Skip to main content

Abstract

Cellular growth is the result of a very large number of chemical reactions that occur inside individual cells. These reactions include formation of Gibbs free energy, which is used to fuel all the other reactions, biosynthesis of building blocks from substrates, polymerization of the building blocks into macromolecules, and assembly of macromolecules into organdies. In order to ensure orderly and energy-efficient growth, most of these reactions have to be tightly coupled, and the flux through the various pathways inside the cell is therefore carefully controlled. This is illustrated by a few simple observations concerning the bacterium Escherichia colt [Ingraham et al. (1983)]; see Table 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth, G. C. and Sussman, A. S. (1965). The Fungi, Vol. I-III, Academic Press, New York. Atkinson, D. E. (1977). Cellular Energy Metabolism and Its Regulation, Academic Press, London.

    Google Scholar 

  • Benthin, S. (1992). Growth and Product Formation of Lactococcus Cremoris, Ph.D. thesis, Department of Biotechnology, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Benthin, S., Nielsen, J., and Villadsen, J. (1991). “Characterization and application of precise and robust flow-injection analysers for on-line measurements during fermentations,” Anal. Chim. Acta 247, 45 50.

    Google Scholar 

  • Benthin, S., Schultze, U., Nielsen, J., and Villadsen, J. (1994). “Growth energetics of Lactococcus cremoris FDI during energy, carbon, and nitrogen limitation in steady state and transient cultures, Chem. Eng. Sci. 49, 589–609.

    Google Scholar 

  • Cook, A. H. (1958). The Chemistry and Biology of Yeasts, Academic Press, New York.

    Google Scholar 

  • Dekkers, J. G. J., de Kok, H. E., and Roels, J. A. (1981). “Energetics of Saccharomyces cerevisiae CBS 426: Comparison of anaerobic and aerobic glucose limitation,” Biotechnol. Bioeng. 13, 1023 1035.

    Google Scholar 

  • Erickson, L. E., Minkevich, I. G., and Eroshin, V. K. (1978). “Application of mass and energy balance regularities in fermentation,” Biotechnol. Bioeng. 20, 1595–1621.

    Article  CAS  Google Scholar 

  • Goldberg, I. and Rokem, J. S. (1991). Biology of Methylotrophs, Butterworth-Heinemann, Boston. Guerts, Th. G. E., de Kok, H. E., and Roels, J. A. (1980). “A quantitative description of the growth of Saccharomyces cerevisiae CBS 342 on a mixed substrate of glucose and ethanol,” Biotechnol. Bioeng. 22, 20–31.

    Google Scholar 

  • Herbert, D. (1959). “Some principles of continuous cultures,” Tunewall, G. ed., Recent Prog. Microbiol. 7, 381–396.

    Google Scholar 

  • Herbert, D. (1976). “Stoichiometric Aspects of Microbial Growth,” in Continuous Culture, A. R. C. Dean, D. C. Ellwood, C. G. T. Evans, and J. Melling, eds., Ellis Horwood Ltd., Chichester, 1–30.

    Google Scholar 

  • Ingraham, J. L., Maaloe, O., and Neidhardt, F. C. (1983). Growth of the Bacterial Cell, Sinnauer Associates Inc, Sunderland.

    Google Scholar 

  • Katchalsky, A. and Curran, F. P. (1965). Non-equilibrium Thermodynamics in Biophysics, Harvard U. Press, Cambridge, MA.

    Google Scholar 

  • Luedeking, R. and Piret, E. L. (1959). “A kinetic study of the lactic acid fermentation. Batch process at controlled pH,” J. Biochem. Microbiol. Technol. Eng. 1, 393–412.

    Article  CAS  Google Scholar 

  • Meyenburg, K. von (1969). Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae, Ph.D. thesis, ETH, Zürich.

    Google Scholar 

  • Mitchell, P. (1968). Chemiosmotic coupling and energy transduction, Clynn Research, Bodmin, Cornwall, UK.

    Google Scholar 

  • Müller, R. H. and Babel, W. (1984). “Glucose as an auxiliary substrate,” Appl. Microbiol. Biotechnol. 20, 195–200.

    Article  Google Scholar 

  • Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991a). “Structured modelling of a microbial system I.Theoretical study of the lactic acid fermentation, ”Biotechnol. Bioeng. 38 1–10.

    Google Scholar 

  • Nielsen, J., Nikolajsen, K., and Villadsen, J. (1991b). “Structured modelling of a microbial system II. Experimental verification of a structured lactic acid fermentation model,” Biotechnol. Bioeng. 38, 11–23.

    Article  PubMed  CAS  Google Scholar 

  • Oura, E. (1983). “Biomass from carbohydrates,” in Biotechnology, H. Dellweg, ed., Vol. 3, 3–42.

    Google Scholar 

  • Pirt, S. J. (1965). “The maintenance energy of bacteria in growing cultures,” Proc. Royal Soc. London Ser. B 163, 224–231.

    Article  CAS  Google Scholar 

  • Rods, J. A. (1983). Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam. Rose, A. H. and Harrison, J. S. (1989). The Yeasts, Vol. I-IV, Academic Press, London.

    Google Scholar 

  • Rottenberg, H. (1979). “Non-equilibrium thermodynamics of energy conversion in bioenergetics,” Biochem. Biophys. Acta 549, 225–253.

    Article  PubMed  CAS  Google Scholar 

  • Senior, A. E. (1988). “ATP synthesis by oxidative phosphorylation,” Physiol. Rev. 68, 177–231.

    PubMed  CAS  Google Scholar 

  • Sjöberg, A. and Hahn-Hägerdal, B. (1989). ß-glucose-l-phosphate, a possible mediator for polysaccharide formation in maltose-assimilating Lactococcus lattis, “ Appl. Environ. Microbiol. 55, 1549–1554.

    PubMed  Google Scholar 

  • Stein, W. D. (1990). Channels, Carriers, and Pumps. An Introduction to Membrane Transport, Academic Press, San Diego.

    Google Scholar 

  • Stouthamer, A. H. (1979). “The search for correlation between theoretical and experimental growth yields,” in Microbial Biochemistry, J. R. Quayle, ed., Vol. 21, 1–48.

    Google Scholar 

  • Stryer, L. (1981). Biochemistry, W. H. Freeman and Company, San Fransisco.

    Google Scholar 

  • Stucki, J. W. (1980). “The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation,” Eur. J. Biochem. 109, 269–283.

    Article  PubMed  CAS  Google Scholar 

  • Theobald, U., Mailinger, W., Reuss, M., and Rizzi, M. (1993). “In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique,” Anal. Biochem. 214 31–37.

    Google Scholar 

  • Walter, A. and Gutknecht, J. (1986). “Permeability of small nonelectrolytes through lipid bilayer membranes,” J. Membrane Biol. 90, 207–217.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Cellular Growth Reactions. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics