α-lactalbumin mRNA in experimental breast cancer, Cancer Res. 37, 1186–1190 (1977).PubMedGoogle Scholar
  57. 57.
    P. Gaye, N. Viennot, and R. Denamur, In vitro synthesis of a-lactalbumin and ß-lactoglobulin by microsomes and bound polyribosomes from the mammary gland of lactating sheep, Biochim. Biophys. Acta 262, 371–380 (1972).PubMedGoogle Scholar
  58. 58.
    L.-M. Houdebine, Distribution of casein mRNA between free and membrane-bound polysomes during the induction of lactogenesis in the rabbit, Mol. Cell. Endocrinol. 7, 125–135 (1977).PubMedGoogle Scholar
  59. 59.
    R. M. Wynn, J. A. Harris, and R. T. Chatterton, Interaction of progesterone and adrenocorticoids in ultrastructural development of the mammary gland of the rat, Am. J. Obstet. Gynecol. 126, 920–930 (1976).PubMedGoogle Scholar
  60. 60.
    G. Blobel and B. Dobberstein, Transfer of proteins across membranes, J. Cell Biol. 67, 835–851 (1975).PubMedGoogle Scholar
  61. 61.
    I. M. Verma, G. F. Temple, H. Fan, and D. Baltimore, In vitro synthesis of DNA complementary to rabbit reticulocyte 10S RNA, Nature (London) New Biol. 235, 163–166 (1972).Google Scholar
  62. 62.
    L. A. Loeb, K. D. Tartof, and E. C. Travaglini, Copying natural RNAs with E. coli DNA polymerase I, Nature (London) New Biol. 242, 66–69 (1973).Google Scholar
  63. 63.
    D. L. Kacian, K. F. Watson, A. Burny, and S. Spiegelman, Purification of the DNA polymerase of avian myeloblastosis virus, Biochim. Biophys. Acta 246, 365–383 (1971).PubMedGoogle Scholar
  64. 64.
    J. J. Monahan, S. E. Harris, S. L. C. Woo, D. L. Robberson, and B. W. O’Malley, The synthesis and properties of the complete complementary DNA transcript of ovalbumin mRNA, Biochemistry 15, 223–233 (1976).PubMedGoogle Scholar
  65. 65.
    A. Efstratiadis, T. Maniatis, F. C. Kafatos, A. Jeffrey, and J. N. Vournakis, Full length and discrete partial reverse transcripts of globin and chorion mRNAs, Cell 4, 367–378 (1975).PubMedGoogle Scholar
  66. 66.
    A. Efstratiadis, F. C. Kafatos, A. Maxam, and T. Maniatis, Enzymatic in vitro synthesis of globin genes, Cell 7, 279–288 (1976).PubMedGoogle Scholar
  67. 67.
    J. J. Monahan, L. A. McReynolds, and B.W. O’Malley, The ovalbumin gene in vitro enzymatic synthesis and characterization, J. Biol. Chem. 251, 7355–7362 (1976).PubMedGoogle Scholar
  68. 68.
    J. M. Taylor, R. Illmansee, and J. Summers, Efficient transcription of RNA into DNA by avian sarcoma virus polymerase, Biochim. Biophys. Acta 442, 324–330 (1976).PubMedGoogle Scholar
  69. 69.
    S. Packman, H. Aviv, J. Ross, and P. Leder, A comparison of globin genes in duck reticulocytes and liver cells, Biochem. Biophys. Res. Commun. 49, 813–819 (1972).PubMedGoogle Scholar
  70. 70.
    P. R. Harrison, G. D. Birnie, A. Hell, S. Humphries, B. D. Young, and J. Paul, Kinetic studies of gene frequency. I. Use of a DNA copy of reticulocyte 9S RNA to estimate globin gene dosage in mouse tissues, J. Mol. Biol. 84, 539–554 (1974).PubMedGoogle Scholar
  71. 71.
    R. S. Gilmour and J. Paul, Tissue-specific transcription of the globin gene in isolated chromatin, Proc. Natl. Acad. Sci. U.S.A. 70, 3440–3442 (1973).PubMedPubMedCentralGoogle Scholar
  72. 72.
    M. M. Smith and R. C. C. Huang, Transcription in vitro of immunoglobulin kappa light chain genes in isolated mouse myeloma nuclei and chromatin, Proc. Natl. Acad. Sci. U.S.A. 73, 775–779 (1976).PubMedPubMedCentralGoogle Scholar
  73. 73.
    P. Leder, J. Ross, J. Gielen, S. Packman, Y. Ikawa, H. Aviv, and D. Swan, Regulated expression of mammalian genes: Globin and immunoglobulin as model systems, Cold Spring Harbor Symp. Quant. Biol. 38, 753–761 (1973).Google Scholar
  74. 74.
    S. L. C. Woo, J. J. Monahan, and B. W. O’Malley, The ovalbumin gene purification of the anticoding strand, J. Biol. Chem. 252, 5789–5797 (1977).PubMedGoogle Scholar
  75. 75.
    P. Venetianer and P. Leder, Enzymatic synthesis of solid phase-bound DNA sequences corresponding to specific mammalian genes, Proc. Natl. Acad. Sci. U.S.A. 71, 3892–3895 (1974).PubMedPubMedCentralGoogle Scholar
  76. 76.
    C. A. Marotta, B. G. Forget, S. M. Weissman, I. M. Verma, R. P. McCaffrey, and D. Baltimore, Nucleotide sequence of human globin messenger RNA, Proc. Natl. Acad. Sci. U.S.A. 71, 2300–2304 (1974).PubMedPubMedCentralGoogle Scholar
  77. 77.
    L.-M. Houdebine, Effects of prolactin and progesterone on expression of casein genes: Titration of casein mRNA by hybridization with complementary DNA, Eur. J. Biochem. 68, 219–225 (1976).PubMedGoogle Scholar
  78. 78.
    R. C. Shuster, L.-M. Houdebine, and P. Gaye, Studies on the synthesis of casein messenger RNA during pregnancy in the rabbit, Eur. J. Biochem. 71, 193–199 (1976).PubMedGoogle Scholar
  79. 79.
    E. Devinoy and L.-M. Houdebine, Effects of glucocorticoids on casein gene expression in the rabbit, Eur. J. Biochem. 75, 411–116 (1977).PubMedGoogle Scholar
  80. 80.
    J. M. Rosen and S. W. Barker, Quantitation of casein messenger ribonucleic acid sequences using a specific complementary DNA hybridization probe, Biochemistry 15, 5272–5280 (1976).PubMedGoogle Scholar
  81. 81.
    J. C. Myers, S. Spiegelman, and D. L. Kacian, Synthesis of full-length DNA copies of avian myeloblastosis virus RNA in high yields, Proc. Natl. Acad. Sci. U.S.A. 74, 2840–2843 (1977).PubMedPubMedCentralGoogle Scholar
  82. 82.
    D. Baltimore, RNA-dependent DNA polymerase in virions of RNA tumor viruses, Nature (London) 226, 1209–1211 (1970).Google Scholar
  83. 83.
    H. Temin and D. Baltimore, RNA-directed DNA synthesis and RNA tumor viruses, in: Advances in Virus Research (K. M. Smith and M. A. Lauffer, eds.), Vol. 17, pp. 129–186, Academic Press, New York (1972).Google Scholar
  84. 84.
    E. Rothenberg and D. Baltimore, Synthesis of long, representative DNA copies of the murine RNA tumor virus genome, J. Virol. 17, 168–174 (1976).PubMedCentralGoogle Scholar
  85. 85.
    J. P. Dudley, J. S. Butel, S. H. Socher, and J. M. Rosen, MMTV expression in several cloned BALB/c mammary tumor cell lines (in preparation).Google Scholar
  86. 86.
    H. E. Varmus, N. Quintrell, E. Medeiros, J. M. Bishop, R. C. Nowinski, and N. H. Sarker, Transcription of mouse mammary tumor virus genes in tissues from high and low incidence mouse strains, J. Mol Biol. 79, 663–679 (1973).PubMedGoogle Scholar
  87. 87.
    H.-J. Kung, S. Hu, W. Bender, J. M. Bailey, N. Davidson, M. O. Nicolson, and R. M. McAllister, RD-114, baboon, and wooley monkey viral RNAs compared in size and structure, Cell 7, 609–620 (1976).PubMedGoogle Scholar
  88. 88.
    J. M. Rosen, S. E. Harris, G. C. Rosenfeld, C. D. Liarakos, and B. W. O’Malley, Effect of estrogen on gene expression in the chick oviduct. III. Hybridization studies with [3H]messenger RNA and [3H]complementary DNA under conditions of DNA excess, Cell Differ. 3, 103–116 (1974).PubMedGoogle Scholar
  89. 89.
    F. W. Alt, R. E. Kellems, J. R. Bertino, and R. T. Schimke, Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells, J. Biol. Chem. 253, 1357–1370 (1978).PubMedGoogle Scholar
  90. 90.
    D. S. Holmes and J. Bonner, Sequence composition of rat nuclear deoxyribonucleic acid and high molecular weight nuclear ribonucleic acid, Biochemistry 13, 841–848 (1974).PubMedGoogle Scholar
  91. 91.
    J. M. Rosen and S. H. Socher, Detection of casein messenger RNA in hormone-dependent mammary cancer by molecular hybridization, Nature (London) 269, 83–86 (1977).Google Scholar
  92. 92.
    W. Salser and J. S. Isaacson, Mutation rates in globin genes: The genetic load and Haldane’s dilemma, Prog. Nucleic Acids Mol. Biol. 19, 205–220 (1976).Google Scholar
  93. 93.
    P. Gaye, L.-M. Houdebine, G. Petrissant, and R. Denamur, Protein synthesis in mammary gland, Acta Endocrinol, VI, Karolinska Symposium in Research Methods in Reproductive Endocrinology, pp. 426–448 (1973).Google Scholar
  94. 94.
    D. N. Banerjee and M. R. Banerjee, Rapidly-labelled RNA in the mouse mammary gland before and during lactation, J. Endocrinol. 56, 145–152 (1973).PubMedGoogle Scholar
  95. 95.
    A. Elska, G. Matsuka, U. Matiash, I. Nasarenko, and N. Jemenova, tRNA and aminoacyl-tRNA synthetases during differentiation and various functional states of the mammary gland, Biochim. Biophys. Acta 247, 430–440 (1971).PubMedGoogle Scholar
  96. 96.
    T. Oka and Y. J. Topper, Hormone-dependent accumulation of rough endoplasmic reticulum in mouse mammary cells in vitro, J. Biol. Chem. 246, 7701–7709 (1971).PubMedGoogle Scholar
  97. 97.
    R. W. Turkington and M. Riddle, Hormone-dependent formation of polysomes in mammary cells in vitro, J. Biol. Chem. 245, 5145–5152 (1970).PubMedGoogle Scholar
  98. 98.
    R. R. Anderson and C. W. Turner, Mammary gland growth during pseudopregnancy and pregnancy in the rat, Proc. Soc. Exp. Biol. Med. 128, 210–214 (1968).PubMedGoogle Scholar
  99. 99.
    R. E. Munford, Changes in the mammary glands of rats and mice during pregnancy, lactation and involution. I. Histological structure., J. Endocrinol. 28, 1–15 (1963).PubMedGoogle Scholar
  100. 100.
    R. Jenness, Biosynthesis and composition of milk,J. Invest. Dermatol. 63, 109–118 (1974).PubMedGoogle Scholar
  101. 101.
    J. M. Rosen and B. W. O’Malley, Hormonal regulation of specific gene expression in the chick oviduct, Biochem. Action Horm. 3, 271–315 (1975).Google Scholar
  102. 102.
    J. R. Tata, The expression of the vitellogenin gene, Cell 9, 1–14 (1976).PubMedGoogle Scholar
  103. 103.
    J. M. Rosen, D. L. O’Neal, J. E. McHugh, and J. P. Comstock, Progesterone-mediated inhibition of casein mRNA and polysomal casein synthesis in the rat mammary gland during pregnancy, Biochemistry 17, 290–297 (1978).PubMedGoogle Scholar
  104. 104.
    M.-A. Le Meur, P. Gerlinger, and J.-P. Ebel, Messenger RNA translation in the presence of homologous and heterologous tRNA, Eur. J. Biochem. 67, 519–529 (1976).PubMedGoogle Scholar
  105. 105.
    J. P. Comstock, G. C. Rosenfeld, B. W. O’Malley, and A. R. Means, Estrogen-induced changes in translation, and specific messenger RNA levels during oviduct differentiation, Proc. Natl. Acad. Sci. U.S.A. 69, 2377–2380 (1972).PubMedPubMedCentralGoogle Scholar
  106. 106.
    T. M. Y. Liu and J. W. Davis, Induction of lactation by ovariectomy of pregnant rats, Endocrinology 80, 1043–1050 (1967).PubMedGoogle Scholar
  107. 107.
    J. W. Davis, J. Wikman-Coffelt, and C. L. Eddington, The effect of progesterone on biosynthetic pathways in mammary tissue, Endocrinology 91, 1011–1019 (1972).PubMedGoogle Scholar
  108. 108.
    D. H. Lockwood, R. W. Turkington, and Y. J. Topper, Hormone-dependent development of milk protein synthesis in mammary gland in vitro, Biochim. Biophys. Acta 130, 493–501 (1966).PubMedGoogle Scholar
  109. 109.
    R. W. Turkington, Induction of milk protein synthesis by placental lactogen and prolactin in vitro, Endocrinology 82, 575–583 (1968).Google Scholar
  110. 110.
    R. J. Matusik and J. M. Rosen, Hormonal regulation of casein mRNA, Proc. 59th Meeting of the Endocrine Society, p. 122 (1977).Google Scholar
  111. 111.
    L. Assairi, C. Delouis, P. Gaye, L.-M. Houdebine, M. Ollivier-Bousquet, and R. Denamur, Inhibition by progesterone of the lactogenic effect of prolactin in the pseudopregnant rabbit, Biochem. J. 144, 245–252 (1974).PubMedPubMedCentralGoogle Scholar
  112. 112.
    R. T. Chatterton, Jr., W. J. King, D. A. Ward, and J. L. Chien, Differential responses of prelactating and lactating mammary gland to similar tissue concentrations of progesterone, Endocrinology 96, 861–868 (1975).PubMedGoogle Scholar
  113. 113.
    J. Djiane and P. Durand, Prolactin-progesterone antagonism in self regulation of prolactin receptors in the mammary gland, Nature (London) 266, 641–643 (1977).Google Scholar
  114. 114.
    J. Djiane, P. Durand, and P. A. Kelly, Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation, Endocrinology 100, 1348–1356 (1977).PubMedGoogle Scholar
  115. 115.
    G. Shyamala, Specific cytoplasmic glucocorticoid hormone receptors in lactating mammary glands, Biochemistry 12, 3085–3090 (1973).PubMedGoogle Scholar
  116. 116.
    K. B. Horwitz, W. L. McGuire, O. H. Pearson, and A. Segaloff, Predicting response to endocrine therapy in human breast cancer: A hypothesis, Science 189, 726–727 (1975).PubMedGoogle Scholar
  117. 117.
    R. P. C. Shiu, P. A. Kelly, and H. G. Friesen, Radioreceptor assay for prolactin and other lactogenic hormones, Science 180, 968–971 (1973).PubMedGoogle Scholar
  118. 118.
    W. K. Morishige, G. J. Pepe, and I. Rothchild, Serum luteinizing hormone, prolactin and progesterone levels during pregnancy in the rat, Endocrinology 92, 1527–1530 (1973).PubMedGoogle Scholar
  119. 119.
    P. A. Kelly, T. Tsushima, R. P. C. Shiu, and H. G. Friesen, Lactogenic and growth hormone-like activities in pregnancy determined by radioreceptor assays, Endocrinology 99, 765–774 (1976).PubMedGoogle Scholar
  120. 120.
    Y. Amenomori, C. L. Chen, and J. Meites, Serum prolactin levels in rats during different reproductive states, Endocrinology 86, 506–510 (1970).PubMedGoogle Scholar
  121. 121.
    G. J. Pepe and I. Rothchild, Metabolic clearance rate of progesterone: Comparison between ovariectomized, pregnant, pseudopregnant and deciduoma-bearing pseudopregnant rats, Endocrinology 93, 1200–1205 (1973).PubMedGoogle Scholar
  122. 122.
    A. A. Simpson, M. H. W. Simpson, Y. N. Sinha, and G. H. Schmidt, Changes in concentrations of prolactin and adrenal corticosteroids in rat plasma during pregnancy and lactation, J. Endocrinol 58, 675–676 (1973).PubMedGoogle Scholar
  123. 123.
    P. K. Qasba and P. M. Guillino, α-Lactalbumin content of rat mammary carcinomas and the effect of pituitary stimulation, Cancer Res. 37, 3792–3795 (1977).PubMedGoogle Scholar
  124. 124.
    R. Hilf, Milk-like fluid in a mammary adenocarcinoma: Biochemical characterization, Science 155, 826–827 (1967).PubMedGoogle Scholar
  125. 125.
    F. L. Archer, Fine structure of spontaneous and estrogen-induced secretion in breast tumors in the rat induced by 7,12-dimethylbenz(a)anthracene, J. Natl. Cancer Inst. 42, 347–362 (1969).PubMedGoogle Scholar
  126. 126.
    S. Young, L. S. C. Pang, and I. Goldsmith, Differentiation in breast cancer, J. Clin. Pathol. 27, 94–102 (1974).Google Scholar
  127. 127.
    G. Bussolati, A. Pich, and V. Alfani, Immunofluorescence detection of casein in human mammary dysplastic and neoplastic tissues, Virchows Arch. Anat. Histol. 365, 15–21 (1975).Google Scholar
  128. 128.
    H. N. Rose and C. M. McGrath, α-Lactalbumin production in human mammary carcinomas, Science 190, 673–676 (1975).PubMedGoogle Scholar
  129. 129.
    A. Pich, G. Bussolati, and F. DiCarlo, Production of casein and the presence of estrogen receptors in human breast cancer, J. Natl. Cancer Inst. 58, 1483–1484 (1977).PubMedGoogle Scholar
  130. 130.
    M. E. Monaco, D. A. Bronzert, D. C. Tormey, P. Waalkes, and M. E. Lippman, Casein production by human breast cancer, Cancer Res. 37, 749–754 (1977).PubMedGoogle Scholar
  131. 131.
    R. J. Pauley, J. M. Rosen, and S. H. Socher, MMTV and casein expression during normal and neoplastic mammary tissue development, J. Cell Biol. 75, 350a (1977).Google Scholar
  132. 132.
    P. Franchimont, P. F. Zangerle, J. C. Hendrick, A. Reuter, and C. Colin, Simultaneous assays of cancer associated antigens in benign and malignant breast diseases, Cancer 39, 2806–2812 (1977).PubMedGoogle Scholar
  133. 133.
    J. C. Hendrick and P. Franchimont, Radio-immunoassay of casein in the serum of normal subjects and of patients with various malignancies, Eur. J. Cancer 10, 725–730 (1974).PubMedGoogle Scholar
  134. 134.
    A. K. Roy and D. J. Dowbenko, Role of growth hormone in the multihormonal regulation of messenger RNA for α2U globulin in the liver of hypophysectomized rats, Biochemistry 16, 3918–3921 (1977).PubMedGoogle Scholar
  135. 135.
    R. J. Matusik and J. M. Rosen, Prolactin induction of casein mRNA in organ culture: A model system for studying peptide hormone regulation of gene expression J. Biol. Chem. (in press).Google Scholar
  136. 136.
    I. S. Owens, B. K. Vonderhaar, and Y. J. Topper, Concerning the necessary coupling of development to proliferation of mouse mammary epithelial cells, J. Biol. Chem. 248, 472–477 (1973).PubMedGoogle Scholar
  137. 137.
    F. C. Kafatos, mRNA stability and cellular differentiation, in: Gene Transcription in Reproductive Tissue (E. Diczfalusy, ed.), Vol. 5, pp. 319–345, Karolinska Institute, Stockholm (1972).Google Scholar
  138. 138.
    P. M. Terry, M. R. Banerjee, and R. M. Lui, Hormone-inducible casein messenger RNA in a serum-free organ culture of whole mammary gland, Proc. Natl. Acad. Sci. U.S.A. 74, 2441–2445 (1977).PubMedPubMedCentralGoogle Scholar
  139. 139.
    E. Devinoy, L.-M. Houdebine, and C. Delouis, Role of prolactin and glucocorticoids in the expression of casein genes in rabbit mammary gland organ culture, quantification of casein mRNA, Biochim. Biophys. Acta 517, 360–366 (1978).PubMedGoogle Scholar
  140. 140.
    C. Delouis and M.-L. Combaud, Lack of mitotic effects of insulin during synthesis of casein induced by prolactin in pseudopregnant rabbit mammary gland organ cultures, J. Endocrinol. 72, 393–394 (1977).PubMedGoogle Scholar
  141. 141.
    S. Nandi and C.M. McGrath, Mammary neoplasia in mice, Adv. Cancer Res. 17, 353–413 (1973).Google Scholar
  142. 142.
    R. F. Cox, Estrogen withdrawal in chick oviduct: Selective loss of high abundance classes of polyadenylated messenger RNA, Biochemistry 16, 3433–3442 (1977).PubMedGoogle Scholar
  143. 143.
    M. Melli, G. Spinelli, and E. Arnold, Synthesis of histone messenger RNA of HeLa cells during the cell cycle, Cell 12, 167–174 (1977).PubMedGoogle Scholar
  144. 144.
    R. Levis and S. Penman, The metabolism of poly(A)+ and poly(A)~ hnRNA in cultured Drosophila cells studied with a rapid uridine pulse-chase, Cell 11, 105–113 (1977).PubMedGoogle Scholar
  145. 145.
    H. Aviv, Z. Voloch, R. Bastos, and S. Levy, Biosynthesis and stability of globin mRNA in cultured erythroleukemic Friend cells, Cell 8, 495–503 (1977).Google Scholar
  146. 146.
    R. P. C. Shiu and H. G. Friesen, Blockage of prolactin action by an antiserum to its receptors, Science 192, 259–261 (1976).PubMedGoogle Scholar
  147. 147.
    S. M. Berget, C. Moore, and P. A. Sharp, Spliced segments at the 5’ terminus of adenovirus 2 late mRNA, Proc. Natl. Acad. Sci. U.S.A. 74, 3171–3175 (1977).PubMedPubMedCentralGoogle Scholar
  148. 148.
    P. Gaye, J.-P. Gautron, J.-C. Mercier, and G. Hazé, Amino terminal sequences of the precursors of ovine caseins, Biochem. Biophys. Res. Commun. 79, 903–911 (1977).PubMedGoogle Scholar
  149. 149.
    M. E. Costlow and W. E. McGuire, Autoradiographic localization of prolactin receptors in 7,12-dimethyl-benz(a)anthracene-induced rat mammary carcinoma, J. Natl. Cancer Inst. 58, 1173–1175 (1977).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Jeffrey Rosen
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations