The cell kinetics of mammary cancers are not dissimilar from those of other cancers, except perhaps as they are influenced by the hormonal milieu. This chapter will review the available literature of unperturbed breast cancer cell kinetics in both transplantable and spontaneous animal models, as well as the available material on human breast cancers. The data reported here originated from in vivo and short-term in vitro studies performed directly with the tumor tissue. The reason for this restriction is that tissue cultured breast tumor cells, while they perhaps retain some of the biochemical characteristics of the original specimen, do not necessarily have the same cell kinetic patterns as the primary or metastatic tumors from which they were derived.


Breast Cancer Mammary Tumor Mammary Cancer Tritiated Thymidine Cell Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. L. Mendelsohn, Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. III. The growth fraction, J. Natl. Cancer Inst. 28,1015–1029 (1962).PubMedGoogle Scholar
  2. 2.
    L. M. Schiffer, A. M. Markoe, and J. S. R. Nelson, Estimation of tumor growth fraction in murine tumors by the primer-available DNA-dependent DNA polymerase assay, Cancer Res. 36, 2415–2418 (1976).PubMedGoogle Scholar
  3. 3.
    P. G. Braunschweiger and L. M. Schiffer, PDP includes in human tumors: Evidence for proliferative correlations, Proc. Thirteenth Annu. Meet. Am. Soc. Clin. Oncol. 18, 276 (1977).Google Scholar
  4. 4.
    H. Wexler, S. K. Orme, and A. S. Ketcham, Biological behavior through successive transplant generations of chemically induced and spontaneous sources in mice, J. Natl. Cancer Inst. 40, 513–523 (1968).PubMedGoogle Scholar
  5. 5.
    J. A. McCredie, W. R. Inch, and R. M. Sutherland, Difference in growth and morphology between the spontaneous C3H mammary carcinoma in the mouse and its syngeneic transplants, Cancer 27, 635–642 (1971).PubMedCrossRefGoogle Scholar
  6. 6.
    J. Denekamp, The cellular proliferation kinetics of animal tumors, Cancer Res. 30, 393–400 (1970).PubMedGoogle Scholar
  7. 7.
    G.G. Steel, The cell cycle in tumours: An examination of data gained by the technique of labelled mitoses, Cell Tissue Kinet. 5, 87–100 (1972).PubMedGoogle Scholar
  8. 8.
    J. F. Fowler, P. W. Sheldon, A. C. Begg, S. A. Hill, and A. M. Smith, Biological properties and response to x-rays of first-generation transplants of spontaneous mammary carcinomas in C3H mice, Int. J. Radiat. Biol. 27, 463–480 (1975).CrossRefGoogle Scholar
  9. 9.
    L. Simpson-Herren and H. H. Lloyd, Kinetic parameters and growth curves for experimental tumor systems, Cancer Chemother. Rep. 54, 143–174 (1970).PubMedGoogle Scholar
  10. 10.
    I. F. Tannock, Population kinetics of carcinoma cells, capillary endothelial cells and fibroblasts in a transplanted mouse mammary tumor, Cancer Res. 30, 2470–2476 (1970).PubMedGoogle Scholar
  11. 11.
    M. L. Mendelsohn and L. A. Dethlefsen, Cell kinetics of breast cancer: The turnover of nonproliferating cells, in: Recent Results in Cancer Research (M. L. Griem et at, eds.), Vol. 42, pp. 73–86, Springer-Verlag, Berlin—Heidelberg—New York (1973).Google Scholar
  12. 12.
    L. V. Szczepanski and K. R. Trott, Post-irradiation proliferation kinetics of a serially transplanted murine adenocarcinoma, Br. J. Radiol. 48, 200–208 (1975).PubMedCrossRefGoogle Scholar
  13. 13.
    J. S. R. Nelson, R. E. Carpenter, and D. Durboraw, Mechanisms underlying reduced growth rate in C3HBA mammary adenocarcinomas recurring after single doses of x-rays or fast neutrons, Cancer Res. 36, 524–532 (1976).PubMedGoogle Scholar
  14. 14.
    L. M. Schiffer, unpublished results.Google Scholar
  15. 15.
    W. Feaux de Lacroix, F. J. Hensen, P. J. Klein, E. Nola, and K. J. Lennartz, Effect of different sex of tumor bearing mice and of ovariectomy on the proliferation kinetics of a solid transplantable mammary carcinoma (C3H mouse), Z. Krebsforsch. 87, 181–192 (1976).Google Scholar
  16. 16.
    A. Goldfeder, Biological properties and radiosensitivity of tumours: Determination of the cell-cycle and time of synthesis of deoxyribonucleic acid using tritiated thymidine and autoradiography, Nature (London) 207, 612–614 (1965).CrossRefGoogle Scholar
  17. 17.
    M. Hosokawa, F. Forsini, and E. Mihich, Fast- and slow-growing transplantable tumors derived from spontaneous mammary tumors of the DBA/2Ha-DD mouse, Cancer Res. 35, 2657–2662 (1975).PubMedGoogle Scholar
  18. 18.
    S. C. Rockwell, R. F. Kallman, and L. F. Fajardo, Characteristics of a serially transplanted mouse mammary tumor and its tissue culture-adapted derivative, J. Natl. Cancer Inst. 49, 735–749 (1972).PubMedGoogle Scholar
  19. 19.
    J. V. Watson, The cell proliferation kinetics of the EMT6/M/AC mouse tumour at four volumes during unperturbed growth in vivo, Cell Tissue Kinet. 9, 147–156 (1976).Google Scholar
  20. 20.
    W. R. Laster Jr., J. G. Mayo, L. Simpson-Herren, D. P. Griswold Jr., H. H. Lloyd, F. M. Schabel Jr., and H. E. Skipper, Success and failure in the treatment of solid tumors. II. Kinetic parameters and “cell cure” of moderately advanced carcinoma 755, Cancer Chemother. Rep. 53(1), 169–188 (1969).Google Scholar
  21. 21.
    P. Janik, P. Briand, and N. R. Hartmann, The effect of estrone-progesterone treatment on cell proliferation kinetics of hormone-dependent GR mouse mammary tumors, Cancer Res. 35, 3698–3704 (1975).PubMedGoogle Scholar
  22. 22.
    I. F. Tannock, The relation between cell proliferation and the vascular system in a transplantable mouse mammary tumor, Br. J. Cancer 22, 258–273 (1968).PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    G. G. Steel and S. Hanes, The technique of labelled mitoses: Analyses by automatic curve-fitting, Cell Tissue Kinet. 4, 93–105 (1971).PubMedGoogle Scholar
  24. 24.
    M. L. Mendelsohn, Computer-analyzed transit times for vertebrate cell cycle and phases, in: Cell Biology I (P. L. Altman and D. D. Katz, eds.), pp. 11–13, Federation of American Societies for Breast Cancer:Advances in Research and Treatment, Vol. 2: Experimental Biology, Bethesda, Maryland (1976).Google Scholar
  25. 25.
    V. Riley, Mouse mammary tumors: Alteration of incidence of apparent function of stress, Science 189, 465–467 (1975).PubMedCrossRefGoogle Scholar
  26. 26.
    E. Magdon and G. Winterfeld, Untersuchungen zum Wachstumsverhalten spontaner Maurmakarzinome bei C3H-Inzuchtmäusen, Arch. Geschwulstforsch. 45, 782–794 (1975).PubMedGoogle Scholar
  27. 27.
    M. L. Mendelsohn, The kinetics of tumor cell proliferation, in: Cellular Radiation Biology, pp. 498–513, Williams and Wilkins, Baltimore (1965).Google Scholar
  28. 28.
    M. L. Mendelsohn and L. A. Dethlefsen, Effects of selection and passage on volumetric growth rate of mouse mammary tumors, Lawrence Livermore Laboratory Report UCRL-51798 (1975).Google Scholar
  29. 29.
    P. G. Braunschweiger, L. Poulakos, and L. M. Schiffer, Cell kinetics in-vivo and invito for C3H/He spontaneous mammary tumors, J. Natl. Cancer Inst. 59,1197–1204 (1977).PubMedGoogle Scholar
  30. 30.
    J. Shewell, The effect of methotrexate on spontaneous mammary adenocarcinomata in female C3H mice, Br. J. Cancer 33, 210–216 (1976).PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    F. Bresciani, A comparison of the cell generative cycle in normal, hyperplastic and neoplastic mammary gland of the C3H mouse, in: Cellular Radiation Biology, pp. 547–557, Williams and Wilkins, Baltimore (1965).Google Scholar
  32. 32.
    M. R. Banerjee, Hormonal control of DNA synthesis: Altered responsiveness of hyperplastic alveolar nodules of mouse mammary gland, J. Natl. Cancer Inst. 42, 227–234 (1969).PubMedGoogle Scholar
  33. 33.
    M. R. Banerjee and R. J. Walker, Duration of DNA synthesis in hyperplastic aveolar nodules of C3H/He mouse mammary gland, J. Natl. Cancer Inst. 39, 551–555 (1967).PubMedGoogle Scholar
  34. 34.
    F. Bresciani, Effect of ovarian hormones on duration of DNA synthesis in cells of the C3H mouse mammary gland, Exp. Cell Res. 38, 13–32 (1965).PubMedCrossRefGoogle Scholar
  35. 35.
    M. L. Mendelsohn, F. C. Dohan, and H. A. Moore, Jr., Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. I. Typical cell cycle and timing of DNA synthesis, J. Natl. Cancer Inst. 25, 477–484 (1960).PubMedGoogle Scholar
  36. 36.
    M. L. Mendelsohn, Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse. II. Growth and survival of cells labeled with tritiated thymidine, J. Natl Cancer Inst. 25, 485–500 (1960).PubMedGoogle Scholar
  37. 37.
    R. L. Stolfi, D. S. Martin, and R. A. Fugmann, Spontaneous murine mammary adenocarcinoma: Model system for evaluation of combined methods of therapy, Cancer Chemother. Rep. 55, 239–251 (1971).PubMedGoogle Scholar
  38. 38.
    P. G. Braunschweiger and L. M. Schiffer, unpublished results.Google Scholar
  39. 39.
    G. G. Steel, The kinetics of cell proliferation in tumors, in: Time and Dose Relationships in Radiation Biology as Applied to Radiotherapy, pp. 130–140, Associated Universities, Upton, New York (1969).Google Scholar
  40. 40.
    G. G. Steel, K. Adams, J. Hodgett, and P. Janik, Cell population kinetics of a spontaneous rat tumor during serial transplantation, Br. J. Cancer 25, 802–811 (1971).PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    P. Janik and G.G. Steel, Cell proliferation during immunologic perturbation in three transplanted tumours, Br. J. Cancer 26, 108–114 (1972).PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    G.G. Steel, K. Adams, and J. C. Barrett, Analysis of the cell population kinetics of transplanted tumours of widely-differing growth rate, Br. J. Cancer 20, 784–800 (1966).PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    L. Simpson-Herren and D. P. Griswold, Jr., Studies of the cell population kinetics of induced and transplanted mammary adenocarcinoma in rats, Cancer Res. 33, 2415–2424 (1973).PubMedGoogle Scholar
  44. 44.
    C. Huggins, Methodology of selective induction of cancers in adult rats, in: Prognostic Factors in Breast Cancer (A. P. M. Forrest and P. B. Kunkler, eds.), pp. 465–471, Williams and Wilkins, Baltimore (1968).Google Scholar
  45. 45.
    D. P. Griswold, H. E. Skipper, W. R. Laster, W. S. Wilcox, and F. M. Schabel, Jr., Induced mammary carcinoma in the female rat as a drug evaluation system, Cancer Res. 26, 2169–2180 (1966).PubMedGoogle Scholar
  46. 46.
    L. Simpson-Herren and D. P. Griswold, Jr., Studies of the kinetics of growth and regression of 7,12-dimethylbenz(α)anthracene-induced mammary adenocarcinoma in Sprague-Dawley rats, Cancer Res. 30, 813–818 (1970).PubMedGoogle Scholar
  47. 47.
    J. W. Combs, M. F. Mackey, and J. L. Bennington, Modification of the fraction of proliferating cells in DMBA-induced rat mammary tumors by host factors, Proc. Am. Assoc. Cancer Res. 12, 61 (1971).Google Scholar
  48. 48.
    J. Hoffman and J. Post, Replication and 5-iodo-2’-deoxyuridine-3H incorporation by tumor and normal cells, Cancer Res. 26, 1313–1318 (1966).PubMedGoogle Scholar
  49. 49.
    L. N. Owen and G.G. Steel, The growth and cell population kinetics of spontaneous tumors in domestic animals, Br. J. Cancer 23, 493–509 (1969).PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    J. O. Archambeau, M. B. Heller, A. Akanuma, and D. Lubell, Biologic and clinical implications obtained from the analysis of cancer growth curves, Clin. Obstet. Gynecol. 13, 831–856 (1970).PubMedCrossRefGoogle Scholar
  51. 51.
    J. Gershon-Cohen, S. M. Berger, and H. S. Klickstein, Roentgenography of breast cancer moderating concept of “biologic predeterminism.” Cancer 16, 961–964 (1963).PubMedCrossRefGoogle Scholar
  52. 52.
    S. Kusama, J. S. Spratt Jr., W. L. Donegan, F. R. Watson, and C. Cunningham, The gross rates of growth of human mammary carcinoma, Cancer 30, 594–599 (1972).Google Scholar
  53. 53.
    M. E. Charlson and A. R. Feinstein, The auxometric dimension: A new method for using rate of growth in prognostic staging of breast cancer, J. Am. Med. Assoc. 228, 180–185 (1974).CrossRefGoogle Scholar
  54. 54.
    M. Tubiana and E. P. Malaise, Growth rate and cell kinetics in human tumours: Some prognostic and therapeutic implications, in: Scientific Foundations of Oncology (T. Symington and R. L. Carter, eds.), pp. 126–135, William Heinemann, London (1976).Google Scholar
  55. 55.
    A. Charbit, E. P. Malaise, and M. Tubiana, Relation between the pathological nature and the growth rate of human tumors, Eur. J. Cancer 7, 307–315 (1971).PubMedCrossRefGoogle Scholar
  56. 56.
    J. S. Spratt Jr., M. L. Kaltenbach, and J. A. Spratt, Cytokinetic definition of acute and chronic breast cancer, Cancer Res. 37, 226–230 (1977).Google Scholar
  57. 57.
    E. Philippe and Y. LeGal, Growth of seventy-eight recurrent mammary cancers, Cancer 21, 461–467 (1968).PubMedCrossRefGoogle Scholar
  58. 58.
    Y.-T. N. Lee and J. S. Spratt Jr., Rate of growth of soft tissue metastases of breast cancer, Cancer 29, 344–348 (1972).PubMedCrossRefGoogle Scholar
  59. 59.
    Y.-T. N. Lee, The lognormal distribution of growth rates of soft tissue metastases of breast cancer, J. Surg. Oncol. 4, 81–88 (1972).PubMedCrossRefGoogle Scholar
  60. 60.
    A. W. Pearlman, Breast cancer—Influence of growth rate on prognosis and treatment evaluation, Cancer 38, 1826–1833 (1976).PubMedCrossRefGoogle Scholar
  61. 61.
    J. S. Spratt Jr. and T. C. Spratt, Rates of growth of pulmonary metastases and host survival, Ann. Surg. 159, 161–171 (1964).Google Scholar
  62. 62.
    K. Breur, Growth rate and radiosensitivity of human tumors. I. Growth rate of human tumors, Eur. J. Cancer 2, 157–171 (1966).PubMedCrossRefGoogle Scholar
  63. 63.
    M. W. Brenner, L. R. Holsti and Y. Perttalia, The study by graphical analysis of the growth of human tumours and metastases of the lung, Br. J. Cancer 21, 1–13 (1967).PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    W. L. Joseph, D. L. Morton, and P. C. Adkins, Prognostic significance of tumor doubling time in evaluating operability in pulmonary metastatic disease, J. Thorac. Cardiovasc. Surg. 61, 23–31 (1971).PubMedGoogle Scholar
  65. 65.
    J. S. Meyer and W. C. Bauer, Tritiated thymidine labeling index of benign and malignant breast epithelium, J. Surg. Oncol. 8, 165–181 (1976).PubMedCrossRefGoogle Scholar
  66. 66.
    H. A. Johnson and V. P. Bond, A method of labeling tissues with tritiated thymidine in vitro and its use in comparing rates of cell proliferation in duct epithelium, fibroadenoma and carcinoma of human breast, Cancer 14, 639–643 (1960).CrossRefGoogle Scholar
  67. 67.
    B. Nordenskjöld, A. Zetterberg, and T. Löwhagen, Measurement of DNA synthesis by 3H-thymidine incorporation into needle aspirates from human tumors, Acta Cytol. 18, 215–221 (1974).PubMedGoogle Scholar
  68. 68.
    R. Silvestrini, O. Sanfilippo, and G. Tedesco, Kinetics of human mammary carcinomas and their correlation with the cancer and the host characteristics, Cancer 34, 1252–1258 (1974).PubMedCrossRefGoogle Scholar
  69. 69.
    J. S. Meyer and W. C. Bauer, In vitro determination of tritiated thymidine labeling index (LI), Cancer 36, 1374–1380 (1975).PubMedCrossRefGoogle Scholar
  70. 70.
    R. J. Sklarew, J. Hoffman, and J. Post, A rapid in-vitro method for measuring cell proliferation in human breast cancer, Cancer 40, 2299–2302 (1977).PubMedCrossRefGoogle Scholar
  71. 71.
    M. J. Straus and R. E. Moran, Cell cycle parameters in human solid tumors, Cancer 40, 1453–1461 (1977).PubMedCrossRefGoogle Scholar
  72. 72.
    M. Tubiana, P. Chauvel, A. Renaud, and E. P. Malaise, Vitesse de Croissance et histoire naturelle du cancer du Scin, Bull. Cancer 62, 341–358 (1975).PubMedGoogle Scholar
  73. 73.
    L. M. Schiffer and P. G. Braunschweiger, Cytokinetics of human breast cancer: Primary vs metastatic lesions, Proc. Twelfth Annu. Meet. Am. Soc. Clin. Oncol. 17, 238 (1976).Google Scholar
  74. 74.
    W. H. Wolberg and R. R. Brown, Autoradiographic studies of in vitro incorporation of uridine and thymidine by human tumor tissue, Cancer Res. 22, 1113–1119 (1962).PubMedGoogle Scholar
  75. 75.
    H. Coons, A. Norman, and A. Nahum, In vitro measurements of human tumor growth, Cancer 19, 1200–1204 (1966).Google Scholar
  76. 76.
    J. Titus and R. Shorter, Labeling of human tumors with tritiated thymidine, Arch. Pathol. 79, 324–328 (1965).PubMedGoogle Scholar
  77. 77.
    B. Clarkson, K. Ota, T. Ohkita, and A. O’Connor, Kinetics of proliferation of cancer cells in neoplastic effusions in man, Cancer 18, 1189–1213 (1965).PubMedCrossRefGoogle Scholar
  78. 78.
    J. I. Fabrikant and C. L. Wisseman III, In vitro incorporation of tritiated thymidine in normal and neoplastic tissues, Radiology 90, 361–363 (1968).Google Scholar
  79. 79.
    R. Young and V. DeVita, Cell cycle characteristics of human solid tumors in vivo, Cell Tissue Kind. 3, 285–290 (1970).Google Scholar
  80. 80.
    W. H. Wolberg and F. J. Ansfield, The relation of thymidine labeling index in human rumors in vitro to the effectiveness of 5-fluorouracil chemotherapy, Cancer Res. 31, 448–450 (1971).PubMedGoogle Scholar
  81. 81.
    J. J. Terz, H. P. Curutchet, and W. Lawrence Jr., Analysis of the cell kinetics of human solid tumors, Cancer 28, 1100–1110 (1971).PubMedCrossRefGoogle Scholar
  82. 82.
    E. P. Malaise, N. Chavaudra, and M. Tubiana, The relationship between growth rate, labeling index and histological type of human solid tumors, Eur. J. Cancer 9, 305–312 (1973).PubMedCrossRefGoogle Scholar
  83. 83.
    H. H. Sky-Peck, Effects of chemotherapy on the incorporation of 3H-thymidine into DNA of human neoplastic tissue, Natl. Cancer Inst. Monogr. 34, 197–203 (1971).PubMedGoogle Scholar
  84. 84.
    W. K. Murphy, R. B. Livingston, V. G. Ruiz, F. G. Gercovich, S. L. George, J. S. Hart, and E. J. Freireich, Serial labeling index determination as a predictor of response in human solid tumors, Cancer Res. 35, 1438–1444 (1975).PubMedGoogle Scholar
  85. 85.
    R. B. Livingston, V. Ambus, S. L. George, E. J. Freireich, and J. S. Hart, In vitro determination of thymidine-3H labeling index in human solid tumors, Cancer Res. 34, 1376–1380 (1974).PubMedGoogle Scholar
  86. 86.
    M. P. Thirlwell, R. B. Livingston, W. K. Murphy, and J. S. Hart, A rapid in vitro labeling index method for predicting response of human solid tumors to chemotherapy, Cancer Res. 36, 3279–3283 (1976).PubMedGoogle Scholar
  87. 87.
    R. B. Livingston, A. Sulkes, M. P. Thirlwell, W. K. Murphy, and J. S. Hart, Cell kinetic parameters: Correlation with clinical response, in: Growth Kinetics and Biochemical Regulation of Normal and Malignant Cells, pp. 767–785, Williams and Wilkins, Baltimore (1977).Google Scholar
  88. 88.
    J. Post, R. J. Sklarew, and J. Hoffman, The proliferative patterns of human breast cancer cells in vivo, Cancer 39, 1500–1507 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Lewis M. Schiffer
    • 1
  1. 1.Cancer Biology Section, Cancer Research Unit, Clinical Radiation Therapy Research CenterAllegheny General HospitalPittsburghUSA

Personalised recommendations