Whole Blood Serotonin and Family Background Relate to Male Violence

  • Terrie Moffitt
  • Avshalom Caspi
  • Paul Fawcett
  • Gary L. Brammer
  • Michael Raleigh
  • Arthur Yuwiler
  • Phil Silva
Part of the Nato ASI Series book series (NSSA, volume 292)


Clinical and animal studies suggest that brain serotonergic systems may regulate aggressive behavior. However, the serotonin/violence relation has not been assessed at the epidemiological level. For study of an epidemiological sample we examined blood serotonin; certain physiological and behavioral data suggested that it might serve as an analogue marker for brain serotonergic function. Whole blood serotonin was measured in a representative birth cohort of 781 21-year-old women (48%) and men (52%). Violence was measured using cumulative court conviction records and participant’s self-reports. Potential intervening factors addressed were: gender, age, diurnal variation, diet, psychiatric medications, illicit drug history, season of phlebotomy, plasma tryptophan, platelet count, body mass, suicide attempts, psychiatric diagnoses, alcohol and tobacco dependence, socio-economic status, IQ, and overall criminal offending. Whole blood serotonin related to violence among men but not women. Violent men’s mean serotonin level was .56 SD above the mean of nonviolent men. The finding was specific to violence, as opposed to general crime, and it was robust across two different methods of measuring violence. Together, the intervening variables accounted for 25% of the relation between serotonin and violence. Developmental context interacted significantly with serotonin; serotonin was linked to violence primarily among men who grew up in families with little cohesion and much conflict. To our knowledge, this is the first demonstration that altered blood serotonin concentration is related to violence in the general population, and that the relation may depend on family origins.


Tobacco Dependence Biological Psychiatry Violent Offender Male Violence Study Member 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Psychiatric Association, (1987). Diagnostic and statistical manual of mental disorders, Revised (DSM-III-R). Washington, DC: APA.Google Scholar
  2. Anderson, G.M., Freedman, D.X., & Cohen, D.J. (1987). Whole blood serotonin in autistic and normal subjects. Journal of Child Psychology and Psychiatry, 28, 885–900.PubMedCrossRefGoogle Scholar
  3. Arora, R.C., Kregel, L., & Meltzer, H. Y. (1984). Seasonal variation of serotonin uptake in normal controls and depressed patients. Biological Psychiatry, 19, 795–804.PubMedGoogle Scholar
  4. Asberg, M., Nordstom, P., & Traskman-Bendz, L. (1986). Cerebrospinal fluid studies in suicide, an overview. Annals of the New York Academy of Sciences, 487, 243–255.PubMedCrossRefGoogle Scholar
  5. Ashcroft, G.W., Crawford, T.B.B., Binns, J.K., & MacDougall, E.J. (1964). Estimation of 5-hydroxytryptaminc in human blood. Clinica Chimica Acta, 9, 364–369.CrossRefGoogle Scholar
  6. Badcock, N.R., Spence, J.G., & Stern, L.M. (1987). Blood serotonin levels in adults, autistic and nonautistic children with a comparison of different methodologies. Annuals of Clinical Biochemistry, 24, 625–634.Google Scholar
  7. Berk, R.A. (1983). An introduction to sample selection bias in sociological data. American Sociological Review, 48, 386–398.CrossRefGoogle Scholar
  8. Berman, M.E., Kavoussi, R.J. & Coccaro, E. F. (1997). Neurotransmitter correlates of antisocial personality disorder. In D. Stoff, J. Breiling & J. Maser (Eds.). Handbook of antisocial behavior New York: Wiley.Google Scholar
  9. Botchin, M.B., Kaplan, J.R., Manuck, S.B., & Mann, J.J. (1994). Neuroendocrine responses to fenfluramine challenge are influenced by exposure to chronic social stress in adult male cynomolgus macaques. Psychoneuroendrocrinology, 1, 1–ll.CrossRefGoogle Scholar
  10. Brammer, G., Raleigh, M.J., Ritvo, E.R., Geller, E., McGuire, M.T. & Yuwiler, A. (1991) Fenfluramine effects on serotonergic measures in vervet monkeys. Pharmacology, Biochemistry, and Behavior, 40, 267–271.PubMedCrossRefGoogle Scholar
  11. Brammer, G.L. (1994) Blood assay procedure for tyrosine, serotonin, and tryptophan. Unpublished manuscript from the Neurobiochemistry Laboratory of the West Los Angeles VA Medical Center.Google Scholar
  12. Brewerton, T.D., Berrettini, W., Nurnberger, J., Linnoila, M. (1988). Analysis of seasonal fluctuations of CSF monoamine metabolites and neuropeptides in normal controls: Findings with 5HIAA and HVA. Psychially Research, 23, 257–265.CrossRefGoogle Scholar
  13. Brown, G.L., Ebert, M.H., Goyer, P.F., Jimerson, D.C., Klein, W.J., Bunney, W.E., & Goodwin, F.K. (1982). Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. American Journal of Psychiatry, 139, 741–746.PubMedGoogle Scholar
  14. Brown, G.L., Goodwin, F.K., & Bunney, W.E.,Jr. (1982). Human aggression and suicide: Their relationship to neuropsychiatric diagnoses and serotonin metabolism. Advances in Biochemical Psychopharmacology, 34, 287–307.PubMedGoogle Scholar
  15. Brown, C.S., Kent, T.A., Bryant, S.G., Gevedon, R.M., Campbell, J.L., Felthous, A.R., Barratt, E.S., & Rose, R.M. (1989). Blood platelet uptake of serotonin in episodic aggression. Psychiatry Research, 27, 5–12.PubMedCrossRefGoogle Scholar
  16. Cases, O., Seif, I., Grimsby, J., Gaspar, P., Chen, K., Pournin, S., Muller, U., Aguet, M., Babinet, C., Shih, J.C.s & De Maeyer, E. (1995). Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science, 268, 1763–1766.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Chamberlain, B., Ervin, F.R., Pihl, R.O., & Young, S.N. (1987). The effect of raising or lowering tryptophan levels on aggression in vervet monkeys. Pharmacology, Biochemistry, and Behavior, 28, 503–510.PubMedCrossRefGoogle Scholar
  18. Coccaro, E.F. (1989). Central serotonin and impulsive aggression. British Journal of Psychiatry, 155 (supl. 8), 52–62.Google Scholar
  19. Coccaro, E. F., Siever, L.J., Klar, H.M., Maurer, G., Cochrane, K., Cooper, T.B., Mohs, R.C., & Davis, K.L. (1989). Serotonergic studies in patients with affective and personality disorders. Correlates with suicidal and impulsive aggressive behavior. Archives of General Psychiatry, 46, 587–599.PubMedCrossRefGoogle Scholar
  20. Coccaro, E.F., Silverman, J.M., Klar, H.K., Horvath, H.B., & Siever, L.J. (1994). Familial correlates of reduced central serotonergic system function in patients with personality disorders. Archives of General Psychiatry, 51, 318–324.PubMedCrossRefGoogle Scholar
  21. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Erlbaum.Google Scholar
  22. Cohen, P. & Cohen, J. (1984). The clinician’s illusion. Archives of General Psychiatry, 41, 1178–1182.PubMedCrossRefGoogle Scholar
  23. Cook, E.H.,Jr., Arora, R.C., Anderson, G.M., Berry-Kravis, E.M., Yan, S., Yeah, H.C., Sklena, P.J., Charak, D.A., & Leventhal, B.L. (1993). Platelet serotonin studies in hyperserotonemic relatives of children with autistic disorder. Life Sciences, 52, 2005–2015. ai]Cook, E.H.,Jr., Fletcher, K.E., Wainwright, M., Marks, N., Yan, S., & Leventhal, B.L. (1994). Primary structure of the human platelet serotonin 5-HT2a receptor: Identity with frontal cortex serotonin 5-HT2a receptor. Journal of Neurochemistry, 63, 465–469.PubMedCrossRefGoogle Scholar
  24. Depue, R.A. & Spoont, M.R. (1987). Conceptualizing a serotonin trait: A dimension of behavioral constraint. In J. Mann & M. Stanley (Eds.). The psychobiology of suicidal behavior New York: Academy of Sciences.Google Scholar
  25. Eichelman, B. (1993). Bridges from the animal laboratory to the study of violent or criminal individuals. In S. Hodgins (Ed.). Mental disorder and crime (pp. 194–207). Newbury Park, CA: Sage.Google Scholar
  26. Elley, W.B. & Irving, J.B. (1985). The Elley-Irving socio-economic index 1981 census revision. New Zealand Journal of Educational Studies, 20, 115–128.Google Scholar
  27. Elliott, D.S., Huizinga, D., & Morse, B. (1986). Self-reported violent offending: A descriptive analysis of juvenile violent offenders and their offending careers. Journal of Interpersonal Violence, 1, 472–514.CrossRefGoogle Scholar
  28. Elliott, D.S. & Huizinga, D. (1989). Improving self-reported measures of delinquency. In M.W. Klein (Ed.). Crossnational research in self-reported crime and delinquency (pp. 155–186). Dordrecht: Kluwer Academic Publisher.CrossRefGoogle Scholar
  29. Fernstrom, J.D. & Wurtman, R.J. (1971). Brain serotonin content: Physiological dependence on plasma tryptophan levels. Science, 173, 149–152.Google Scholar
  30. Gardner, D.L., Lucas, P.B., & Cowdry, R.W. (1990). CSF metabolites in borderline personality disorder compared with normal controls. Biological Psychiatry, 28, 247–254.PubMedCrossRefGoogle Scholar
  31. Geller, E., Ritvo, E.R., Freeman, B.J., & Yuwiler, A. (1982). Preliminary observations on the effect of fenfluramine on blood serotonin and symptoms in three autistic boys. New England Journal of Medicine, 307, 165–169.Google Scholar
  32. Given, M.B. & Longenecker, G.L. (1985). Characteristics of serotonin uptake and release by platelets. In G.L. Longenecker (Ed.). The platelets: Physiology and pharmacology (pp. 463–479). NY: Academic Press.Google Scholar
  33. Hanna, G., Yuwiler, A., & Cantwell, D.P. (1991). Whole blood serotonin in juvenile obsessive-compulsive disorder. Biological Psychiatry, 29, 738–744.PubMedCrossRefGoogle Scholar
  34. Higley, J.D., Suomi, S.J., & Linnoila, M. (1991). CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology, 103, 551–556.PubMedCrossRefGoogle Scholar
  35. Higley, J.D., Thompson, W.W., Champoux, M., Goldman, D., Hasert, M.F., Kraemer, G.W., Scanlan, J.M., Suomi, S.J., & Linnoila, M. (1993). Paternal and maternal genetic and environmental contributions to cerebrospinal fluid monoamine metabolites in Rhesus monkeys (Macaca mulatta). Archives of General Psychiatry, 50, 615–623.PubMedCrossRefGoogle Scholar
  36. Hur, Y. & Bouchard, T. (1995). Genetic influences on perceptions of childhood family environment: A reared apart twin study. Child Development, 66, 330–345.PubMedCrossRefGoogle Scholar
  37. Kremer, H.P.H., Goekoop, J.G., & Van Kempen, G.M.J. (1990). Clinical use of the determination of serotonin in whole blood. Journal of Clinical Psychopharmacology, 10, 83–87.PubMedCrossRefGoogle Scholar
  38. Kruesi, M.J.P., Rapoport, J.L., Hamburger, S., Hibbs, E., Potter, W.Z., Lenane, M., & Brown, G.L. (1990). CSF monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419–426.PubMedCrossRefGoogle Scholar
  39. Kruesi, M., Hibbs, E., Zahn, T., Keysor, C.S., Hamburger, S.D., Bartko, J.J. Rapaport, J.L. (1992). A 2-year prospective follow-up study of children and adolescents with disruptive behavior disorders: Prediction by CSF 5HIAA, HVA, and autonomic measures? Archives of General Psychiatry, 49, 429–435.PubMedCrossRefGoogle Scholar
  40. Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F.K. (1983). Low CSF 5HIAA concentration differentiates impulsive from nonimpulsive violent behavior. Life Sciences, 33, 2609–2614.PubMedCrossRefGoogle Scholar
  41. Lynam, D., Moffitt, T.E., & Stouthamer-Loeber, M. (1993). Explaining the relation between IQ and delinquency: Class. race, test motivation, school failure or self-control. Journal of Abnormal Psychology, 102, 187–196.PubMedCrossRefGoogle Scholar
  42. Magdol, L., Moffitt, T.E., Caspi, A., Newman, D.L., Fagan, J., & Silva, P.A. (In press). Gender differences in partner violence in a birth-cohort of 21-year-olds: Bridging the gap between clinical and epidemiological approaches. Journal of Consulting and Clinical Psychology.Google Scholar
  43. Mann, J.J., McBride, P.A., Anderson, G.M., & Mieczkowski, T.A. (1992). Platelet and whole blood serotonin content in depressed inpatients: Correlations with acute and life-time psychopathology. Biological Psychiatry, 32, 243–257.PubMedCrossRefGoogle Scholar
  44. Mednick, S.A. (1978). Berkson’s fallacy and high-risk research in schizophrenia. In L.C. Wynne & R.L. Cromwell (Eds.). The nature of schizophrenia New York, NY: WileyGoogle Scholar
  45. Moos, R. & Moos, B. (1981). Family environment scale manual. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  46. Moss, H.B., Yao, J.K., & Panzak, G.L. (1990). Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biological Psychiatry, 28, 325–338.PubMedCrossRefGoogle Scholar
  47. Newman, D.L., Moffitt, T.E., Caspi, A., Magdol, L., Silva, P.A., & Stanton, W. (1996). Psychiatric disorder in a birth cohort of young adults: Prevalence, comorbidity, clinical significance, and new cases incidence from age 11 to 21. Journal of Consulting and Clinical Psychology, 64, 552–562.PubMedCrossRefGoogle Scholar
  48. Nielson, D.A., Goldman, D., Virkkunen, M., Tokola, R., Rawlings, R., & Linnoila, M. (1994). Suicidality and 5-Hydroxyindoleacetic acid concentration associated with a tryptophan hydroxylase polymorphism. Archives of General Psychiatry, 51, 34–38.CrossRefGoogle Scholar
  49. O’Keane, V., Moloney, E., O’Neill, H., O’Conner, A., Smith, C., & Dinan, T.G. (1992). Blunted prolactin responses to d-Fenfluramine in sociopathy: Evidence for subsensitivity of central serotonergic function. British Journal of Psychiatry. 160, 643–646.CrossRefGoogle Scholar
  50. Parnicky, J.J., Williams, S., & Silva, P.A. (1985). Family environment scale: A Dunedin (New Zealand) pilot study. Australian Psychologist, 20, 195–204.CrossRefGoogle Scholar
  51. Pletscher, A. (1978). Platelets as models for monoaminergic neurons. In M.B.H. Youdim, W. Lovenberg. D.F. Sharman & J. R. Lagnado (Eds.). Essays in neurochemistry and neuropharmacology, Vol. 3 (pp. 49–101). New York: Wiley.Google Scholar
  52. Pliszka, S.R., Graham, A.R., Rogeness, G.A., Renner, P., Sherman, J., & Broussard, T. (1988). Plasma neurochemistry in juvenile offenders. Journal of the American Academy of Child and Adolescent Psychiatry, 27, 588–594.PubMedCrossRefGoogle Scholar
  53. Plomin, R., McCiearn, G.E., Pedersen, N.L., Nesselroade, J.R., & Bergeman, C.S. (1988). Genetic influence on childhood family environment perceived retrospectively from the last half of the life span. Developmental Psychology, 24, 738–745.CrossRefGoogle Scholar
  54. Plutchik, R. & Van Praag, H. (1989). The measurement of suicidality, aggressivity and impulsivity. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 13, S23–S34.PubMedCrossRefGoogle Scholar
  55. Pucilowski, O. & Koslowski. W. (1983). Aggressive behavior and the central serotonergic systems. Behavior & Brain Research, 9, 33–48.CrossRefGoogle Scholar
  56. Quinton, D., Pickles, A., Maughan, B., & Rutter, M. (1993). Partners, peers, and pathways: Assortative pairing and continuities in conduct disorder. Development and Psychopathology, 5, 763–783.CrossRefGoogle Scholar
  57. Raine, A. (1993). The psychopathology of crime. NY: Academic Press.Google Scholar
  58. Raleigh, M.J., McGuire, M., Brammer, G.L., & Yuwiler, A. (1984). Social and enviromental influences on blood serotonin concetrations in monkeys. Archives of General Psychiatry, 41, 405–410.PubMedCrossRefGoogle Scholar
  59. Ransohoff, D.F. & Feinstein, A.R. (1978). Problems of spectrum and bias in evaluation of the efficacy of diagnostic tests. New England Journal of Medicine, 299, 926–930.PubMedCrossRefGoogle Scholar
  60. Rasmusson, A.M., Riddle, M.A., Leckman, J.F., Anderson, G.M. & Cohen, D.J. (1990). Neurotransmitter assessment in neuropsychiatric disorders of childhood. In S.I. Deutsch, A. Weizman & R. Weizman (Eds.). Application of basic neuroscience to child psychiatry (pp. 33–59). NY: Plenum.CrossRefGoogle Scholar
  61. Ritvo, E.R., Yuwiler, A., Geller, E., Ornitz, E.M., Saeger, K., & Plotkin, S. (1970). Increased blood serotonin and platelets in early infantile autism. Archives of General Psychiatry, 23, 566–572.PubMedCrossRefGoogle Scholar
  62. Ritvo, E.R., Yuwiler, A., Geller, E., Plotkin, S., Mason, A., & Saegar, K. (1971). Maturational changes in blood serotonin levels and platelet counts. Biochemical Medicine, 5, 90–96.PubMedCrossRefGoogle Scholar
  63. Robins, L.N. & Regier, D.A. (1991). Psychiatric disorders in America. New York, NY: The Free Press.Google Scholar
  64. Rogeness, G.A., Hernandez, J.M., Macedo, C. A., & Mitchell, E.L. (1982). Biochemical differences in children with CD socialized and undersocialized. American Journal of Psychiatry, 139, 307–311.PubMedGoogle Scholar
  65. Rogeness, G.A., Javors, M.A., & Pliska, S.R. (1992). Neurochemistry and child and adolescent psychiatry. Journal of the American Academy of Child and Adolescent Psychiatry, 31, 765–781.PubMedCrossRefGoogle Scholar
  66. Sampson, R.J. & Laub, J.H. (1993). Crime in the making. Cambridge: Harvard University Press.Google Scholar
  67. Schalling, D. (1993). Neurochemical correlates of personality, impulsivity, and disinhibitory suicidality. In S. Hodgins (Ed.). Mental disorder and crime (pp. 208–226). Newbury Park, CA: Sage.Google Scholar
  68. Siefert, W.E., Foxx, J.L., & Butler, I.J. (1980). Age effects on dopamine and serotonin metabolite levels in CSF. Annals of Neurology, 8, 38–42.CrossRefGoogle Scholar
  69. Silva, P.A. (1990). The Dunedin multidisciplinary health and development study: A fifteen year longitudinal study. Paediatric and Perinatal Epidemiology, 4, 96–127.CrossRefGoogle Scholar
  70. Soubrie, P. (1986). Reconciling the role of central serotonin neurons in human and animal behavior. The Behavioral and Brain Sciences, 9, 319–365.CrossRefGoogle Scholar
  71. Spoont, M. (1992). Modulatory role of serotonin in neural information processing: Implications for human psychopathology. Psychological Bulletin, 112, 330–350.PubMedCrossRefGoogle Scholar
  72. Stahl, S.M. (1985). Platelets as pharmacologic models for the receptors and biochemistry of monoaminergic neurons. In G.L. Longenecker (Ed.). The platelets: Physiology and pharmacology (pp. 307–340). NY: Academic Press.Google Scholar
  73. Stoff, D.M., Ieni, J., Friedman, E., Bridger, W.H., Pollock, L., & Vitiello, B. (1991). Platelet 3H-Imipramine binding, serotonin uptake, and plasma alpha I acid glycoprotein in disruptive behavior disorders. Biological Psychiatry, 29, 494–498.PubMedCrossRefGoogle Scholar
  74. van Kammen, D.P. (1987). 5-HT, a neurotransmitter for all seasons? Biological Psychiatry, 22, 1–3.PubMedCrossRefGoogle Scholar
  75. Virkkunen, M., Nuutila, A., Goodwin, F.K., & Linnoila, M. (1987). CSF monoamine metabolite levels in male arsonists. Archives of General Psychiatry, 44, 241–247.PubMedCrossRefGoogle Scholar
  76. Virkkunen, M., De Jong, J., Bartko, J., Goodwin, F.K., & Linnoila, M. (1989). Relationship of psychobiological variables to recidivism in violent offenders and impulsive fire setters. A follow-up study. Archives of General Psychiatry. 46, 600–603.PubMedCrossRefGoogle Scholar
  77. Virkkunen, M. & Linnoila, M. (1993). Serotonin in personality disorders with habitual violence and impulsivity. In S. Hodgins (Ed.). Mental disorder and crime (pp. 227–243). Newbury Park, CA: Sage.Google Scholar
  78. Virkkunen, M., Kallio, E., Rawlings, R., Tokola, R., Poland, R.E., Guidotti, A., Nemeroff, C., Bissette, G., Kalogeras, K., Karonen, S., & Linnoila, M. (1994a). Personality profiles and state aggressiveness in Finnish alcoholic, violent offenders, fire starters, and healthy volunteers. Archives of General Psychiatry, 51, 28–33.PubMedCrossRefGoogle Scholar
  79. Virkkunen, M., Rawlings, R., Tokola, R., Poland, R.E., Guidotti, A., Nemeroff, C., Bissette, G., Kalogeras, K., Karonen, S., & Linnoila, M. (1994b). CSF biochemistries, glucose metabolism, and diurnal activity rhythms in alcoholic, violent offenders, fire setters, and healthy volunteers. Archives of General Psychiatry, 51, 20–27.PubMedCrossRefGoogle Scholar
  80. Von Hahn, H. P., Honegger, C.G., & Pletscher, A. (1980). Similar kinetic characteristics of 5-hydroxytryptamine binding in blood platelets and brain membranes of rats. Neuroscience Letters, 20, 319–322.CrossRefGoogle Scholar
  81. Wechsler, D. (1974). Manual for the Wechsler Intelligence Scale for Children-Revised. New York, NY: Psychological Corporation.Google Scholar
  82. Wirz-Justice, A., Lichtsteiner, M., & Freer, H. (1977). Diurnal and seasonal variations in human platelet serotonin in man. Journal of Neural Transmission, 41, 7–15.PubMedCrossRefGoogle Scholar
  83. Yuwiler, A., Brammer, G.L., Morley, J.E., Raleigh, M.J., Flannery, J.W., & Geller, E. (1981). Short-term andrepetitive administration of oral tryptophan in normal men. Archives of General Psychiatry, 38, 619–626.PubMedCrossRefGoogle Scholar
  84. Yuwiler, A., Plotkin, S., Geller, E., & Ritvo, E.R. (1970). A rapid accurate procedure for the determination of serotonin in whole human blood. Biochemical Medicine, 2, 426–436.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Terrie Moffitt
    • 2
  • Avshalom Caspi
    • 2
  • Paul Fawcett
    • 3
  • Gary L. Brammer
    • 4
  • Michael Raleigh
    • 5
  • Arthur Yuwiler
    • 4
  • Phil Silva
    • 1
  1. 1.University of Otago Medical SchoolOtegoNew Zealand
  2. 2.University of WisconsinMadisonUSA
  3. 3.University of Otago School of PharmacyOtegoNew Zealand
  4. 4.West Los Angeles VA Medical CenterLos AngelesUSA
  5. 5.UCLA School of MedicineLos AngelesUSA

Personalised recommendations