Targeting Mitochondria

  • Volkmar Weissig
  • Gerard D’ Souza
  • Vladimir P. Torchilin


The field of mitochondrial research is currently one of the fastest growing disciplines in biomedicine. During the last decade alone, more than 26,000 articles on mitochondria have been published in over 1000 scientific journals. What brings mitochondria into the limelight of the scientific community? Since the end of the ‘80s, a series of key discoveries have been made which have rekindled the scientific interest in this long-known cell organelle. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the ‘90s, mitochondria, the “power houses” of the cell, have also become accepted as the “motor of cell death” (1), which reflects their increasingly acknowledged key role during apoptosis (programmed cell death).


Mitochondrial Membrane Mitochondrial Matrix Intermembrane Space Death Receptor Pathway Advance Drug Delivery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brown, G.C., Niccholls, D.G., Cooper, C.E. (Eds.), Mitochondria and Cell Death. Princton University press, Princton, New Jersey (1999) pp.. vii-viiiGoogle Scholar
  2. 2.
    Murphy, M.P., Smith, R.A., Drug delivery to mitochondria: The key to mitochondrial medicine. Adv.Drug.Deliv.Rev. 2000; 41: 325. Google Scholar
  3. 3.
    Scheffler, I.E., Mitochondria make a come back. Adv. Drug Deliv. Rev. 2001; 49. 3.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Wallace, D. C., Singh, G., Loft, M. T., Hodge, J. A., Schurr, T. G., Lezza, A. M., Elsas, L. J. 2d, Nikoskelainen, E. K., Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988; 242: 1427. Google Scholar
  5. 5.
    Holt, I. J., Harding, A. E. and Morgan-Hughes, J. A., Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988; 331: 717.Google Scholar
  6. 6.
    Collombet, J. M. and Coutelle, C. Towards gene therapy of mitochondrial disorders. Molecular Medicine Today 1998; 4. 31.CrossRefGoogle Scholar
  7. 7.
    Wallace, D. C., Mitochondrial diseases in man and mouse. Science 1999;283:1482. Google Scholar
  8. 8.
    Weissig, V. and Torchilin, V.P., Cationic bolasomes with delocalized charge centers as mitochondria-specific DNA delivery systems. Advanced Drug Delivery Reviews 2001;49:127. Google Scholar
  9. 9.
    Szewczyk, A., Wojtczak, L., Mitochondria as a Pharmacological Target. Pharmacological Reviews 2002; 54: 101.CrossRefGoogle Scholar
  10. 10.
    Smith, R.A.J., Porteous, C.M., Coulter, C.V., Murphy, M.P., Selective targeting of an antioxidant to mitochondria. Eur.JBiochem. 1999;263: 709. Google Scholar
  11. 11.
    Zwacka, R.A., Zhou, W., Zhand, Y., Darby, C.J., Dudus, C.J., Halldorson, J., Oberly, L., Engelhardt, J.F., Redox gene therapy for ischemia/reperfusion injury of the liver reduces AP-1 and NF-KB activation. Nat.Med. 1998; 4: 698.CrossRefGoogle Scholar
  12. 12.
    Kaufmann, S.H., Gores, G.J., Apoptosis in cancer: cause and cure. BioEssays 2000;22:1007. Google Scholar
  13. 13.
    Preston, T.J., Abadi, A., Wilson, L., Singh, G., Mitochondrial contribution to cancer cell physiology: potential for drug development. Advanced Drug Delivery reviews 2001; 49: 45.CrossRefGoogle Scholar
  14. 14.
    Costantini, P., Jacotot, E., Decaudin, D., Kroemer, G., Mitochondrion as a novel target of anticancer chemotherapy. J.Natl.Cancer Inst. 2000;92:1042. Google Scholar
  15. 15.
    Enerback, S., A. Jacobson, E.M. Simpson, C. Guerra, H. Yamashita, M.E. Harper and L.P. Kozak, Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 1997;387:90. Google Scholar
  16. 16.
    Wallace, K.B., Starkov, A.A., Mitochondrial targets of drug toxicity. Annu.Rev.Pharmacol. Toxicol. 2000; 40: 353.CrossRefGoogle Scholar
  17. 17.
    Morin, D., Hauet, T., Spedding, M., Tillement, J.-P., Mitochondria as targets for antiischemic drugs. Advanced Drug Delivery Reviews 2001;49:151. Google Scholar
  18. 18.
    Rowe, T.C., Weissig, V., Lawrence, J.W., Mitochondrial DNA metabolism targeting drugs. Advanced Drug Delivery Reviews 2001; 49: 175.Google Scholar
  19. 19.
    Morgan, J., Oseroff, A.R., Mitochondria-based photodynamic anti-cancer therapy. Advanced Drug Delivery Review 2001; 49: 71.CrossRefGoogle Scholar
  20. 20.
    Kolesnikova, O.A., Entelis, N.S., Mireau, H., Fox, T.D., Martin, R.P., Tarassov, I.A., Suppression of mutations in mitochondrial DNA by tRNA imported from the cytoplasm. Science 2000;289:1931 Google Scholar
  21. 21.
    Modica-Napolitano, J.S., Aprille, J.R., Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Advanced Drug Delivery Reviews 2001; 49: 63.Google Scholar
  22. 22.
    Smith, R.A.J., Porteous, C.M., Coulter, C.V., Murphy, M.P., Selective targeting of an antioxidant to mitochondria. Eur.J.Biochem. 1999; 263: 709.CrossRefGoogle Scholar
  23. 23.
    Weissig, V., Lasch, J., Erdos, G., Meyer, H., Rowe, T.C., Hughes, J., DQAsomes: A novel potential drug and gene delivery system made from dequalinium. Pharmaceut.Res. 1998;15: 334.Google Scholar
  24. 24.
    Weiss, M.J., Wong, J.R., Ha, C.S., Bleday, R., Salem, R.R., Steel, Jr., G.D., Chen, L.B., Dequalinium, a topical antimicrobial agent, displays anticarcinoma activity based on selective mitochondrial accumulation. Proc.Natl.Acad.Sci. USA 1987;84.5444. Google Scholar
  25. 25.
    Taylor, R.W., Wardell, T.M., Smith, P.M., Muratovska, A., Murphy, M.P., Turnbull, D.M., Lightowlers, R.N., An antigenomic strategy for treating heteroplasmic mtDNA disorders. Advanced Drug Delivery Reviews 2001;49:121. Google Scholar
  26. 26.
    Weissig, V., Torchilin, V.P. (Eds.), Drug and DNA delivery to mitochondria. Advanced Drug Delivery Reviews — Theme Issue 2001;49:Nos. 1–2Google Scholar
  27. 27.
    Weissig, V., Lizano, C., Torchilin, V.P., Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv. 2000;7:1. Google Scholar
  28. 28.
    Weissig, V., D’Souza, G.G.M., Torchilin, V.P., DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J.Controlled Release 2001; 75: 401.CrossRefGoogle Scholar
  29. 29.
    D’Souza, G.G.M., Rammohan, R., Torchilin, V.P., Weissig, V., DQAsome mediated delivery of pDNA to mitochondria in living cells. 2002, submitted for publicationGoogle Scholar
  30. 30.
    Xu, Y., Szoka Jr., F.C., Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection. Biochemistry 1996; 35: 5616.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Volkmar Weissig
    • 1
  • Gerard D’ Souza
    • 1
  • Vladimir P. Torchilin
    • 1
  1. 1.Bouve College of Health Sciences, School of Pharmacy, Department of PharmaceuticsNortheastern UniversityBostonUSA

Personalised recommendations