Advertisement

Serotonin and Human Violence

Do Environmental Mediators Exist?
  • Markus J. P. Kruesi
  • Teresa Jacobsen
Part of the Nato ASI Series book series (NSSA, volume 292)

Abstract

The purpose of this chapter is to review evolving evidence for the possibility of environmental mediators of relationships between serotonin and violence in human children and adolescents. This chapter does not ask whether there are environmental mediators of violence - a variety of evidence suggests that environmental mediation of violence occurs (Tolan & Guerra 1994) and that interactions between biology and environmental events increase the risk of crime (Raine et al., 1994, 1996). Rather this paper focuses upon the possibility of environmental mediators of the relationship between serotonin and violence.

Keywords

Conduct Disorder Disruptive Behavior Disorder Vervet Monkey Tryptophan Depletion Monoamine Metabolite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aman, M.G., Kern, R.A., McGee, D. E., & Arnold, L.E. (1993). Fenfluramine and methylphenidate in children with mental retardation and ADHD: Clinical and side effects. Journal of American Academy of Child Adolescent Psychiatry, 32(4), 851–S59.Google Scholar
  2. Anderson, C. A. (1987). Temperature and aggression: effects on quarterly, yearly, and city rates of violent and nonviolent crime. Journal of Pers Sociology and Psychology, 52, 1161–73.Google Scholar
  3. Arendt, J., Wirz-Justice, A., & Bradtke, J, (1977). Annual rhythm of serum melatonin in man. Neuroscience Letters, 7: 327–330.Google Scholar
  4. Arora, R.C., Kregel, L., & Meltzer, H. (1984). Transsynaptic control of gene expression. Annual Review of Neuroscience, 16: 17–29.Google Scholar
  5. Asberg, M., Traskman, L., & Thoren, P. (1976). 5-HIAA in the cerebrospinal fluid: a biochemical suicide predictor? Archives of General Psychiatry, 33:1193–7.PubMedGoogle Scholar
  6. Asberg, M., Thoren, L., & Traskman, P. (1976a). Serotonin depression: a biochemical subgroup within affective disorders. Science, 191:478–80PubMedGoogle Scholar
  7. Asberg, M., Schalling, D., Traskman-Bendz, L., & Wagner., A. (1987). Psychobiology of suicide, impulsivity and related phenomena. In Psychopharmacology: The Third Generation of Progress. H.Y. Meltzer (Ed.). Raven Press, New York.Google Scholar
  8. Bernstein, I., Williams, L., & Ramsay, M. (1983). The expression of aggression in old world monkeys. International Journal of Primatology, 4: 113–124.Google Scholar
  9. Blennow, K., Wallin, A., Gottfries, C.G., Karlsson, I., Mansson, J.E., Skoog, I., Wikkelson, C., & Svennerholm, L. (1993) Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18–88 years of age. European Neuropsychopharmacology, 3(1):55–61.PubMedGoogle Scholar
  10. Brewerton, T.D., Berrettini, W.H., Nurnberger, J.I., & Linnoila, M. (1988). Analysis of seasonal fluctuations of CSF monoamine metabolites and neuropeptides in normal controls: Findings with 5-HIAA and HVA. Psychiatry Research, 23:257–265.PubMedGoogle Scholar
  11. Brewerton, T.D., Flament, M.F., Rapoport, J.L., & Murphy, D.L. (1993). Seasonal effects on platelet 5-HT content in patients with OCD and controls. Archives of General Psychiatry, 50(5):409.PubMedGoogle Scholar
  12. Brown, G. L., Goodwin, F.K., Ballenger, J.C., Goyer, P.F., & Major, L.F. (1979). Aggression in humans correlates with cerebrospinal fluid amine metabolites. Psychiatry Research, 1:131–139.PubMedGoogle Scholar
  13. Brown, G.L., Ebert, M.H., Goyer, P.F., Jimerson, D.C., Klein, W.J., Bunney, W.E., & Goodwin, F.K. (1982). Aggression, suicide, and serotonin: Relationships to CSF amine metabolites. American Journal of Psychiatry, 139:741–746.PubMedGoogle Scholar
  14. Brown, G.L., Kline, W., Goyer, P., Minichello, M., Kruesi, M., & Goodwin, F.K. (1986). Relationship of childhood characteristics to cerebrospinal fluid 5-hydroxyindoleacetic acid in aggressive adults. In C Shagass, RC Josiassen, WH Bridger, KJ Weiss, D Stoff, GM Simpson (Eds.) Biological Psychiatry. (chap 7. pp.l77–179). New York: Elsevier Science Publishing.Google Scholar
  15. Brown, G.L., & Linnoila, M.I. (1990). CSF serotonin metabolite (5-HIAA) studies in depression, impulsivity, and violence. Journal of Clinical Psychiatry, 51:31–41.PubMedGoogle Scholar
  16. Castellanos, F.X., Elia, J., Kruesi, M.J., Gulotta, C.S., Mefford, I.N., Potter, W.Z., Ritchie, G. F., & Rapoport, J.L. (1994) Cerebrospinal fluid monoamine metabolites in boys with attention-deficit hyperactivity disorder. Psychiatry Research, 52(3):305–316.PubMedGoogle Scholar
  17. Chamberlain, B., Ervin, F.R., Pihl, R.O., & Young, S.N. (1987). The effect of raising or lowering tryptophan levels aggression in vervet monkeys. Pharmacology Biochemical Behavior, 28:503–510.Google Scholar
  18. Clarke, A.S., Kammerer, C.M., George, K.P., Kupfer, D.J., McKinney, W.T., Spence, M.A., & Kraemer, G.W. (1995) Evidence for heritability of biogenic amine levels in the cerebrospinal fluid of rhesus monkeys. Biological Psychiatry, 38 (9):572–577.Google Scholar
  19. Cleare, A.J., & Bond, A.J. (1994, December). Effects of alterations in plasma tryptophan levels on aggressive feelings [Letter to the editor]. Archives of General Psychiatry. 51:1004–1005.PubMedGoogle Scholar
  20. Coccaro, E. F., Siever, L.J., Klar, H.M., Maurer, G., Cochrane, K., Cooper, T.B., Mohs, R.C., & Davis, K.L. (1989). Serotonergic studies in patients with affective and personalty disorders: Correlates with suicidal and impulsive aggressive behavior. Archives General Psychiatry, 46(7):587–99.Google Scholar
  21. Coccaro, E.F., Kavoussi, R.J., & Lesser, J.C. (1992). Self-and other-directed human aggression: The role of the central serotonergic system. International Clinical Psychopharmacology, 6, Suppl. (6) 70–83.PubMedGoogle Scholar
  22. Coccaro, E.F., Kavoussi, R.J., Sheline, Y.I., Lish, J.D., & Czemasky, J.G. (1996). Impulsive aggression in personality disorder correlates with tritiated paroxetine binding in the platelet. Archives of General Psychiatry, 53:531–536.PubMedGoogle Scholar
  23. Cohen, D.J., Caparulo, B.K., Shaywitz, B.A., & Bower, M.B.J. (1977). Dopamine and serotonin metabolism in neuropsychiatrically disturbed children: CSF homovanillic acid and 5-hydroxyindoleacetic acid. Archives of General Psychiatry, 34:545–550.PubMedGoogle Scholar
  24. Cook, E.H., Anderson, G.M., Heninger, G.R., Fletcher, K.E., et al. (1992). Tryptophan loading in hyperserotonemic and normoserotonemic adults. Biological Psychiatry, 31:525–8.PubMedGoogle Scholar
  25. Cook, E., & Kruesi, M.J.P. (in press). Neurochemical measures. In D. Shaffer, J. Richters (Eds.) Assessment and Diagnosis in Child Psychopathology. Second Edition.Google Scholar
  26. Czernansky, J.G., Faull, K.F., & Pfefferbaum, A. (1988). Seasonal changes in CSF monoamine metabolites in psychiatric patients: What is the source? Psychiatry Research, 25:361–363.Google Scholar
  27. Donnelly, M., Rapoport, J.L., Potter, W.Z., Oliver, J., Keysor, C.S., & Murphy, D.L. (1989). Fentluramine and dextroamphetamine treatment of childhood hyperactivity. Archives of General Psychiatry, 46:205–212.PubMedGoogle Scholar
  28. Durkheim, E. (1952). Suicide: A study in sociology (J.A. Spaulding & C. Simpson. Trans.). London: Routledge and Kegan Paul. (Original work published in 1897)Google Scholar
  29. Egrise, D., Rubenstein, M., Schoutens, A., Cantraine, F., & Mendelewicz, J. (1986). Seasonal variation of platelet serotonin uptake and 3H-imipramine binding in normal and depressed subjects. Biological Psychiatry, 21:283–293.PubMedGoogle Scholar
  30. Eison, A.S., Yocca, F. D., & Gianutsos, G. (1988). Noradrenergic denervation alters serotonin2-mediates behavior but not serotonin2 receptor number in rats: modulatory role of beta adrenergic receptors. Journal of Pharmacologic Experimental Therapy, 246:571–577.Google Scholar
  31. Engleberg, H. (1992). Low serum cholesterol and suicide. Lancet, 339:727–729.Google Scholar
  32. Faustman, W.O., Ringo, D.L., & Faull, K.F. (1993). An association between low level of 5-HIAA and HVA in cerebrospinal fluid and early mortality in a diagnostically mixed psychiatric sample. British Journal of Psychiatry, 163:519–21.PubMedGoogle Scholar
  33. Fernstrom, J.D., & Wurtman, R.J. (1972). Brain serotonin content: Physiological regulation by plasma neutral amino acids. Science, 178:414–416.PubMedGoogle Scholar
  34. Garelis, E., Young, S.N., Lal, S., Sourkes, T.L. (1974). Monoamine metabolites in lumbar CSF: The question of their origin in relation to clinical studies. Brain Research, 79: 1–8.PubMedGoogle Scholar
  35. Ghaziuddin, N., & Alessi, N. (1992). An open clinical trial of trazodone in aggressive children. Journal of Child and Adolescent Psychopharmacology, 2 291–298.PubMedGoogle Scholar
  36. Gedye, A. (1991). Buspirone alone or with serotonergic diet reduced aggression in a developmentally disabled adult. Biological Psychiatry, 30:88–91.PubMedGoogle Scholar
  37. Golden, R.N., Gilmore, J.H., Corrigan, M.H., Ekstrom, R.D., Knight, B.T., & Garbutt, J.C. (1991). Serotonin, suicide and aggression: clinical studies. Journal of Clinical Psychiatry, 52, supp1:61–69.PubMedGoogle Scholar
  38. Greendyke, R.M., & Kanter, D. (1986). Therapeutic effects of pindolol on behavioral disease: A double blind study. Journal of Clinical Psychiatry, 47(8): 423–426.PubMedGoogle Scholar
  39. Greendyke, R.M., Kanter, D.R., Schuster, D. B., Verstraete, S., & Wooton, J.A. (1986). Propranolol treatments of assaultive patients with organic brain disease. Journal of Nervous and Mental Disease, 174(5):290–294.PubMedGoogle Scholar
  40. Halperin, J.M., Vanshdeep, S., Siever, L.J., Schwartz, S.T., Matier, K., Wornell, G., & Newcorn, J.H. (1994). Serotonergic function in aggressive and nonaggressive boys with attention deficit hyperactivity disorder. American Journal of Psychiatry, 151:243–248.PubMedGoogle Scholar
  41. Heninger, G.R., Delgado, P.L., Charney, D.S., Price, L.H., & Aghajanian, G.K. (1992). Tryptophan deficient diet and amino acid drink deplete plasma tryptophan and induce a relapse of depression in susceptible patients. Joumal of Chemical Neuroanatomy, 5:347–8Google Scholar
  42. Higley, J.D., Mehlman, P.T., Taub, D.M., Higley, S.B., Suomi, S.J., Vickers, J.H., & Linnoila, M. (1992): Cerebrospinal tluid monoamine and adrenal correlates of aggression in free-ranging rhesus monkeys. Archives of General Psychiatry, 49:436–441.PubMedGoogle Scholar
  43. Higley, J.D., Suomi, S.J., & Linnoila M (1992a): A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys. Biological Psychiatry, 32: 127–145.PubMedGoogle Scholar
  44. Higley, J.D., Mehlman, P.T., Higley, S.B., Fernald, B., Vickers, J., Lindell, S.G., Taub, D.M., Suomi, S.J., & Linnoila, M. (1996). Excessive mortality in young free-ranging male nonhuman primates with low cerebrospinal tluid 5-hydroxyindoleacetic acid concentrations. Archives of General Psychiatry, 53:537–543.PubMedGoogle Scholar
  45. Huesmann, L.R., Eron, L.D., Lefkowitz, M.M., & Walder, L.O. (1984). Stability of aggression overtime and generations. Developmental Psychology, 20: 1120–1134.Google Scholar
  46. Jacobsen, T., Edelstein, W., & Hofmann, V. (1994). A longitudinal study of the relation between representations of attachment in childhood and cognitive functioning in childhood and adolescence. Developmental Psychology, 30(1): 112–14.Google Scholar
  47. Jacobsen, T., Hofmann, V. (in press). Children’s attachment representations: Longitudinal relations to school behavior and academic competency in middle childhood and adolescence. Developmental Psychology.Google Scholar
  48. Kaplan, J.R., Manuck, S.B., Shively, C. (1991). The effects of fat and cholesterol on social behavior in monkeys. Psychosomatic Medicine, 53:634–642.PubMedGoogle Scholar
  49. Kaplan, J.R., Shively, C.A., Fontenot, M.B., Morgan, T.M., Howell, S.M., Manuck, S.B., Muldoon, M.F., & Mann, J.J. (1994). Demonstration of an association among dietary cholesterol, central serotonergic activity, and social behavior in monkeys. Psychosomatic Medicine, 56(6):479–84.PubMedGoogle Scholar
  50. Koponen, H.J., Lepola, U., Leinonen, E. (1994). A long-term follow-up study of cerebrospinal tluid 5-hydroxyindoleacetic acid in delirium. European Archives of Psychiatry and Clinical Neuroscience, 244 (3): 131–134.Google Scholar
  51. Kraemer, G.W., & Clarke, A.S. (in press). Social attachment, brain function and aggression. Annals of New York Academy of Science.Google Scholar
  52. Kruesi, M.J.P., Linnoila, M., Rapoport, J.L., Brown, G.C., & Petersen, R. (1985). Carbohydrate craving, conduct disorder and low CSF 5-HIAA. Psychiatry Research, 16:83–86.PubMedGoogle Scholar
  53. Kruesi, M.J.P., Swedo, S.E., Hamburger, S.D., Potter, W.Z., & Rapoport, J.L. (1988). Concentration gradient of CSF monoamine metabolites in children and adolescents. Biological Psychiatry, 24:507–514.PubMedGoogle Scholar
  54. Kruesi, M.J.P. (1989). Cruelty to animals and CSF 5-HIAA. Psychiatry Research, 28, 115–116.PubMedGoogle Scholar
  55. Kruesi, M.J.P., Rapoport, J.L., Hamburger, S., Hibbs, E., Potter, W.Z., Lenane, M., & Brown, G.L. (1990). Cerebrospinal fluid monoamine metabolites, aggression, and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47,419–426.PubMedGoogle Scholar
  56. Kruesi, M.J.P., Hibbs, E. D., Zahn, T.P., Keysor, C.S., Hamburger, S.D., Bartko,.J., & Rapoport, J.L. (1992). A 2-year prospective follow-up study of children and adolescents with disruptive behavior disorders. Prediction by cerebrospinal tluid 5-hydroxyindoleacetic acid, homovanillic acid, and autonomic measures. Archives of General Psychiatry, 49, 429–435.PubMedGoogle Scholar
  57. Kruesi, M.J.P., & Lelio, D.F. (1996). Disorders of conduct and behavior. In J. Weiner (Ed.). Diagnosis and Psychopharmacology of Childhood and Adolescent Disorders (pp. 401–447) Second Edition. New York: John Wiley & Sons, Inc.Google Scholar
  58. Kuperman, S., & Stewart, M.A. (1987). Use of propranolol to decrease aggressive outbursts in younger patients. Psychosomatics, 28(6), 315–319.PubMedGoogle Scholar
  59. Langlais, P.J., Walsh, F. X., Bird, E.D. & Levy, H.L. (1985). Cerebrospinal fluid neurotransmitter metabolites in neurologically normal infants and children. Pediatrics, 75:580–86.PubMedGoogle Scholar
  60. Lester, D. (1995). The concentration of neurotransmitter metabolites in the cerebrospinal fluid of suicidal individuals; a meta-analysis. Pharmacopsychiatry, 28(2):45–50.PubMedGoogle Scholar
  61. Linkowski, P., Martin, F., & De Maertelaer, V. (1992). Effect of some climatic factors on violent and non-violent suicides in Belgium. Journal of Effective Disorders, 25(3); 161–6Google Scholar
  62. Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F.K. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from non impulsive violent behavior. Life Sciences, 33:2609–2614.PubMedGoogle Scholar
  63. Linnoila, V.M., & Virkkunen, M. (1992). Aggression, suicidality, and serotonin. Journal of Clinical Psychiatry, 53 (Suppl.), 36–51.Google Scholar
  64. Lucas, A., Morley, R., Cole, T.J., Lister, G., & Leeson-Payne, C. (1992). Breast milk and subsequent intelligence quotient in children born preterm. Lancet, 339;261–4.PubMedGoogle Scholar
  65. Lucas, A. Morley, R., Cole, T.J., & Gore, S.M. (1994). A randomised multicentre study of human milk versus formula and later development in preterm infants. Arch Dis Child Fetal Neonatal Ed, 70, 141–6.Google Scholar
  66. Maes, M., Scharpe, S., Verkerk, R., D’Hondt, P., Peeters, D., Cosyns, P., Thompson, P., De Meyer, F., Wauters, A., & Neels, H. (1995). Seasonal Variation in Plasma L-Tryptophan Availability in Healthy Volunteers. Archives of General Psychiatry, 52:937–946.PubMedGoogle Scholar
  67. Mann, J., McBride, P., Anderson, G., & Mieczkowski, T. (1992). Platelet and whole blood serotonin content in depressed inpatients; Correlations with acute and life-time psychopathology. Biological Psychiatry, 32,243–257.PubMedGoogle Scholar
  68. Mann, J.J., McBride, P.A., Brown, R.P., Linnoila, M., Leon, A.C., DeMeo, M., Mieczkowski, T., Myers, J.E., & Stanley, M. (1992a). Relationship between central and peripheral serotonin indexes in depressed and suicidal psychiatric inpatients. Archives of General Psychiatry, 49(6):442–6PubMedGoogle Scholar
  69. Markowitz, P. (1992). Effect of fluoxetine on self-injurious behavior in the developmentally disabled; A preliminary study. Journal of Clinical Psychopharmacology, 12(1), 27–31.PubMedGoogle Scholar
  70. Matthews-Ferrari, K., & Karroum, N. (1992). Metoprolol for aggression. In; Letters to the editor. Journal of the American Academy of Child and Adolescent Psychiatry, 31(5), 994.PubMedGoogle Scholar
  71. Mefford, I.N., Ward, M.M., Miles, L., Taylor, B., Chesney, M.A., Keegan, D.L., & Barchas, J.D. (1981). Determination of plasma catecholamines and free 3,4-dihidroxyphenolacetic acid in continuously collected human plasma by high performance liquid chromatography with electrochemical detection. Life Science, 28, 477–483.Google Scholar
  72. Mehlman, P.T., Higley, J.D., Faucher, I., Lilly, A.A., Taub, D.M., Vickers, J., Suomi, SJ., Linnoila, M. (1994). Low CSF 5-HIAA concentrations and severe aggression and impaired impulse control in nonhuman primates. American Journal of Psychiatry, 151; 1485–91.PubMedGoogle Scholar
  73. Mehlman, P.T., Higley J.D., Faucher, I., Lilly, A.A., Taub, D.M., Vickers, J., Suomi, S.J., Linnoila, M. (1995). Correlation of CSF 5-HlAA concentration with sociality and the timing of emigration in free-ranging primates. American Journal of Psychiatry, 152;901–13.Google Scholar
  74. Michael, R.P., & Zumpe, D. (1983). Annual rhythms in human violence and sexual aggression in the United States and the role of temperature. Social Biology, 30(3):263–78.PubMedGoogle Scholar
  75. Michael, R.P., & Zumpe, D. (1983a). Sexual violence in the United States and the role of season. American Journal of Psychiatry, 140;883–6.PubMedGoogle Scholar
  76. Michael, R.P., & Zumpe, D. (1986). An annual rhythm in the battering of women. American Journal of Psychiatry. 143 (5);631–40.Google Scholar
  77. Moffitt, T. E. (1993). The neuropsychology of conduct disorder. Development and Psychopathology, 5; 135–151.Google Scholar
  78. Moffitt, T., Caspi, A., Fawcett, P., Brammer, G.L., Raleigh, M., Yuwiler, A., & Silva, P. (in press). Whole blood serotonin and family background relate to male violence. In A. Raine, D. F31Tington, P. Brennan. & S.A. Mednick (Eds.), Biosocial bases of violence. New York: Plenum Publishing.Google Scholar
  79. Moss, H.B., Yao, J.K., & Panzak, G.L. (1990). Serotonergic responsivity and behavioral dimensions in antisocial personality disorder with substance abuse. Biological Psychiatry, 28;325–338.PubMedGoogle Scholar
  80. Muldoon, M.F., Manuck, S.B., Matthews, K.A. (1990). Lowering cholesterol concentrations and normality; A quantitative review of primary prevention trials. British Medical Journal, 301:309–314.PubMedGoogle Scholar
  81. Neaton J.D., Blackburn, H., Jacobs, D., et al. (1992). Serum cholesterol level and mortality findings for men screened in the multiple risk factor intervention trial. Archives of Internal Medicine, 152; 1490–1500.PubMedGoogle Scholar
  82. Nordin, C., Swedin, A., Zachau, A. (1992). CSF 5-HIAA and Atmospheric Pressure. Biological Psychiatry, 31:644–645.PubMedGoogle Scholar
  83. Nordstrom, P., Samuelsson, M., Asberg, M., Traskman-Bendz, L., Nordin, C., & Bertilsson, L. (1994). CSF 5-HIAA predicts suicide risk after attempted suicide. Suicide and Life Threatening Behavior, 24(1); 1–9.PubMedGoogle Scholar
  84. Olweus, D. (1979). Stability of aggressive reaction patterns in males: a review. Psychological Bulletin, 86;852–15.PubMedGoogle Scholar
  85. O’Neill, M., Page, N., & Adkins, W.N. (1986). Tryptophan-trazodone treatment of aggressive behavior. Lancet, 19(11), 859–860.Google Scholar
  86. Oxenstierna, G., Edman, G., Iselius, L., Oreland, L., Ross, S.B., & Sedvall, G. (1986). Concentrations of monoamine metabolites in the cerebrospinal fluid of twins and unrelated individuals: a genetic study. Journal of Psychiatry Research, 20: 19–29.Google Scholar
  87. Pinner, E., & Rich, C. (1988). Effects of trazodone on aggressive behavior in seven patients with organic mental disorders. American Journal of Psychiatry, 145, 1295–1296.PubMedGoogle Scholar
  88. Potter, W., & Manji, H. (1993). Are monoamine metabolites in cerebrospinal fluid worth measuring? Archives of General Psychiatry, 50, 653–656.PubMedGoogle Scholar
  89. Pranzatelli, M.R. (1994). Serotonin and human myoclonus. Archive of Neurology, 51:605–617.Google Scholar
  90. Raine, A, Brennan, P., & Mednick, S.A. (1994). Birth complications combined with early maternal rejection at age 1 year predispose to violent crime at age 18 years. Archives of General Psychiatry, 51:984–988.PubMedGoogle Scholar
  91. Raine, A., Brennan, P, Mednick, B., & Mednick, S. (1996). High rates of violence, crime, academic problems, and behavioral problems in males with both early neuromotor deficits and unstable family environments. Archives of General Psychiatry, 53:544–549.PubMedGoogle Scholar
  92. Raleigh, M.J., Brammer, G.L., & McGuire, M.T. (1983). Male dominance, serotonergic systems, and the behavioral and physiological effects of drugs in vervet monkeys (cercopithecus aethiops sabaeus) in Ethopharmacology: Primate models of neuropsychiatric disorders. K. Miczek (Ed.). Alan R. Liss, Inc. New York.Google Scholar
  93. Raleigh, M.F., McGuire, M.T., Brammer, G.L., & Yuwiler, A. (1984). Social and environmental influences on blood serotonin concentrations in monkeys. Archives of General Psychiatry, 41:405–410.PubMedGoogle Scholar
  94. Raleigh, M.J., Brammer, G.L., McGuire, M.T., & Yuwiler, A. (1985). Dominant social status facilitates the behavioral effects of serotonergic agonists. Brain Research, 348:274–83.PubMedGoogle Scholar
  95. Raleigh, M.J., McGuire, M.T., Brammer, G.L., Pollack, D.B. & Yuwiler, A. (1991). Serotonergic mechanisms promote dominance acquisition in adult male vervet monkey. Brain Research, 559, 181–190.PubMedGoogle Scholar
  96. Rao, U., Carson, G.A., Rappaport, M.D. (1991). Serum cholesterol and aggressive behavior in psychiatrically hospitalized children. Acta Psychiatr Scand, 83:77–78.PubMedGoogle Scholar
  97. Ratey, J.J., Morill, R., & Oxenkrug, G. (1983). Use of propranolol for provoked and unprovoked episodes of rage. American Journal of Psychiatry, 140(10), 1356–1357.PubMedGoogle Scholar
  98. Ratey, J.J., Sovner, R., Mikkelson, E., & Chmielinski, H.E. (1989). Buspirone therapy for maladaptive behavior and anxiety in developmentally disabled persons. Journal of Clinical Psychiatry, 50, 382–384.PubMedGoogle Scholar
  99. Ratey, J.J., Sorgi, P., O’Driscoll, G.A., Sands, S., Daehler, M. L., Fletcher, J.R., Kadish, W., Spruiell, G., Polakoff, S., Lindem, K.J., Bemporad, J.R., Richardson, L., & Rosenfeld, B. (1992). Nadolol to treat aggression and psychiatric symptomatology in chronic psychiatric inpatients: A double-blind, placebo-controlled study. Journal of Clinical Psychiatry, 53(2), 41–46.PubMedGoogle Scholar
  100. Realmuto, G.M., August, G.J., & Garfinkel, B.D. (1989). Clinical effect of buspirone in autistic children. Journal of Clinical Psychopharmacology, 9, 122–125.PubMedGoogle Scholar
  101. Riddle, M.A., Anderson, G.M., Mcintosh, S., Harcherik, D.F., Shaywitz, B.A., & Cohen, D.J. (1986). Cerebrospinal fluid monoamine precursor and metabolite levels in children treated for leukemia: age and sex effects and individual variability. Biological Psychiatry, 21:69–83.PubMedGoogle Scholar
  102. Ringo, D.L., Lindley, S.E., Faull, K.F., & Faustman, W.O. (1994). Cholesterol and serotonin: seeking a possible link between blood cholesterol and CSF 5-HIAA. Biological Psychiatry, 35:957–9.PubMedGoogle Scholar
  103. Rosenberg, D.R., Johnson, K., & Sahl, R. (1992). Evolving mania in an adolescent treated with low-dose fluoxetine. Journal of Child and Adolescent Psychopharmacology, 2, 299–306.PubMedGoogle Scholar
  104. Rosenthal, N.E., Sack, D. A., Wehr, T.A. (1983). In T.A. Wehr & F.K. Goodwin (Eds.), Circadian Rhythms and Affective Disorders (pp. 185–201). Boxwood Press, Pacific Grove, CAGoogle Scholar
  105. Roy, A., DeJong, J., & Linnoila, M. (1989). Cerebrospinal fluid monoamine metabolites and suicidal behavior in depressed patients. Archives of General Psychiatry, 46:609–612.PubMedGoogle Scholar
  106. Roy, A., Adinoff, B., DeJong, J., & Linnoila, M. (1991). Cerebrospinal fluid variables among alcoholics lack seasonal variation. Acta Psychiatr Scand, 84, 579–582.PubMedGoogle Scholar
  107. Roy, A. (1993). Serotonin, suicide and schizophrenia (letter). Canadian Journal of Psychiatry, 38(5): 369.Google Scholar
  108. Salomon, R.M., Mazure, C.M., Delgado, P.L., Mendia, P., Charney, D.S. (1994). Serotonin function in aggression: the effect of acute plasma tryptophan depletion in aggressive patients. Biological Psychiatry 35:570–2.PubMedGoogle Scholar
  109. Seifert, W.E., Foxx, J.F., Butler, I.J. (1980). Age effect on dopamine and serotonin metabolite levels in cerebrospinal fluid. Annals of Neurology, 8:38–42.PubMedGoogle Scholar
  110. Seilkowitz, M., Sunman, J., Pendergast, A., et at. (1990). Fenfluramine in prader-willi syndrome: A double-blind, placebo controlled trial. Archives of Disease of Childhood, 65, 112–114.Google Scholar
  111. Shaywitz, B.A., Cohen, D.J., & Bowers, M.B., Jr. (1977). CSF monoamine metabolites in children with minimal brain dysfunction. Evidence for alteration of brain dopamine. A preliminary report. Journal of Pediatrics, 90,76–71.Google Scholar
  112. Shetty, T., & Chase, T.N. (1976). Central monoamines and hyperkinase of childhood. Neurology, 26, 1000–1002.PubMedGoogle Scholar
  113. Smith, S.E., Pihl, R.O., Young, S. W., & Ervin, F.R. (1985). Psychopharmacology, 87:173–177.PubMedGoogle Scholar
  114. Stanley, M., Traskman-Bendz, L., & Dorovini-Zis, K. (1985). Correlations between aminergic metabolites simultaneously obtained from human CSF and brain. Life Science, 37, 1279–1286.Google Scholar
  115. Stein, D.J., Hollander, E., & Liebowitz, M. R. (1993). Neurobiology of impulsivity and the impulse control disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 5:9–17.Google Scholar
  116. Stewart, A.M., Stewart, S.G. (1981). Serum cholesterol in antisocial personality: failure to replicate earlier findings. Neuropsychobiology, 7:9–11.PubMedGoogle Scholar
  117. Stoff, D.M., Pasatiempo, A.P., Yeung, J., Cooper, T.B., Bridger, W.H., & Rabinovich, H. (1992). Neuroendocrine responses to challenge with dl-fenfluramine and aggression in disruptive behavior disorders of children and adolescents. Psychiatry Research, 43(3), 263–276.PubMedGoogle Scholar
  118. Swade, C., & Coppen, A. (1980). Seasonal variations in biochemical factors related to depressive illness. Journal of Affective Disorders, 2, 249–255.PubMedGoogle Scholar
  119. Swedo, S.E., Kruesi, M.J.P., Leonard, H.L., Hamburger, S.D., Cheslow, D.L., Stipetic, M., & Potter, W.Z. (1989). Lack of seasonal variation in pediatric lumbar cerebrospinal fluid neurotransmitter metabolite concentrations. Acta Psychiatr Scand, 80:644–649.PubMedGoogle Scholar
  120. Tolan, P.H., & Guerra, N.G. (1994). What works in reducing adolescent violence: An empirical review of the field. Monograph prepared for the Center for the Study and Prevention of Youth Violence. Boulder, CO: University of Colorado.Google Scholar
  121. Traskman L., Asberg, M., Bertilsson, L., & Sjostrand, L. (1981). Monoamine metabolites and suicidal behavior. Archives of General Psychiatry, 38: 631–636.PubMedGoogle Scholar
  122. Virkkunen, M. (1979). Serum cholesterol in antisocial personality. Neuropsychobiology, 5:27–30.PubMedGoogle Scholar
  123. Virkkunen, M. (1983). Serum cholesterol levels in homicidal offenders: Aloe cholesterol level is connected with a habitually violent tendency under the influence of alcohol. Neuropsychobiology, 10:65–69.PubMedGoogle Scholar
  124. Virkkunen, M., & Penttinen, H. (1984). Serum cholesterol in aggressive conduct disorder: A preliminary study. Biological Psychiatry, 19:435–439.PubMedGoogle Scholar
  125. Virkkunen, M., Eggert, M., Rawlings, R., & Linnoila, M. (1989). A prospective follow-up study of alcoholic violent offenders and fire setters. Archives of General Psychiatry, 53(6):523–529.Google Scholar
  126. Virkkunen, M., Goldman, D., Nielsen, D.A., & Linnoila, M. (1995). Low brain serotonin turnover rate (low CSF 5-HIAA) and impulsive violence. Journal of Psychiatry and Neuroscience, 20(4):271–5.PubMedCentralPubMedGoogle Scholar
  127. Virkkunen, M., Eggert, M., Rawlings, R., & Linnoila, M. (1996). A prospective follow-up study of alcoholic violent offenders and fire setters. Archives of General Psychiatry, 53:523–529.PubMedGoogle Scholar
  128. Volavka, J., Crowner, M., Brizer, D., Convit, A., et al. (1990). Tryptophan treatment of aggressive psychiatric inpatients. Biological Psychiatry, 28:728–32.PubMedGoogle Scholar
  129. Wirz-Justice, A., Lichsteiner, M., & Feer, H. (1977). Diurnal and seasonal variations in human platelet serotonin in man. Journal of Neural Transmission, 41:7–15.PubMedGoogle Scholar
  130. Yeh, S., Fricke, R.A., & Edwards, D.H. (1996). The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Science, 271:366–69.PubMedGoogle Scholar
  131. Yodyinyuad, U., DeLaRiva, D. H., Herbert, J., & Keverne, E.B. (1985). Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5-hydroxyindoleacetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience, 16:851–8.Google Scholar
  132. Young, S.N., Smith, S.E., Pihl, R., & Ervin, F.R. (1985). Tryptophan depletion causes a rapid lowering of mood in normal males. Psychopharmacology, 87:173–177.PubMedGoogle Scholar
  133. Yudofsky, S., Williams, D., & Gorman, J. (1981). Propranolol in the treatment of rage and violent behavior in patients with chronic brain syndromes. American Journal of Psychiatry, 138:218–220.PubMedGoogle Scholar
  134. Zhang, B., & Harris-Warrick, R.M. (1994). Multiple receptors mediate the modulatory effects of serotonergic neurons in a small neural network. Journal Exp Biology, 190:55–77.Google Scholar
  135. Zubieta, J., & Alessi, N. (1992). Acute and chronic administration of trazodone in the treatment of disruptive behavior disorders in children. Journal of Clinical Psychopharmacology, 12:346–351.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Markus J. P. Kruesi
    • 1
  • Teresa Jacobsen
    • 1
  1. 1.Institute for Juvenile Research Department of PsychiatryUniversity of Illinois-ChicagoChicagoUSA

Personalised recommendations