Human Breast Cancer in Tissue Culture: The Effects of Hormones

  • C. Kent Osborne
  • Marc E. Lippman

Abstract

The hormone-dependent nature of some human breast cancers has been appreciated by physicians for nearly a century.(1) Clinical responses in breast cancer patients to ablative and additive hormone therapies suggest that several hormones are important growth regulators of mammary cancer. Recent studies of the basic mechanisms by which hormones influence target tissues have led to important advances in our understanding of steroid hormone action and the clinical care of women with breast cancer.(2,3) It is now recognized that the first step in steroid hormone action is the binding of the hormone to a cytoplasmic receptor protein.(4) In the absence of this receptor, the steroid hormone is unable to elicit a response in the cell. Using this principle, investigators have now identified receptors for estrogen and other steroid hormones in some breast tumor samples, providing a basis for more rational therapeutic decisions.

Keywords

Breast Cancer Estrogen Receptor Progesterone Receptor Organ Culture Human Breast Cancer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. A. Stoll, Castration and oestrogen therapy, in: Endocrine Therapy in Malignant Disease, (B. A. Stoll, ed.), pp. 139–163, W. B. Saunders, London (1972).Google Scholar
  2. 2.
    E. V. Jensen, T. Suzuhi, T. Kawashima, W. E. Stumpf, P. W. Jungblut, and E. R. De Sombre, A two step mechanism for the interaction of estradiol with rat uterus, Proc. Natl. Acad. Sci. U.S.A 59, 632–638 (1968).PubMedPubMedCentralGoogle Scholar
  3. 3.
    W. L. McGuire, P. P. Carbone, M. E. Sears, and G. C. Escher, Estrogen receptors in human breast cancer: An overview, in: Estrogen Receptors in Human Breast Cancer (W. L. McGuire, P. P. Carbone, and E. P. Volmer, eds.), pp. 1–7, Raven Press, New York (1975).Google Scholar
  4. 4.
    R. J. B. King and W. I. P. Mainwaring, Steroid-Cell Interactions, University Park Press, Baltimore (1974).Google Scholar
  5. 5.
    R. W. Turkington, Multiple hormonal interactions: The mammary gland, in: Biochemical Actions of Hormones (G. Litwack, ed.), pp. 55–77, Academic Press, New York (1972).Google Scholar
  6. 6.
    J. C. Heuson, N. Legros, J. A. Heuson-Stiennon, G. Leclercq, and J. L. Pasteels, Hormone dependency of rat mammary tumors, in: Breast Cancer: Trends in Research and Treatment (J. C. Heuson, ed.), pp. 81–93, Raven Press, New York (1976).Google Scholar
  7. 7.
    H. Fell and R. Robison, The growth, development and phosphatase activity of embryonic avian femora and limb-buds cultivated in vitro, Biochem. J 23, 767–784 (1929).PubMedPubMedCentralGoogle Scholar
  8. 8.
    G. Cameron and R. Chambers, Neoplasm studies: Organization of cells of human tumors in tissue culture, Am. J. Cancer 30, 115–129 (1937).Google Scholar
  9. 9.
    J. A. Dickson, Tissue-culture approach to the treatment of cancer, Br. Med. J 1, 817–823 (1966).PubMedPubMedCentralGoogle Scholar
  10. 10.
    W. C. Gewant and I. S. Goldenberg, Techniques of human breast neoplasm cell culture, Eur. Surg. Res 2, 392–400 (1970).PubMedGoogle Scholar
  11. 11.
    J. C. Heuson, J. L. Pasteels, N. Legros, J. Heuson-Stiennon, and G. Leclercq, Estradiol-dependent collagenolytic enzyme activity in long-term organ culture of human breast cancer, Cancer Res 35, 2039–2048 (1975).PubMedGoogle Scholar
  12. 12.
    R. Tchao, G. C. Easty, E. J. Ambrose, R. W. Raven, and H. J. G. Bloom, Effect of chemotherapeutic agents and hormones on organ cultures of human tumours, Eur. J. Cancer, 4, 39–44(1968).PubMedGoogle Scholar
  13. 13.
    J. L. Pasteels, J. Heuson-Stiennon, N. Legros, G. Leclercq, and J. C. Heuson, Organ culture of human breast cancer, in: Breast Cancer: Trends in Research and Treatment (J. C. Heuson, ed.), pp. 141–150, Raven Press, New York (1976).Google Scholar
  14. 14.
    R. L. Ceriani, G. P. Contesso, and B. M. Notaf, Hormone requirement for growth and differentiation of the human mammary gland in organ culture, Cancer Res 32, 2190–2196 (1972).PubMedGoogle Scholar
  15. 15.
    S. R. Wellings and V. L. Jentoft, Organ cultures of normal, dysplastic, hyperplastic, and neoplastic human mammary tissues, J. Natl. Cancer Inst 49, 329–338 (1972).PubMedGoogle Scholar
  16. 16.
    M. Finkelstein, A. Geier, H. Horn, I. S. Levij, and P. Ever-Hadani, Effect of testosterone and estradiol-17/3 on synthesis of DNA, RNA and protein in human breast in organ culture, Int. J. Cancer 15, 78–90 (1975).PubMedGoogle Scholar
  17. 17.
    B. E. Barker, H. Fanger, and P. Fames, Human mammary slices in organ culture. I. Method of culture and preliminary observations on the effect of insulin, Exp. Cell Res 35, 437–448 (1964).PubMedGoogle Scholar
  18. 18.
    J. J. Elias and R. C. Armstrong, Hyperplastic and metaplastic responses of human mammary fibroadenomas and dysplasias in organ culture, J. Natl. Cancer Inst 51, 1341–1342 (1973).PubMedGoogle Scholar
  19. 19.
    W. G. Dilley and S. J. Kister, In vitro stimulation of human breast tissue by human prolactin, J. Natl. Cancer Inst 55, 35–36 (1975).PubMedGoogle Scholar
  20. 20.
    L. J. van Bogaert, Glucose uptake by normal human breast tissue in organ culture, Cell Tissue Res 171, 535–541 (1976).PubMedGoogle Scholar
  21. 21.
    B. A. Flaxman and E. Y. Lasfargues, Hormone-independent DNA synthesis by epithelial cells of adult human mammary gland in organ culture, P roc. Soc. Exp. Biol. Med 14, 371–374 (1973).Google Scholar
  22. 22.
    B. A. Flaxman, J. Dyckman, and A. Feldman, Effect of prolactin on maintenance of prelactating human mammary gland in vitro, In Vitro 12, 467–471 (1976).Google Scholar
  23. 23.
    H. Salih, H. Flax, and J. R. Hobbs, In vitro oestrogen sensitivity of breast cancer tissue as a possible screening method for hormonal treatment, Lancet 1, 1198–1202 (1972).PubMedGoogle Scholar
  24. 24.
    M. D. Lagios, Hormonally enhanced proliferation of human breast cancer in organ culture, Oncology 29, 22–23 (1974).PubMedGoogle Scholar
  25. 25.
    J. R. Hobbs, H. Salih, H. Flax, and W. Brander, Prolactin dependence in human breast cancer, Proc. R. Soc. Med 66, 16 (1973).Google Scholar
  26. 26.
    R. A. Sellwood and J. E. Castro, The effect of hormones on organ cultures of human mammary carcinoma, J. Pathol 113, 223–225 (1974).PubMedGoogle Scholar
  27. 27.
    K. G. Rienits, The effects of estrone and testosterone on respiration of human mammary cancer in vitro, Cancer 12, 958–961 (1959).Google Scholar
  28. 28.
    J. R. Barker and C. Richmond, Human breast carcinoma culture: The effects of hormone, Br. J. Surg 58, 732–734 (1971).PubMedGoogle Scholar
  29. 29.
    J. R. W. Masters, K. Sangster, I. I. Smith, and A. P. M. Forrest, Human breast carcinomata in organ culture: The effect of hormones, Br. J. Cancer 33, 564–566 (1976).PubMedPubMedCentralGoogle Scholar
  30. 30.
    B. A. Stoll, Investigation of organ culture as an aid to the hormonal management of breast cancer, Cancer 25, 1228–1233 (1970).PubMedGoogle Scholar
  31. 31.
    C. W. Welsch, G. C. De Iturri, and M. J. Brennan, DNA synthesis of human, mouse, and rat mammary carcinomas in vitro: Influence of insulin and prolactin, Cancer 38, 1272–1281 (1976).PubMedGoogle Scholar
  32. 32.
    K. Aspegren, Hormone effects on human mammary cancer in organ cultures, Am. J. Surg 131, 575–580 (1976).PubMedGoogle Scholar
  33. 33.
    K. Aspegren and L. Hakansson, Human mammary carcinoma studied for hormone responsiveness in short term incubations, Acta Clin. Scand 140, 95–99 (1974).Google Scholar
  34. 34.
    J. C. Heuson and N. Legros, In vitro effect of testosterone and 17β-estradiol on h-leucine-14C incorporation into human breast cancer tissue, Cancer 16, 404–407 (1963).PubMedGoogle Scholar
  35. 35.
    A. Nimrod and K. J. Ryan, Aromatization of androgens by human abdominal and breast fat tissue, J. Clin. Endocrinol. Metab 40, 367–372 (1975).PubMedGoogle Scholar
  36. 36.
    E. Y. Lasfargues and L. Ozzello, Cultivation of human breast carcinomas, J. Natl. Cancer Inst 21, 1131–1147 (1958).Google Scholar
  37. 37.
    G. C. Buehring and A. J. Hackett, Human breast tumor cell lines: Identity evaluation by ultrastructure, J. Natl. Cancer Inst 53, 621–629 (1974).PubMedGoogle Scholar
  38. 38.
    L. Ozzello, Ultrastructure of human mammary carcinoma cells in vivo and in vitro, J. Natl. Cancer Inst 48, 1043–1050 (1972).Google Scholar
  39. 39.
    R. E. Nordquist, D. R. Ishmael, C. A. Lovig, D. M. Hyder, and A. F. Hogl, The tissue culture and morphology of human breast tumor cell line BOT-2, Cancer Res 35, 3100–3105 (1975).PubMedGoogle Scholar
  40. 40.
    R. H. Bassin, E. J. Plata, B. I. Gerwin, C. F. Mattern, D. K. Haapola, and E. W. Chu, Isolation of a continuous epithelioid cell line, HBT-3, from a human breast carcinoma, Proc. Soc. Exp. Biol. Med 141, 673–680 (1972).PubMedGoogle Scholar
  41. 41.
    G. Seman, S. J. Hunter, R. C. Miller, and L. Dmochowski, Characterization of an established cell line (SH-3) derived from pleural effusion of patient with breast cancer, Cancer 37, 1814–1824 (1976).PubMedGoogle Scholar
  42. 42.
    R. Cailleau, R. Young, M. Olive, and W. J. Reeves Jr., Breast tumor cell lines from pleural effusions, J. Natl. Cancer Inst 53, 661–674 (1974).PubMedGoogle Scholar
  43. 43.
    R. K. Young, R. M. Cailleau, B. Mackay, and W. J. Reeves Jr., Establishment of epithelial cell line MDA-MB-157 from metastatic pleural effusion of human breast carcinoma, In Vitro 9, 239–245 (1974).PubMedGoogle Scholar
  44. 44.
    Y. V. Dobrynin, Establishment and characteristics of cell strains from some epithelial tumors of human origin, J. Natl. Cancer Inst 31, 1173–1195 (1963).PubMedGoogle Scholar
  45. 45.
    E. J. Plata, T. Aoki, D. D. Robertson, E. W. Chu, and B. I. Gerwin, An established cultured cell line (HBT-39) from human breast carcinoma, J. Natl. Cancer Inst 50, 849–862 (1973).PubMedGoogle Scholar
  46. 46.
    M. V. Reed and G. O. Gey, Cultivation of normal and malignant human lung tissue, Lab. Invest 11, 638–652 (1962).PubMedGoogle Scholar
  47. 47.
    M. Lippman, Hormone responsive human breast cancer in continuous tissue culture, in: Breast Cancer: Trends in Research and Treatment (J. C. Heuson, ed.), pp. 111–140, Raven Press, New York (1976).Google Scholar
  48. 48.
    J. Fogh and G. Trempe, New human tumor cell lines, in: Human Tumor Cells in Vitro (J. Fogh, ed.), pp. 115–159, Plenum Press, New York (1975).Google Scholar
  49. 49.
    H. D. Soule, J. Vazquez, A. Long, S. Albert, and M. Brennan, A human cell line from a pleural effusion derived from a breast carcinoma, J. Natl. Cancer Inst 51, 1409–1416 (1973).PubMedGoogle Scholar
  50. 50.
    M. Lippman, G. Bolan, and K. Huff, The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture, Cancer Res 36, 4595–4601 (1976).PubMedGoogle Scholar
  51. 51.
    M. E. Lippman, C. K. Osborne, R. Knazek, and N. Young, In vitro model systems for the study of hormone-dependent human breast cancer, N. Engl. J Med 296, 154–159 (1977).PubMedGoogle Scholar
  52. 52.
    W. A. Nelson-Rees, R. R. Flandermeyer, and P. K. Hawthorne, Banded marker chromosomes as indicators of intraspecies cellular contamination, Science 184, 1093–1096 (1974).PubMedGoogle Scholar
  53. 53.
    W. A. Nelson-Rees and R. R. Flandermeyer, HeLa cultures defined, Science 191, 96–98 (1976).PubMedGoogle Scholar
  54. 54.
    J. Russo, H. D. Soule, C. McGrath, and M. A. Rich, Reexpression of the original tumor pattern by a human breast carcinoma cell line (MCF-7) in sponge culture, J. Natl. Cancer Inst 56, 279–282 (1976).PubMedGoogle Scholar
  55. 55.
    R. Knazek, M. E. Lippman, and H. Chopra, Formation of solid human mammary carcinoma in vitro, J. Natl. Cancer Inst 58, 419–423 (1977).Google Scholar
  56. 56.
    H. N. Rose and C. M. McGrath, α-Lactalbumin production in human mammary carcinoma, Science 190, 673–675 (1975).PubMedGoogle Scholar
  57. 57.
    M. E. Monaco, D. A. Bronzert, D. C. Tormey, P. Waalkes, and M. E. Lippman, CaScin production by human breast cancer, Cancer Res 37, 749–754 (1977).PubMedGoogle Scholar
  58. 58.
    R. E. Burke, D. T. Zava, and W. L. McGuire, Human breast cancer cells contain thyroid hormone receptors, Clin. Res 25, 461A (1977).Google Scholar
  59. 59.
    S. C. Brooks, E. R. Locke, and H. D. Soule, Estrogen receptor in a human cell line (MCF-7) from breast carcinoma, J. Biol. Chem 248, 6251–6253 (1973).Google Scholar
  60. 60.
    K. B. Horwitz, M. E. Costlow, and W. L. McGuire, MCF-7: A human breast cancer cell line with estrogen, androgen, progesterone, and glucocorticoid receptors, Steroids 26, 785–795 (1975).PubMedGoogle Scholar
  61. 61.
    G. C. Chamness, K. Huff, and W. L. McGuire, Solid phase ligand exchange assay for charged cytoplasmic estrogen receptor, Fed. Proc. Fed. Am. Soc. Exp. Biol 33, 1511 (1974).Google Scholar
  62. 62.
    W. L. McGuire and M. DeLaGarza, Improved sensitivity in the measurement of estrogen receptor in human breast cancer, J. Clin. Endocrinol. Metab 36, 548–552 (1973).PubMedGoogle Scholar
  63. 63.
    K. B. Horwitz, W. L. McGuire, O. H. Pearson, and A. Segaloff, Predicting response to endocrine therapy in human breast cancer: A hypothesis, Science 189, 726–727 (1975).PubMedGoogle Scholar
  64. 64.
    M. Lippman, G. Bolan, and K. Huff, Interactions of antiestrogens with human breast cancer in long-term tissue culture, Cancer Treatment Rep 60, 1421–1429 (1976).Google Scholar
  65. 65.
    H. Esber, I. Payne, and A. Bogden, Variability of hormone concentrations and ratios in commercial sera used for tissue culture, J. Natl. Cancer Inst 50, 559–562 (1973).PubMedGoogle Scholar
  66. 66.
    M. Lippman, M. E. Monaco, and G. Bolan, Effects of estrone, estradiol, and estriol on hormone-responsive human breast cancer in long-term tissue culture, Cancer Res 37, 1901–1907 (1977).PubMedGoogle Scholar
  67. 67.
    M. Lippman and G. Bolan, Oestrogen-responsive human breast cancer in long-term tissue culture, Nature (London) 256, 592–593 (1975).Google Scholar
  68. 68.
    C. Huggins and E. V. Jensen, The depression of estrone-induced uterine growth by phenolic estrogens with oxygenated functions at position 6 or 16: The impeded estrogens, J. Exp. Med 102, 335–346 (1955).PubMedPubMedCentralGoogle Scholar
  69. 69.
    B. Mac Mahon, P. Cole, J. B. Brown, K. Aoki, T. M. Lin, R. W. Morgan, and N. C Woo, Urine oestrogen profiles of Asian and North American women, Int. J. Cancer 14, 161–167 (1974).Google Scholar
  70. 70.
    H. M. Lemon, Estriol prevention of mammary carcinoma induced by 7,12-dimethylbenzanthracene and procarbazine, Cancer Res 35, 1341–1353 (1975).PubMedGoogle Scholar
  71. 71.
    J. H. Clark, Z. Paszko, and E. J. Peck Jr., Nuclear binding and retention of the receptor estrogen complex: Relation to the agonistic and antagonistic properties of estriol, Endocrinology 100, 91–96 (1977).PubMedGoogle Scholar
  72. 72.
    J. C. Heuson, Hormones by administration, in: The Treatment of Breast Cancer (H. Atkins, ed.), pp. 113–164, University Park Press, Baltimore (1974).Google Scholar
  73. 73.
    D. T. Kiang and B. J. Kennedy, ’’Intranuclear’’ castration effect of high dose estrogens: Proceedings of the American Association of Cancer Research, Cancer Res 17, 194, Abstract 774 (1976).Google Scholar
  74. 74.
    J. C. Heuson, A. Coune, and M. Staquet, Clinical trial of nafoxidine, an oestrogen antagonist in advanced breast cancer, Eur. J. Cancer 8, 387–389 (1972).Google Scholar
  75. 75.
    D. T. Zava, G. C. Chamness, K. B. Horwitz, and W. L. McGuire, Human breast cancer: Biologically active estrogen receptor in the absence of estrogen, Science 196, 663–664 (1977).PubMedGoogle Scholar
  76. 76.
    J. H. Clark, E. J. Peck Jr., and J. N. Anderson, Oestrogen receptors and antagonism of steroid hormone action, Nature (London) 251, 446–448 (1974).Google Scholar
  77. 77.
    B. S. Katzenellenbogen and E. R. Ferguson, Antiestrogen action in the uterus: Biological ineffectiveness of nuclear bound estradiol after antiestrogen, Endocrinology 97, 1–12 (1975).PubMedGoogle Scholar
  78. 78.
    J. N. Anderson, E. J. Peck Jr., and J. H. Clark, Estrogen-induced uterine responses and growth: Relationship to receptor estrogen binding by uterine nuclei, Endocrinology 96, 160–167 (1975).PubMedGoogle Scholar
  79. 79.
    R. J. Schwartz, C. Chang, W. T. Schrader, and B. W. O’Malley, Effect of progesterone receptors on transcription in biochemical actions of progesterone and progestins (E. Gurpide, ed.), Ann. N.Y. Acad. Sci 286, 147–160 (1977).PubMedGoogle Scholar
  80. 80.
    M. E. Lippman, M. E. Monaco, and L. Pinkus, Estradiol induces thymidine kinase activity in estrogen responsive human breast cancer in continuous tissue culture, in: Proc. 59th Annual Meeting of the Endocrine Society, p. 122 (1976) (abstract #132).Google Scholar
  81. 81.
    J. A. Smith and R. J. King, Effects of steroids on growth of an androgen-dependent mouse mammary carcinoma in cell culture, Exp. Cell Res 73, 351–359 (1972).PubMedGoogle Scholar
  82. 82.
    M. N. Teller, C. C. Stock, G. Stohr, P. C. Merker, R. J. Kaufman, G. C Escher, and M. Bowie, Biologic characteristics and chemotherapy of 7,12-dimethylbenz[a]anthracene-induced tumors in rats, Cancer Res 26, 245–254 (1966).PubMedGoogle Scholar
  83. 83.
    M. E. Lippman, G. Bolan, and K. Huff, Human breast cancer responsive to androgen in long-term tissue culture, Nature (London) 258, 339–341 (1975).Google Scholar
  84. 84.
    M. Lippman, G. Bolan, and K. Huff, The effects of androgens and antiandrogens on hormone-responsive human breast cancer in long-term tissue culture, Cancer Res 36, 4610–4618 (1976).PubMedGoogle Scholar
  85. 85.
    D. T. Zava and W. L. McGuire, Pharmacological effects of androgen in human breast cancer cells are mediated by estrogen receptor, Proc. 59th Annual Meeting of the Endocrine Society, p. 180 (1977) (abstract #247).Google Scholar
  86. 86.
    F. A. G. Teulings and H. A. van Gilse, Demonstration of glucocorticoid receptors in human mammary carcinomas, Hormone Res 8, 107–116 (1977).PubMedGoogle Scholar
  87. 87.
    M. Lippman, G. Bolan, and K. Huff, The effects of glucocorticoids and progesterone on hormone-responsive human breast cancer in long-term tissue culture, Cancer Res 36, 4602–4609 (1976).PubMedGoogle Scholar
  88. 88.
    M. Lippman, K. Huff, and G. Bolan, Progesterone and glucocorticoid interactions with receptor in breast cancer cells in long-term tissue culture, Ann. N. Y. Acad. Sci 286, 101–115 (1977).PubMedGoogle Scholar
  89. 89.
    G. G. Rousseau, J. D. Baxter, and G. M. Tomkins, Glucocorticoid receptors: Relations between steroid binding and biological effects, J. Mol. Biol 67, 99–116 (1972).PubMedGoogle Scholar
  90. 90.
    R. E. Buller, W. T. Schrader, and B. W. O’Malley, Steroids and the practical aspects of performing binding studies, J. Steroid Biochem 7, 321–326 (1976).PubMedGoogle Scholar
  91. 91.
    K. B. Horwitz and W. L. McGuire, Induction of progesterone receptor in a human breast cancer cell line, Clin. Res 25, 295A (1977).Google Scholar
  92. 92.
    J. C. Heuson and N. Legros, Influence of insulin deprivation on growth of the 7,12-dimethylbenz[a]anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction, Cancer Res 32, 226–232 (1972).PubMedGoogle Scholar
  93. 93.
    J. C. Heuson, N. Legros, and R. Heimann, Influence of insulin administration on growth of the 7,12-dimethylbenz[a]anthracene-induced mammary carcinoma in intact, oophorectomized, and hypophysectomized rats, Cancer Res 32, 233–238 (1972).PubMedGoogle Scholar
  94. 94.
    K. Megyesi, C. R. Kahn, J. Roth, D. M. Neville Jr., S. P. Nissley, R. E. Humbel, and E. R. Froesch, The NSILA-s receptor in liver plasma membranes, J. Biol. Chem 250, 8990–8996 (1975).PubMedGoogle Scholar
  95. 95.
    I. M. Holdaway and I. Worsley, Specific binding of human prolactin and insulin to human mammary carcinomas, Endocrinology (Suppl.) 96, 160 (220A) (1975).Google Scholar
  96. 96.
    C. K. Osborne, G. Bolan, M. E. Monaco, and M. E. Lippman, Hormone responsive human breast cancer in long-term tissue culture: Effect of insulin, Proc. Natl. Acad. Sci. U.S.A 73, 4536–4540 (1976).PubMedPubMedCentralGoogle Scholar
  97. 97.
    C. K. Osborne, M. E. Monaco, and M. E. Lippman, Insulin receptors in human breast cancer: Relationship of binding, degradation and biological activity, Diabetes 25 (Suppl. 1), 380 (1976).Google Scholar
  98. 98.
    C. K. Osborne, M. E. Monaco, M. E. Lippman, and C. R. Kahn, Correlations among insulin binding, degradation, and biologic activity in human breast cancer cells in long-term tissue culture, Cancer Res 38, 94–102 (1978).PubMedGoogle Scholar
  99. 99.
    M. E. Monaco and M. E. Lippman, Insulin stimulation of fatty acid synthesis in human cancer cells, J. Natl Cancer Inst 58, 1591–1593 (1977).PubMedGoogle Scholar
  100. 100.
    M. E. Monaco and M. E. Lippman, Insulin stimulation of fatty acid synthesis in human breast cancer in long-term tissue culture, Endocrinology, 101, 238–1246 (1977).Google Scholar
  101. 101.
    J. A. Rillema and B. E. Linebaugh, Characteristics of the insulin stimulation of DNA, RNA and protein metabolism in cultured human mammary carcinoma cells, Biochim. Biophys. Acta 475, 74–80 (1977).PubMedGoogle Scholar
  102. 102.
    I. G. Wool, Relation of effects of insulin on amino acid transport and on protein synthesis, Fed. Proc. Fed. Am. Soc. Exp. Biol 24, 1060–1070 (1965).Google Scholar
  103. 103.
    C. R. Kahn, Membrane receptors for polypeptide hormones, in: Methods in Membrane Biology (E. Korn, ed.), Vol. 3, pp. 81–146, Plenum Press, New York (1975).Google Scholar
  104. 104.
    P. Freychet, J. Roth, and D. M. Neville Jr., Insulin receptors in the liver: Specific binding of 125I-insulin to the plasma membrane and its relation to insulin bioactivity, Proc. Natl. Acad. Sci. U.S.A 68, 1833–1837 (1971).PubMedPubMedCentralGoogle Scholar
  105. 105.
    N. C. Dulak and H. M. Temin, A partially purified polypeptide fraction from rat liver cell conditioned medium with multiplication-stimulating activity for embryo fibroblasts, J. ell. Physiol 81, 153–160 (1973).Google Scholar
  106. 106.
    F. Smithline, L. Sherman, and H. D. Kolodny, Prolactin and breast carcinoma, N. Engl. J. Med 292, 784–792 (1975).PubMedGoogle Scholar
  107. 107.
    F. Vignon and H. Rochefort, Regulation of estrogen receptors in ovarian-dependent rat mammary tumors. I. Effects of castration and prolactin, Endocrinology 98, 722–729 (1976).PubMedGoogle Scholar
  108. 108.
    R. W. Turkington, L. E. Underwood, and J. J. Van Wyk, Elevated serum prolactin levels after pituitary-stalk section in man, N. Engl. J. Med 285, 707–710 (1971).PubMedGoogle Scholar
  109. 109.
    E. Engelsman, J. C. Heuson, J. Blonk-Van der Wijst, A. Drochmans, H. Maass, F. Cheix, L. G. Sobrinho, and H. Nowakowski, Controlled clinical trial of L-dopa and nafoxidine in advanced breast cancer: An E.O.R.T.C. study, Br. Med. J. J , 714–715 (1975).Google Scholar
  110. 110.
    D. L. Kleinberg, Human α-lactalbumin: Measurement in serum and in breast cancer organ cultures by radioimmunoassay, Science 190, 276–278 (1975).Google Scholar
  111. 111.
    S. Shafie and S. C. Brooks, Effect of prolactin on growth and the estrogen receptor level of human breast cancer cells (MCF-7), Cancer Res 37, 792–799 (1977).PubMedGoogle Scholar
  112. 112.
    S. Cohen, G. Carpenter, and K. J. Lembach, Interaction of epidermal growth factor (EGF) with cultured fibroblasts, Adv. Metab. Disord 8, 265–284 (1975).PubMedGoogle Scholar
  113. 113.
    R. W. Turkington, The role of epithelial growth factor in mammary gland development in vitro, Exp. Cell Res 57, 79–85 (1969).Google Scholar
  114. 114.
    M. G. P. Stoker, D. Pigott, and J. Taylor-Papadimitriou, Response to epidermal growth factors of cultured human mammary epithelial cells from benign tumours, Nature (London) 264, 764–767 (1976).Google Scholar
  115. 115.
    D. Gospodarowicz and J. S. Moran, Growth factors in mammalian cell culture, Annu. Rev. Biochem 45, 531–558 (1976).PubMedGoogle Scholar
  116. 116.
    B. K. Vonderhaar, Studies on the mechanism by which thyroid hormones enhance α-lactalbumin activity in expiants from mo’use mammary glands, Endocrinology 100, 1423–1431 (1977).PubMedGoogle Scholar
  117. 117.
    S. C. Aitken and M. E. Lippman, A simple computer program for quantitation and Scatchard analysis of steroid receptor proteins, J. Steroid Biochem 8, 77–99 (1977).Google Scholar
  118. 118.
    M. E. Lippman, K. K. Huff, G. Bolan, and J. P. Neifeld, Interactions of R5020 with progesterone and glucocorticoid receptors in human breast cancer and peripheral blood lymphocytes in vitro, in: Progesterone Receptors in Normal and Neoplastic Tissues (W. L. McGuire, ed.), pp. 193–210, Raven Press, New York (1977).Google Scholar
  119. 119.
    S. Bourgeois and R. F. Newby, Diploid and haploid states of the glucocorticoid receptor gene of mouse lymphoid cell lines, Cell 11, 423–430 (1977).PubMedGoogle Scholar
  120. 120.
    R. E. Kellems, F. W. Alt, and R. T. Schimke, Regulation of folate reductase synthesis in sensitive and methotrexate-resistant sarcoma 180 cells, J. Biol. Chem 251, 6987–6993 (1976).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • C. Kent Osborne
    • 1
  • Marc E. Lippman
    • 1
  1. 1.Medicine Branch, Division of Cancer TreatmentNational Cancer Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations