Skip to main content

Population Balances Based on Cell Number

  • Chapter
Bioreaction Engineering Principles

Abstract

In Chapter 5, cell population balances are written in terms of a distribution of mass fractions of the total biomass. This allows a direct combination of intracellularly structured models and population models. However, the population balances based on mass fractions do not permit the incorporation into the model of specific events in the cell cycle, and the single-cell models of Section 4.2.4 can therefore not be used in connection with these population balances. Since there are numerous examples that show a direct influence of certain specific events in the cell cycle on the overall culture performance, e.g., the distribution of plasmids to daughter cells on cell division in recombinant cultures, we need to derive a population balance based on cell number to obtain a correct description of these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J. E. and Ollis, D. F. (1986). Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Cazzador, L. (1991). “Analysis of oscillations in yeast continuous cultures by a new simplified model,” Bull. Math. Biol. 5, 685–700.

    Google Scholar 

  • Hjortso, M. A. and Bailey, J. E. (1982). “Steady-state growth of budding yeast populations in well-mixed continuous-flow microbial reactors,” Math. Biosci. 60, 235–263.

    Article  Google Scholar 

  • Hjortso, M. A. and Bailey, J. E. (1983). “Transient responses of budding yeast populations,” Math. Biosci. 63, 121–148.

    Article  Google Scholar 

  • Hjortso, M. A. and Bailey, J. E. (1984a). “Plasmid stability in budding yeast populations: Steady state growth with selection pressure,” Biotechnol. Bioeng. 26, 528–536.

    Article  PubMed  CAS  Google Scholar 

  • Hjortso, M. A. and Bailey, J. E. (1984b). “Plasmid stability in budding yeast populations: Dynamics following a shift to nonselective medium,” Biotechnol. Bioeng. 26. 814–819.

    Article  PubMed  CAS  Google Scholar 

  • Kothari, I. R., Martin, G. C., Reilly, P. J., Martin, P. J., and Eakman, J. M. (1972). “Estimation of parameters in population models for Schizosaccharomyces pombe from chemostat data,” Biotechnol. Bioeng. 14, 915–938.

    Article  PubMed  CAS  Google Scholar 

  • Eakman, J. M., Fredrickson, A. C., and Tsuchiya, H. M. (1966). “Statistics and dynamics of microbial cell populations,” Chem. Eng. Prog. Symp. Ser. 62, 37–49.

    Google Scholar 

  • Kreyszig, E. (1988). Advanced Engineering Mathematics, 6th ed., John Wiley Sons, New York.

    Google Scholar 

  • Lievense, J. C. and Lim, H. C. (1982). “The growth and dynamics of Saccharomyces cercvisiae, ” Ann. Report Ferm. Proc. 5, 211–262.

    CAS  Google Scholar 

  • Metz, B. (1976). From Pulp to Pellet, Ph.D. thesis. Technical University of Delft, Delft.

    Google Scholar 

  • Metz, B., Bruijn, E. W., and van Suijdam, J. C. (1981). “Method for quantitative representation of the morphology of molds,” Biotechnol. Bioeng. 23, 149–162.

    Article  Google Scholar 

  • Nielsen, J. (1993). “A simple morphologically structured model describing the growth of filamentous microorganisms,” Biotechnol. Bioeng. 41, 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Ramkrishna, D. (1979). “Statistical models for cell populations,” Adv. Biochem. Eng. 11, 1–48.

    Google Scholar 

  • Ramkrishna, D. (1985). “The status of population balances,” Rev. Chem. Eng. 3, 49–95.

    Article  CAS  Google Scholar 

  • Seo, J.-H. and Bailey, J. E. (1985). “A segregated model for plasmid content on growth properties and cloned gene product formation in Escherichia colt,” Biotechnol. Bioeng. 27, 156–166.

    Article  PubMed  CAS  Google Scholar 

  • Singh, P. N. and Ramkrishna, D. (1977). “Solution of population balance equations by MWR,” Comp. Chem. Eng. 1, 23–31.

    Article  CAS  Google Scholar 

  • Subramanian, G. and Ramkrishna, D. (1971). “On the solution of statistical models of cell populations,” Math. Biosci. 10, 1–23.

    Article  Google Scholar 

  • van Suijdam, J. C. and Metz, B. (1981). “Influence of engineering variables upon the morphology of filamentous molds,” Biotechnol. Bioeng. 23, 111–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Population Balances Based on Cell Number. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics