Targeting Inflammation

  • Jonathan R. Lindner
  • Alexander L. Klibanov
  • Klaus Ley
Chapter

Abstract

To target sites of inflammation for diagnostic or therapeutic purposes, suitable molecular targets, target-binding molecules, coupling mechanisms and vehicles must be considered. The current technology for detecting sites of inflammation uses isolated, radiolabeled neutrophils and gamma imaging (1). This method is cumbersome because it requires obtaining blood from the patient to isolate and short-term culture neutrophil, radiolabeling (usually with 99mTechnetium) and intravenous injection of the radiolabeled cells in order to detect their accumulation in the inflamed tissue by gamma camera imaging. There is potential for inadvertently introducing infectious agents, and the use of radioactivity is undesirable for certain groups of patients. Hence, radiolabeled neutrophils are rarely used as a primary diagnostic tool and are reserved as a method for cases in which the inflammatory focus cannot be found by other means. Consequently, inflammatory sites are not routinely imaged or treated with targeted agents.

Keywords

Vulnerable Plaque Ultrasound Contrast Agent Endothelial Adhesion Molecule Microbubble Contrast Agent Adherent Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boerman, O. C., Dams, E. T., Oyen, W. J., Corstens, F. H., and Storm, G. (2001). Radiopharmaceuticals for scintigraphic imaging of infection and inflammation. Inflamm.Res. 50, 55–64.CrossRefGoogle Scholar
  2. 2.
    Springer, T. A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76, 301–314.CrossRefGoogle Scholar
  3. 3.
    Jung, U. and Ley, K. (1997). Regulation of E-selectin, P-selectin and ICAM-1 expression in mouse cremaster muscle vasculature. Microcirculation 4, 311–319.CrossRefGoogle Scholar
  4. 4.
    Fries, J. W. U., Williams, A. J., Atkins, R. C., Newman, W., Lipscomb, M. F., and Collins, T. (1993). Expression of VCAM-1 and E-selectin in an in vivo model of endothelial activation. Am.J.Pathol. 143, 725–737.Google Scholar
  5. 5.
    Bendas, G., Krause, A., Schmidt, R., Vogel, J., and Rothe, U. (1998). Selectins as new targets for immunoliposome-mediated drug delivery. A potential way of anti-inflammatory therapy. Pharmaceutica Acta Helvetiae 73, 19–26.CrossRefGoogle Scholar
  6. 6.
    Mayrovitz, H. N. (1992). Leukocyte rolling: A prominent feature of venules in intact skin of anesthetized hairless mice. Am.J.Physiol. 262, H157 - H161.Google Scholar
  7. 7.
    Johnson-Tidey, R. R., McGregor, J. L., Taylor, P. R., and Poston, R. N. (1994). Increase in the adhesion molecule P-selectin in endothelium overlying atherosclerotic plaques: Coexpression with intercellular adhesion molecule-1. Am.J.Pathol. 144, 952–961.Google Scholar
  8. 8.
    Hickey, M. J., Kanwar, S., McCafferty, D. M., Granger, D. N., Eppihimer, M. J., and Kubes, P. (1999). Varying roles of E-selectin and P-selectin in different microvascular beds in response to antigen. J.Immunol. 162, 1137–1143.Google Scholar
  9. 9.
    Lindner, J. R., Song, J., Christiansen, J., Klibanov, A., Xu, F., and Ley, K. (2001). Ultrasound assessment of inflammation and renal tissue injury with microbubbles targeted to P-selectin. Circulation 104, 2107–2112.CrossRefGoogle Scholar
  10. 10.
    Bevilacqua, M. P., Stengelin, S., Gimbrone, M. A., Jr., and Seed, B. (1989). Endothelial leukocyte adhesion molecule-1: An inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243, 1160–1165.CrossRefGoogle Scholar
  11. 11.
    Keelan, E. T., Licence, S. T., Peters, A. M., Binns, R. M., and Haskard, D. O. (1994). Characterization of E-selectin expression in vivo with use of a radiolabeled monoclonal antibody. Am.J.Physiol. 266, H278 - H290.Google Scholar
  12. 12.
    Stahn, R., Grittner, C., Zeisig, R., Karsten, U., Felix, S. B., and Wenzel, K. (2001). Sialyl Lewis(x)-liposomes as vehicles for site-directed, E-selectin-mediated drug transfer into activated endothelial cells. Cellular Molecular Life Sciences 58, 141–147.CrossRefGoogle Scholar
  13. 13.
    Roebuck, K. A. and Finnegan, A. (1999). Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J.Leukocyte Biol. 66, 876–888.Google Scholar
  14. 14.
    Sipkins, D. A., Gijbels, K., Tropper, F. D., Bednarski, M., Li, K. C., and Steinman, L. (2000). ICAM-1 expression in autoimmune encephalitis visualized using magnetic resonance imaging. Journal of Neuroimmunology 104, 1–9.CrossRefGoogle Scholar
  15. 15.
    Demos, S. M., Alkan-Onyuksel, H., Kane, B. J., Ramani, K., Nagaraj, A., Greene, R., Klegerman, M., and McPherson, D. D. (1999). In vivo targeting of acoustically reflective liposomes for intravascular and transvascular ultrasonic enhancement. Journal of the American College of Cardiology 33, 867–875.CrossRefGoogle Scholar
  16. 16.
    Salmi, M., Alanen, K., Grenman, S., Briskin, M., Butcher, E. C., and Jalkanen, S. (2001). Immune cell trafficking in uterus and early life is dominated by the mucosal addressin MAdCAM-1 in humans. Gastroenterology 121, 853–864.CrossRefGoogle Scholar
  17. 17.
    Nakashima, Y., Raines, E. W., Plump, A. S., Breslow, J. L., and Ross, R. (1998). Upregulation of VCAM-1 and ICAM- I at atherosclerosis-prone sites on the endothelium in the apoE-deficient mouse. Arteriosclerosis Thrombosis Vascular Biology 18, 842–851.CrossRefGoogle Scholar
  18. 18.
    Lindner, J. R., Coggins, M. P., Kaul, S., Klibanov, A. L., Brandenburger, G. H., Ley, K. (2000) Microbubble persistence in the microcirculation during ischemiareperfusion and inflammation: integrin-and complement-mediated adherence to activated leukocytes. Circulation 101, 668–675.CrossRefGoogle Scholar
  19. 19.
    Lindner, J. R., Ismail S., Spotnitz, W. D., Skyba, D. M., Jayaweera, A. R., Kaul, S. (1998) Albumin microbubble persistence during myocardial contrast echocardiography is associated with microvascular endothelial glycocalyx damage. Circulation 98, 2187–2194.CrossRefGoogle Scholar
  20. 20.
    Lindner, J. R., Song, J., Xu, F., Klibanov, A. L., Singbartl, K., Ley, K., Kaul, S. (2000) Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102, 2745–2750.CrossRefGoogle Scholar
  21. 21.
    Lindner, J. R., Dayton, P. A., Coggins, M. P., Ley, K., Song, J., Ferrara, K., Kaul, S. (2000) Non-invasive imaging of inflammation by ultrasound detection of phagocytosed microbubbles. Circulation 102, 531–538.CrossRefGoogle Scholar
  22. 22.
    Villanueva, F. S., Jankowski, R. J., Klibanov, S., Klibanov, S., Pina, M. L., Alber, S. M., Watkins, S. C., Brandenburger, G. H., Wagner, W. R. (1998) Microbubbles targeted to intercellular adhesion molecule-I bind to activated coronary endothelial cells. Circulation 98, 1–5.CrossRefGoogle Scholar
  23. 23.
    Unger, E. C., McCreery, T. P., Sweitzer, R. H., Shen, D., Wu, G. (1998) In vitro studies of a new thrombus-specific ultrasound contrast agent. Am. J. Cardiol. 81, 58G - 61G.CrossRefGoogle Scholar
  24. 24.
    Ruehm, S. G., Corot, C., Vogt, P., Kolb, S., Debatin, J. F. (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103, 415–422.CrossRefGoogle Scholar
  25. 25.
    Sipkins, D. A., Cheresh, D. A., Kazemi, M. R., Nevin, L. M., Bednarski, M. D., Li, K. C. P. (1998) Detection of tumor angiogenesis in vivo by a433-targeted magnetic resonance imaging. Nature Med. 4, 623–626.CrossRefGoogle Scholar
  26. 26.
    Corstens, F. H. M., van der Meer, J. W. M. (1999) Nuclear medicine’s role in infection and inflammation. Lancet 354, 765–770.CrossRefGoogle Scholar
  27. 27.
    Weiner, R. E., Thakur, M. L. (1999) Imaging infection/inflammations. Q. J Nut. Med. 43, 2–8.Google Scholar
  28. 28.
    Zinn, K. R., Chaudhuri, T. R., Smyth, S. C., Wu, Q., Hong-Gang, L., Fleck, M., Mountz, J. D., Mountz, J. M. (1999) Specific targeting of activated endothelium in rat adjuvant arthritis with a 99mTc-radiolabeled E-selectin-binding peptide. Arthritis Rheum. 42, 641–649.Google Scholar
  29. 29.
    Unger, E.C., McCreery, T., Sweitzer, R., Vielhauer, G., Wu, G., Shen, D., and Yellowhair, D. (1998). MRX 501: a novel ultrasound contrast agent with therapeutic properties. Acad Radiol 5 Suppl 1, S247 - S249.Google Scholar
  30. 30.
    Unger, E.C., McCreery, T.P., Sweitzer, R.H., Caldwell, V.E., and Wu, Y. (1998). Acoustically active lipospheres containing paciitaxel: a new therapeutic ultrasound contrast agent. Invest Radiol 33, 886–892.CrossRefGoogle Scholar
  31. 31.
    Porter, T.R., Iversen, P.L., Li, S., and Xie, F. (1996). Interaction of diagnostic ultrasound with synthetic oligonucleotide-labeled perfluorocarbon-exposed sonicated dextrose albumin microbubbles. J Ultrasound Med 15, 577–584.Google Scholar
  32. 32.
    Unger, E.C., Hersh, E., Vannan, M., and McCreery, T. (2001). Gene delivery using ultrasound contrast agents. Echocardiography 18, 355–361.CrossRefGoogle Scholar
  33. 33.
    Schneider, M., Yan, F., and Hiver, A. (2001). Delivery of biologically active substance to target sites in the body of patients. US Patent 6258378.Google Scholar
  34. 34.
    Miller, D.L, and Quddus, J. (2000). Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol 26, 661–667.CrossRefGoogle Scholar
  35. 35.
    Price, R.J., Skyba, D.M., Kaul, S., and Skalak, T.C. (1998). Delivery of colloidal particles and red blood cells to tissue through microvessel ruptures created by targeted microbubble destruction with ultrasound. Circulation 98, 1264–1267.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jonathan R. Lindner
    • 1
    • 2
  • Alexander L. Klibanov
    • 1
    • 2
  • Klaus Ley
    • 1
    • 3
  1. 1.Cardiovascular Research CenterUniversity of VirginiaUSA
  2. 2.Division of CardiologyUniversity of VirginiaUSA
  3. 3.Department of Biomedical EngineeringUniversity of VirginiaUSA

Personalised recommendations