Bioreactor Modeling

  • Jens Nielsen
  • John Villadsen


The laboratory and small pilot plant bioreactors of Chapter 8 are used to develop new processes and to improve our understanding of existing processes. These small-scale bioreactors can be assumed to be homogeneous with respect to substrate and metabolic product concentrations, and the mass balances are therefore rather simple. The industrial application of microorganisms does, however, involve bioreactors up to 1000 m3 in size, in which concentration gradients will inevitably exist. When the microorganisms are grown in these large bioreactors, they may therefore experience a continuously changing environment. The scale-up of a newly developed process from the laboratory to industry is therefore difficult. It may require a considerable research effort and may in some cases become a real bottleneck in the development of a new process.


Power Input Bubble Column Residence Time Distribution Stir Tank Bioreactor Rushton Turbine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balmer, G. J., Moore, I. P. T., and Nienow, A. W. (1987). “Aerated and unaerated poocr.m d ma.s transfer characteristics of Prochem agitators,” in Biotechnology ProcesAc.s: St tilt’ Ur du t t/rmorv. Ho, C. S. and Oldshue, J. Y., eds., AIChE, New York, 116–127.Google Scholar
  2. Bird, R. B., Armstrong, R. C., and Hassager, O. (1987). Dynamics of Polymer’, Elm,lh. A„I I. livid Dynamics, John Wiley Sons, New York.Google Scholar
  3. Bryant, J. (1977), J. (1977). “The characterization of mixing in fermenters,” Adv. Bioche’’’. l ow,. 5. 1001Google Scholar
  4. Christensen, L. H. (1992). Modelling of the Penicillin Fermentation, Ph.D. thesis. 1 cchni.,l I nRcr.uc of Denmark, Lyngby, Denmark.Google Scholar
  5. Crozier, D. B. A. (1990). “A detailed study of the flow characteristics in a tall stirred tank. l’i,s. 1_aser anemometry-3rd International Conference, Springer-Verlag, Berlin, 3593Google Scholar
  6. Deckwer W.-D. (1992). Bubble Column Reactors, John Wiley Sons, Chichester_Google Scholar
  7. Kossen, N. W. F. and Oosterhuis, N. M. G. (1985). “Modelling and scaling-up of bioreactors,” in Biotechnology 2nd edn., Rehm, H.-J. and Reed, G., eds., VCH-Verlag, Weinheim, Germany.Google Scholar
  8. Levenspiel, O. (1972). “Chemical reaction engineering,” 2nd ed. John Wiley Sons, New York.Google Scholar
  9. Joshi, J. B., Patil, T. A., Ranade, V. V., and Shah, Y. T. (1990). “Measurement of hydrodynamic parameters in multiphase sparged reactors,” Rev. Chem. Eng. 6, 74–227.CrossRefGoogle Scholar
  10. Mann, R., Mavros, P. P., and Middleton, J. C. (1981). “A structured stochastic flow model interpreting flow follower data from a stirred vessel,” Trans. Institution Chem. Engrs. 59, 271–278.Google Scholar
  11. McDonough, R. J. (1992). Mixing for the Process Industries, Van Nostrand-Reinhold, New York.CrossRefGoogle Scholar
  12. Moser, A. (1988). Bioprocess Technology, Springer-Verlag, New York.CrossRefGoogle Scholar
  13. Nienow, A. W. (1990). “Agitators for mycelial fermentations,” Tibtech 8, 224–233.CrossRefGoogle Scholar
  14. Nienow, A. W. and Lilly, M. D. (1979). “Power drawn by multiple impellers in sparged vessels,” Biotechnol. Bioeng. 21, 2341–2345.CrossRefGoogle Scholar
  15. Nienow, A. W. and Elston, T. P. (1988). “Aspects of mixing in rheologically complex fluids,” Chem. Eng. Res. Des. 66, 5–15.Google Scholar
  16. Oosterhuis, N. M. G. and Kossen, N. W. F. (1983). “Oxygen transfer in a production scale bioreactor,” Chem. Eng. Res. Des. 61, 308–312.Google Scholar
  17. Pedersen, A. G. (1992). Characterization and Modelling of Bioreactors, Ph.D. thesis, Technical University of Denmark, Lyngby, Denmark.Google Scholar
  18. Pedersen, A. G., Bundgârd, M., Nielsen, J., Villadsen, J., and Hassager, O. (1993). “Rheological characterization of media containing Penicillium chrysogenum, ” Biotechnol. Bioeng. 41, 162–164.PubMedCrossRefGoogle Scholar
  19. Peters, H.-U., Herbst, H., Hesselink, P. G. M., Lünsdorf, H., Schumpe, A., and Deckwer, W.-D. (1989). “The influence of agitation rate on xanthan production by Xanthomonas campestris, ” Biotechnol. Bioeng. 34, 1393–1397.PubMedCrossRefGoogle Scholar
  20. Ranade, V. V. and Joshi, J. B. (1989). “Flow generated by pitched blade turbines: I. Measurements using laser doppler anemometer,” Chem. Eng. Commun. 81, 197–224.CrossRefGoogle Scholar
  21. Roels, J. A., van den Berg, J., and Voncken, R. M. (1974). “The rheology of mycelial broths,” Biotechnol. Bioeng. 16, 181–208.CrossRefGoogle Scholar
  22. Schügerl, K. (1981). “Oxygen transfer into highly viscous media,” Adv. Biochem. Eng. 19, 71–174.Google Scholar
  23. Schügerl, K. (1991). Bioreaction Engineering, Vol. 2, John Wiley Sons, Chichester, U.K.Google Scholar
  24. Schügerl, K., Lücke, J., and Oels, U. (1977). “Bubble column bioreactors,” Adv. Biochem. Eng. 7, 1–84.CrossRefGoogle Scholar
  25. Suh, 1.-S., Schumpe, A., Deckwer, W.-D., and Kulicke, W.-M. (1991). “Gas-liquid mass transfer in the bubble column with viscoelastic liquid,” Can. J. Chem. Eng. 69, 506–512.Google Scholar
  26. Sweere, A. P. J., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1987). “Regime analysis and scaledown: tools to investigate the performance of bioreactors,” Enz. Microb. Technol. 9, 386–398.CrossRefGoogle Scholar
  27. Sweere, A. P. J., Mesters, J. R., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988a). “Experimental simulation of oxygen profiles and their influence on bakers yeast production: I. Onefermentor system,” Biotechnol. Bioeng. 31, 567–578.PubMedCrossRefGoogle Scholar
  28. Sweere, A. P. J., Janse, L., Luyben, K. Ch. A. M., and Kossen, N. W. F. (1988b). “Experimental simulation of oxygen profiles and their influence on bakers yeast production: II. Two-fermentor system,” Biotechnol. Bioeng. 31, 579–586.PubMedCrossRefGoogle Scholar
  29. Vashitz, O. and Sheintuch, M. (1991). “Analysis of polymer synthesis rates during steady state growth of X. campestris, ” Biotechnol. Bioeng. 37, 383–385.PubMedCrossRefGoogle Scholar
  30. van de Vusse, J. G. (1962). “A new model for the stirred tank reactor, Chem. Eng. Sci. 17, 507–521.Google Scholar
  31. Westerterp, K. R., van Swaaij, W. P. M., and Beenackers, A. C. M. (1984). Chemical Reactor Design and Operation, J. Wiley Sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jens Nielsen
    • 1
  • John Villadsen
    • 1
  1. 1.Technical University of DenmarkLyngbyDenmark

Personalised recommendations